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Abstract: In this paper, a method is introduced to control the dark knowledge values also known
as soft targets, with the purpose of improving the training by knowledge distillation for multi-class
classification tasks. Knowledge distillation effectively transfers knowledge from a larger model
to a smaller model to achieve efficient, fast, and generalizable performance while retaining much
of the original accuracy. The majority of deep neural models used for classification tasks append a
SoftMax layer to generate output probabilities and it is usual to take the highest score and consider
it the inference of the model, while the rest of the probability values are generally ignored. The
focus is on those probabilities as carriers of dark knowledge and our aim is to quantify the relevance
of dark knowledge, not heuristically as provided in the literature so far, but with an inductive
proof on the SoftMax operational limits. These limits are further pushed by using an incremental
decision tree with information gain split. The user can set a desired precision and an accuracy level
to obtain a maximal temperature setting for a continual classification process. Moreover, by fitting
both the hard targets and the soft targets, one obtains an optimal knowledge distillation effect that
mitigates better catastrophic forgetting. The strengths of our method come from the possibility of
controlling the amount of distillation transferred non-heuristically and the agnostic application of
this model-independent study.

Keywords: dark knowledge; knowledge distillation; clustering; incremental learning

1. Introduction

In the context of knowledge distillation, the SoftMax function is used to convert the
raw output scores of a model into a probability distribution over classes. The SoftMax
function was initially proposed for shallow neural networks [1] in an attempt to treat
the outputs of the neural network as probabilities of pattern classes conditioned on the
inputs [2]. However, a long period of time and various formulations of SoftMax were
needed before it was accepted as a default solution for multi-class classification problems.
The traditional deep neural networks, including AlexNet, GoogLeNet, ResNet, VGG etc. [3],
as well as the modern transformer-based architectures, append a SoftMax layer in their
fully connected classification part.

At first, Ba and Caruana [4], and later Hinton et al. [5], trained a student network
by matching the logits of the student network and a pre-trained teacher network. The
stimulating model compression method proposed by Hinton et al. was coined as knowledge
distillation, and by dividing the logits used in the SoftMax layer by a temperature parameter
other than 1, the dark knowledge has been revealed in the form of soft targets. Therefore,
dark knowledge explicitly refers to the remaining outputs of the SoftMax layer that are
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different from the highest one. These values represent the hidden knowledge used in the
training by distillation from a teacher model to a smaller student model. As such, the softer
distribution of SoftMax consists of the introduction of a temperature parameter T whose
value is T = 1 for classical SoftMax and is empirically varied between T = 2 and T = 20 in
the temperature scaling version of the function. While no formal proof for the choice of the
right temperature for a target task is given, one could heuristically observe that raising the
temperature leads to the appearance of a classification plateau. Consequently, the learning
benefit due to SoftMax relaxation is gradually reduced until it disappears for a large T
value due to the occurrence of deep informational entropy [6]. The problem tackled in
this research is how to non-heuristically determine an optimal temperature for a given
classification task to maximally benefit from the knowledge distillation method.

2. Related Works

The knowledge distillation method [7] was quickly embraced in many application
fields of machine learning like speech recognition, machine translation or computer
vision [8] etc., but in our paper, the knowledge distillation method is considered for practi-
cal testing and demonstration purposes in the context of class incremental learning [9]. A
wide majority of the mainstream class incremental methods like Learning without Forget-
ting (LwF) [10], Incremental Classifier and Representation Learning (iCaRL) [11], or more
recently, FOSTER: Feature Boosting and Compression for Class-Incremental Learning [12]
exploit knowledge distillation; see also [13] or [14] for other models. Even though other
newer models for incremental learning already outperform the iCaRL method, iCaRL has
been chosen for the practical demonstration of our theoretical method due to its simplicity,
which makes it suitable to understand how things work in practice.

Novel knowledge distillation methods have been proposed for different image classifi-
cation tasks, e.g., for hyperspectral image classification [15], for remote sensing image scene
classification [16] or for cervical cell image classification [17]. The combination of transfer
learning and knowledge distillation, proposed in the paper [17], effectively improved the
classification of cervical cell images.

In the paper [18], the authors introduced an online knowledge distillation frame-
work, which makes use of an attention mechanism to combine the predictions of a cohort
of lightweight networks into a powerful ensemble with the purpose of enhancing the
distillation effect. Moreover, in the paper [19], an improved residual neural network
(ResNet)-based algorithm for concrete dam crack detection using a dynamic knowledge
distillation approach is presented.

The knowledge distillation components proved to be helpful when only a few labeled
samples are available, like in the papers [15] or [16], but no specific optimal values for the
temperature parameters were proposed in those papers, as we propose in our work. In the
class-incremental learning setting, our method effectively mitigates the issue of catastrophic
forgetting by computing optimal temperature parameters for the models proposed in the
papers [10–12]. Moreover, our algorithm is model agnostic so it can be directly applied to
any class-incremental architectures using temperature-varying SoftMax.

3. Materials and Methods

The transformation of the neural network outputs zk to the probabilities y in the
last layer is usually conducted with the application of a normalized exponential function
called SoftMax:

yk =
exp(zk/T)

∑j exp(zj/T)
, (1)

This function has a parameter T called temperature that is usually set to 1. According
to Hinton et al. [5], using a higher value for T produces a softer probability distribution
over classes, thus mitigating through a proper loss the effects of catastrophic forgetting in
incremental learning.
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Incremental learning (IL) [20] refers to a class of machine learning algorithms in which
the learning process goes through a continuous model adaptation based on a constantly
arriving data stream [21].

A common approach to incremental learning is to initialize the new model with the
same weights as the pre-trained model and then to add a corresponding SoftMax layer by
removing the last layer of the previous model. After that, the model is trained starting from
the point where the pre-trained model had been extended for a faster convergence. If the
previous model is large, it is not necessary to update the weights for its previous layers
by marking them as un-trainable. Only the weights of the extra layers were updated by
using fine tuning. But this is not enough to deal with the effects of catastrophic forgetting
and exploiting the dark knowledge through knowledge distillation turned out to be very
helpful to increase the overall accuracy of incremental learning; see [10] or [11].

Catastrophic forgetting [22] reflects the tendency of deep networks to forget past infor-
mation when new data are incorporated. As said above, catastrophic forgetting is classically
mitigated through the use of a knowledge distillation component because it is assumed to
offer a good balance between stability and plasticity in incremental deep models.

The experiments start by varying the temperature T of the temperature scaling SoftMax
to check the dependence of the classes and temperatures for intra-class separability during
distillation. The data Dt = {(xj

t, yj
t) : j ∈ Pt} are considered for each incremental step t and

K the memory size, i.e., number of classes kept in the memory, given the cross entropy loss,
defined as:

Lc
t (x) = ∑

(x,y) ∈ Dt∪K

Nt

∑
j=1

−1y=j log[pj
t(x)] (2)

where 1 is the indicator function and p stands for the predictive probabilities of the corre-
sponding class, e.g., the SoftMax output.

The distillation loss is defined as:

Ld
t (x) = ∑

(x,y) ∈ Dt∪K

Nt−1

∑
j=1

−yj
t−1(x) log[yj

t(x)] (3)

where y is the temperature scaling SoftMax applied on the raw scores predicted by
the network.

The final loss now is:

loss = (1 − α) ∗ Lc
t (x) + α ∗ Ld

t (x) (4)

where α provides the weight of the distillation loss. α can be set to the fraction between old
classes number over the sum of old classes number plus new classes number.

The main objective of our research is to propose a recipe to control the dark knowledge
transference by clustering its values according to their relevance and by pushing the limits
of SoftMax classification possibilities with the use of a decision tree. As such, an inductive
proof is first provided to set the temperature variations in machine learning models that use
distillation in a non-heuristic way. At the same time, one can argue that the temperature
problem in multi-class classification, studied in existing related works like [10], is useful but
not sufficient for a thorough study of SoftMax classification capacity. As a complement to
the temperature setting, our focus is on controlling the behavior of the temperature scaling
SoftMax function in its operating temperature limits [23].

The setting for our experiments starts from the iCaRL incremental learning algorithm
that saves K exemplars from previously seen classes and uses distillation loss in a way
similar to Learning without Forgetting [11] to retain the knowledge of previous classes. Also,
the iCaRL uses a nearest-mean-of-exemplars classification strategy. It has been modified to
use a SoftMax output layer for classification.

Hinton et al. [5] gave results for temperatures ranging from 1 to 20 only for different
datasets, one of them being the classical MNIST dataset, probably because they found just
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plateau values for higher temperatures. However, they provide no formal result along this
line and that was one of the initial motivations for our contribution.

Given the statistical distribution of the output, there will always be some large values
on top of the Gaussian curve and the standard SoftMax can find a hard threshold for them.
After that, the temperature scaling SoftMax was included and it was tested for temperature
values. The results were as expected: at T = 1, there is always a hard label; at T = 20,
there is always a plateau of values; and as the number of classes increases, the values of
probabilities decrease so that they sum up to 1. The contribution of this paper is to provide
the optimal Tmax between 2 and 20 that gives the optimal knowledge distillation effect for
a given precision ϵ set by the user. In the next section, an inductive proof of the SoftMax
capacity is provided that allows us to set the optimal Tmax value.

4. SoftMax Distillation Capacity

The experiments start by varying the number of classes and clustering the results of
SoftMax. For example, for 100 classes and T = 2, as in Hinton’s paper, it finds the relevant
cluster with not just two but around eight large values, i.e.,

cluster1 : [0.0198201, 0.0210506, 0.0182758,

0.0201746, 0.020506, 0.0251448, 0.0188108, 0.0262407]

So, for 100 classes, by varying the temperature T from 1 to 2, the number of relevant
values for learning increases with an exponential factor of 3 from 21 to 23.

But if the number of classes becomes 1000, then already for T = 9, the relevant
cluster contains 30 values, making it irrelevant for learning without forgetting through
the distillation.

Our experiments are gathered in Table 1 for our modification of ICaRL, explained in
detail in the ablation study from the numerical section. The table displays the results ob-
tained by increasing the temperature while keeping the number of classes constant K = 100,
and Table 2 shows the experiments for 10, 100 and 1000 classes and with temperature
increments of T = 1, T = 2 and T = 20. ImageNet ILSVRC was used as the dataset (for
1000 classes), as will be presented in detail in the numerical experiments section. Our
interest is in separating past and new classes by using the temperature scaling SoftMax but
also in knowing in a non-heuristic way the number of classes we can incrementally learn
by penalizing or relaxing the SoftMax layer. We observed that for a large number of classes,
e.g., 1000, the main cluster contains 30 values, which is useless for separating the classes,
and therefore, the distillation reaches its limit.

Table 1. Number of clusters when the temperature was increased and the number of classes was kept constant.

Temperature K = 100 No of Values on Last Cluster

T = 1 3 clusters 2 values
T = 2 2 clusters 8 values
T = 4 1 cluster all values
T = 9 1 cluster all values
T = 20 1 cluster all values

Table 2. Number of clusters and values in the last cluster (in the format x by y) for temperature and
class variations.

Temperature 10 Classes 100 Classes 1000 Classes

T = 1 2 by 2 3 by 2 4 by 1
T = 2 2 by 3 2 by 8 3 by 1
T = 20 2 by 3 1 by all 2 by 30
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A visualization of the elements from Table 2 for 10 classes is given in Figure 1. One
can observe that for temperatures T = 2 and T = 20, one obtains 6 possible values clustered
for distillation.

Figure 1. Table 2 values for 10 classes, setting the temperature on the x-axis to 1, 2 and 20 and
color-coding the number of clusters and the number of elements on each cluster.

Note that the number of clusters is set up dynamically by calculating the MeanShift
and estimating the bandwidth [24].

The number of clusters depends directly on the temperature setting. In this context,
the last cluster means the highest probability values and the largest index given by the
MeanShift clustering algorithm. This algorithm is a centroid-based algorithm, which
works by updating candidates for centroids to be the mean of the points within a given
region. In this context, Table 1 reads as follows: in our experiments, for temperature T = 1,
three clusters were obtained, i.e., cluster 1, cluster 2 and cluster 3 which has only two
large values that are easily separable. For T = 2, two clusters we obtained, and the softer
distributions within cluster 2 have eight values that are still separable. Finally, for the other
temperature settings, the MeanShift algorithm applied to the output values of the network
provided us with just one cluster with all values in it, making it hard to distinguish from
the plateau and hence not so relevant for dark knowledge transference. Consequently,
Table 2 reads as follows: for the setting T = 1 and 100 classes, three clusters were obtained,
and cluster 3 has only two values in it that will be considered relevant.

Inductive proof of the SoftMax capacity: Inspired by our dark-knowledge-clustering
experiments, a constructive proof was designed for the temperature scaling SoftMax clas-
sification capacity while varying the number of classes and the temperature parameters.
As far as we are aware, this is one of the largest experiments that took place for a specific
learning algorithm and it involved documenting the SoftMax classification limits as we
vary the temperature parameters in range from 1 to 20 and the number of classes in range
of 10 to 1000.

Let us start with the first part of our inductive proof: the verification of the hypothesis
for two classes. It is considered that before the classification layer, the values obtained
are z1 and z2. It is proven that one can choose an ϵ > 0 for arbitrary values with small
variations so a rank N ≥ 1 exists such that

exp(z1/T)
exp(z1/T) + exp(z2/T)

≈ exp(z2/T)
exp(z1/T) + exp(z2/T)

+ ϵ (5)

The maximum value for T is attained when the equality is satisfied. Since the denominator
is common, the equation can be considered without loss of the generality:

exp(z1/T) = exp(z2/T) + ϵ (6)

Next, the natural logarithm ln is applied and one can consequently obtain

z1/T = z2/T + ln(ϵ) (7)
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which provides us for the considered class classification margin ϵ with the following
estimation for the Tmax

Tmax = (z1 − z2)/ln(ϵ) (8)

meaning that all values can be distinguished with up to ϵ precision limits below the
temperature setting Tmax. As an example for values 1 and 9, one can obtain by the formula
and upper round a Tmax of 9 with, for example, an epsilon of 0.4. The values of the
SoftMax for this example are [0.29133917 0.70866083]. Now, the inductive step is performed
to generalize our formula for a number of K classes. The hypotheses now read:

exp(z1/T)
exp(z1/T) + exp(z2/T) + ... + exp(zk/T)

≈

exp(z2/T)
exp(z1/T) + exp(z2/T) + ... + exp(zk/T)

+ ϵ1

≈ ...
exp(zk/T)

exp(z1/T) + exp(z2/T) + ... + exp(zk/T)
+ ϵk

(9)

which is consequently reduced to

exp(z1/T) = exp(z2/T) + ϵ1 = ... = exp(zk/T) + ϵk (10)

By summing up and reducing the inner terms, one can obtain

Tk
max = (z1 − zk)/ln(ϵ) (11)

where ϵ is equal to the sum of logarithmic variations meaning that ln(ϵ) = ln(ϵ1 ∗ ϵ2 ∗ ....ϵk).
Since ϵ is sub-unitary, the overall variation ln(ϵ) is only becoming smaller in the limit for
the k considered classes.

A similar example for iCaRL for K = 100 classes with SoftMax temperature again
T = 9 and overall ϵ precision = 0.008 is presented in Figure 2. Please note that ICaRL uses
sigmoids as activation functions for the classes so the output values are sub-unitary, which
is probably the reason why they employed the nearest-mean-of-exemplars instead of the
SoftMax, as was carried out in our algorithm adaptation.

Figure 2. SoftMax minimal oscillations as the number of classes increases. As Tmax is reached for the
set epsilon precision, one can observe the minimal variation between SoftMax values as the number
of classes increases, i.e., less than 0.004. The x-axis represents the SoftMax values and the y-axis
represents the number of classes.

One can conclude now that the classification capacity is not bounded by the temper-
ature parameters as one can compute a specific Tmax such that for K classes we can still
have separability as long as the considered temperature is less than Tmax. Since this is now
clear, we turn to another problem of SoftMax for incremental learning which in our opinion
is the additional characterization of the minimal oscillating values as the number of classes
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grows. In the next step, the focus will be on further pushing the limits of knowledge
distillation and the introduction of a model-agnostic distillation algorithm.

5. Balancing the Number of Classes and the Temperature

Having determined the Tmax for a given number of classes K and a requested ϵ
precision, the interest now is in the balance between the number of classes K and the
temperature T, such that we can push the limits of the SoftMax classification. The situation
at this point can be observed graphically in Figure 3.

Figure 3. Above: classical situation. Below: our situation.

Since the new classes keep streaming and there is no gain in further increasing the
temperature above Tmax, an incremental decision tree with information gain splitting
was designed to try to classify the incoming classes. In the classical situation, one could
compute the loss between the SoftMax output and the corresponding label. Now, one needs
to compute the corresponding training loss between all the class outputs and their training
labels in order to distinguish a class with the highest probability.

Note that the Kullback–Leibler (KL) [25] divergence or relative entropy is the differ-
ence between the cross-entropy and the entropy. In this view, even if it is asymmetrical,
the KL divergence can be viewed as a measure of the distance between two probability
distributions on a random variable. As the divergence is a convex function on the domain
of probability distributions, an alternative approach would be to use differentiation in order
to obtain a maximum on the number of classes and the temperature. In both cases, the
overall purpose is to avoid extreme disorder due to the fact that there is no majority value,
no matter how much one exponentially magnifies the outputs. One can use an incremental
learning tree or start from the values obtained with Tmax, and one can start incorporat-
ing classes until the information gain is zero. Our decision tree was built by testing the
information gain contained in the SoftMax clusters used to compute the distillation loss.

Information gain (IG) is the reduction in entropy or surprise by transforming a dataset
and it can be used as a splitting rule in decision trees. The information gain of a random
variable X obtained from an observation of a random variable A taking A = a is defined as

IGX,a = DKL(P(X|a)||PX(x|I)) (12)

and therefore it is the Kullback–Leibler divergence of the prior distribution and the posterior
distribution with I being mutual information.

Information gain is calculated by comparing the entropy of the dataset before and
after a transformation. For our tree, the two distributions produced for a specific stream by
the convolutional neural network at a specific time were considered. Information gain is,
in this context, a statistical property that measures how well a given attribute separates
the training examples according to their target classification. To construct the tree, one
can use the Hoeffding tree, which is an incremental decision tree learner for large data
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streams [26,27]. Since the purpose is to squeeze information out of the SoftMax function as
the number of classes increases, one can assume that the overall data distribution is not
changing over time as in the case of the original convolutional neural network (CNN is
here ResNet32) algorithm where fine-tuning and weight normalization must be performed.
The main splitting iteration reads as in Figure 4.

Figure 4. Input: H is the Hoeffding tree for the almost-plateau values at high temperatures.
Output: Maximum information gain splitting with Information Gain = 1 – Entropy.

Our decision tree was built to determine exactly which number of streamed classes
one can still theoretically classify. We begin with T = Tmax and K = K1 for the batch of
the data streams on which the Tmax was computed. It was continued with the second
stream of new classes K = K1 + K2 and then we checked the information gain. Depending
on the maximum information gain, one can continue on one branch or another until
K = K1 + K2 + ... + Kt and one can add classes until the information gain is zero or all the
values corresponding to our classes are classified. In this way, one can exactly determine
the number of classes and can still incorporate with the same Tmax as the number of classes
K continues to increase without lowering the Tmax, which means that the limits of SoftMax
classification have been pushed up to a situation where the original incremental algorithm
will no longer learn to classify new classes. For the previous example at hand, with T = 9
and K = 100 classes, we managed to continuously incorporate the classification of another
83 classes without having to vary the temperature.

We are now able to provide the model-agnostic, dark-knowledge-clustering Algorithm 1
below in a straightforward implementation format.

Algorithm 1: Model-agnostic distillation algorithm
Data: SoftMax values, ϵ precision
Cluster the corresponding SoftMax values
Compute Tmax using formula (11)
while new classes are streamed do

Re-define the distillation loss
while ϵ precision do

Further incorporate new classes using formula (12)
end

end

The next two sections are dedicated to present our numerical experiments and to
practically validate our theoretical findings.

6. Numerical Experiments in a Class-Incremental Learning Framework

For the numerical experiments, a class-incremental learning model has been used that
relies on the SoftMax function and knowledge distillation at its core.
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Even though there exists a large body of related work, most of the authors considered
only the heuristic scenarios like in the papers [20,28,29] or focused only on optimizing
temperature parameters for the SoftMax function like in the papers [30–32] when dealing
with the catastrophic forgetting problem. We take a different approach and we use our
method to push the classification limits of the model non-heuristically.

The iCaRL algorithm, proposed by Rebuffi et al. in [10], is a model largely adopted by
the community as the algorithm has the theoretical capacity to continuously learn in an
infinite number of states. Also, it is able to get close to the accuracy obtained in the classical
batch mode, which can handle a limited number of classes, all available at the same time
and not incrementally. Based on three main components, the iCaRL engine is powered by a
convolutional neural network (CNN), more specifically a ResNet18 architecture, which offers
an incremental class learning solution. These three components of the iCaRL algorithm
are as follows: classification by a nearest-mean-of-exemplars rule, prioritized exemplar
selection based on herding and representation learning using knowledge distillation and
prototype rehearsal. For the purpose of our experiments, the focus will only be on the first
component, because our work is oriented towards the improvement of this layer.

Ablation study for testing the method with the ICaRL algorithm: iCaRL uses a
nearest-mean-of-exemplars classification strategy. Instead of this, for our ablation study, we
have used for the classification layer, a temperature scaling SoftMax function with variable
temperature parameter T.

Instead of searching in the range of 1 to 20 for the T parameter, as was heuristically
proposed by Hinton et al. in [5], one can use our method to determine the Tmax and the
relevant clusters for controlling the distillation effect up to a sort of doubling the amount of
relevant dark knowledge transferred. Of course, the increased distillation effect will not be
directly reflected in the model accuracy which will not scale in the same manner but it will
overall slightly improve, and in incremental learning any small gain is significant.

Our method has been implemented using the Tensorflow framework in an online
Python development environment and we have considered the ILSVRC 2012 dataset
available at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [3].

As previously mentioned, in the last layer of classification, the iCaRL algorithm uses a
normal NCM (nearest class mean) and approximated mean with mean-of-exemplars for
computing theoretical class means. For our test scenario, which is merely an ablation study,
we changed the mean-of-exemplars with SoftMax and we tested this novel configuration
over 100 classes (115,873 images) grouped into 10 classes per batch.

Because our goal was to avoid catastrophic forgetting vs. accuracy as a trade off, the
accuracy parameter was only used for comparison between batches. Thus, we noticed that
in the beginning, we obtained better accuracy in the case of the first classes. Moreover, we
can also observe that in the case of iCaRL-ST1 (iCaRL with SoftMax Temperature 1) and
iCaRL-ST20 (iCaRL with SoftMax Temperature 20), the difference in accuracy between the
first classes is smaller than in the original algorithm case.

From this point on, we pushed the SoftMax limit and we replaced the NCM method
with it. Moreover, we increased the number of classes to 1000 (1,281,167 images) but
we kept the number of classes per batch at 10. In this way, we obtained 90 more itera-
tions. This type of experiment has not been performed by the authors of iCaRL because
they stopped at iteration 10, choosing to increase the number of classes per iteration to
100 classes per iteration.

During the tests, the use of RAM remained bounded without following a growth trend.
The maximum limit did not exceed the range of 4 GB–6 GB of RAM, as in the case of the
unmodified algorithm.

One can observe from Figures 5–7 (cropped results for better viewing), that by control-
ling the dark knowledge transference by setting the temperature parameter to the value
provided as relevant by our method, the results obtained are slightly better.
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Figure 5. Test results on a number of 1000 classes grouped by 10 (cropped).

Figure 6. Test results on a number of 1000 classes grouped by 10.

Figure 7. Test results on a number of 1000 classes grouped by 10 (cropped).

In order to determine a score for the accuracy comparison and improvement, the
original iCaRL accuracy results were considered as a benchmark and the differences
between the reference model and the modified models, iCaRL-ST1, iCaRL-ST2 and iCaRL-
ST20, when the number of classes increases were computed. We then computed the
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minimum and the maximum of the accuracy differences for each incremental step. For our
modified models, starting from the second group of classes, we obtained a minimum of
0.012 and a maximum of 0.035 accuracy improvement, meaning that our models are always
degrading the accuracy with the arrival of new classes slower than the reference model.

However, another interesting behavior was observed. In the case of iCaRL-ST2 (iCaRL
with SoftMax Temperature 2), even if in the case of the first classes the accuracy is close
or slightly lower than in the case of the original algorithm, in the following iterations, the
performance follows an increasing trend.

7. Further Experimental Tests

The following two types of experimental tests were further performed: we varied
the number of classes and the number of batches sent to the network and we changed
the temperature of SoftMax and the number of epochs while the classes were randomly
selected from a limited number of classes but also from the entire data set.

The classifier saves the exemplars and weights after each increment. We evaluated
and compared the performance after each class increment using Top 5 accuracy. We gather
the results in Figure 8.

Figure 8. iCaRL_S_t10_5x20_2e_one - SoftMax, temperature = 10, 5 classes and 20 increments
(batches), 2 epochs, fixed dataset of 100 classes, iCaRL_S_t10_5x5_1e_big - SoftMax, temperature = 10,
5 classes and 5 increments (batches), 1 epoch, from the large set of 1000 classes, 100 were randomly
chosen, iCaRL_S_t10_10x5_1e_big - SoftMax, temperature = 10, 10 classes and 5 increments (batches),
1 epoch, from the large set of 1000 classes, 100 were randomly chosen, iCaRL_S_t10_5x20_2e_big -
SoftMax, temperature = 10, 5 classes and 20 increments (batches), and 2 epochs; from the large set
of 1000 classes, 100 were randomly chosen, iCaRL_Orig_5x20_2e_big - Original without SoftMax,
5 classes and 20 increments (batches), and 2 epochs; from the large set of 1000 classes, 100 were
randomly chosen, iCaRL_S_t40_5x20_2e_big - SoftMax, temperature = 40, 5 classes and 20 increments
(batches), and 2 epochs; from the large set of 1000 classes, 100 were randomly chosen.

7.1. Testing the Difference between 2 and 60 Epochs

The following settings were generally used: 5 classes, 20 increments (batches), a batch
size of 64 (128 batch size was used in the original work), and 2 and 60 epochs (60 epochs were
used in the original work); from the large set of 1000 classes, 100 were randomly chosen.

This time the evaluation also checked the performance of the network in the cases:
iCaRL, Hybrid and the theoretical case of NCM. The original and SoftMax modification had
a temperature of 2. Note that in the case of the unmodified algorithm with 60 epochs, at
iteration 12, catastrophic forgetting occurred.

The first observation, is represented by the fact that by running several epochs, the
performance of the model increases. One can observe in the upper part of the graph, that
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after 60 epochs, with one small outlier in the case of changing the temperature to the value 2
in the NCM - ST2_ncm_60e, the results are are all following a similar trend.

The behavior in the case of the hybrid combination is also interesting to watch. If the
performance is very good when running 60 epochs (Orig_hibr_60e), the performance for
running only 2 epochs (Orig_hibr_2e) is extremely different.

In the case of using SoftMax with modified temperature, we can see better performance
compared to the initial algorithm and this was achieved by running only 2 epochs. See
Orig_iCaRL_2e and Orig_hibr_2e compared to ST2_iCaRL_2e and ST2_hibr_2e.

The learning curve along the batches of classes, if we discuss the difference between
the number of epochs, is much higher in the case of the original algorithm and lower
in the case of SoftMax. For example, Orig_iCaRL_60e compared to Orig_iCaRL_2e and
ST2_iCaRL_60e compared to ST2_iCaRL_2e.

If we are referring to a practical application, we could make a reference to autonomous
driving. In this scenario, computing power and the network to transmit data streams are
limited [33]. On the other hand, a rapid adaptation of the model and incorporation of new
features in a short time is required [34].

7.2. Testing 60 Epochs for Top 1 and Top 10

For an overview, the Top 5 accuracy (in the sense that any of the answers with the
highest probability of model 5 must match the expected answer), the Top 1 accuracy
(conventional accuracy: the model answer, i.e., the one with the highest probability, must be
exactly the expected answer) and the Top 10 accuracy (in the sense that any of the answers
with the highest probability of model 10 must match the expected answer) have been added
for the 60 epochs tests.

In Figure 9, it can be seen that the temperature obtains a better accuracy in the case of a
smaller number of epochs. In the case of running two epochs and changing the temperature
by a value of 2, the results are considerably better. Even the drop in accuracy between
the first and second iterations is not very sharp. If the number of epochs increases, the
difference in accuracy is not very large.

Figure 9. Testing 2 different scenarios: the difference in changing the number of epochs.

An interesting aspect can also be observed in Figure 10. The very big difference is
found between Top 1 accuracy and Top 5 accuracy. After this accuracy, the results are
not considerable. Specifically, between the Top 5 accuracy and the Top 10 accuracy, the
difference is very small.
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Figure 10. Testing 3 different scenarios: Top 10 accuracy rating for model training in 60 epochs.

In the case of the Top 1 accuracy, it starts somewhere around 0.9 and drops sharply
after the second batch below 0.8, while in the case of the Top 5 accuracy, it remains above
the value of 9.5 for the next 4 batches. Moreover, in the case of the Top 10 accuracy, this
trend is maintained for the next 8 batches

Overall, our method is model agnostic and the same procedure as above could be
applied to other models such as LwF [11] or FOSTER [12]. In Table 3, we gather the results
obtained by setting the temperature for the standard case T = 1 for a softer distribution
with T = 2 and for the calculated Tmax with the same ϵ separability. As datasets, we
used CIFAR-100 for 100 classes and ImageNet ILSVRC for 1000 classes. In Figures 6 and 7
(cropped results for better viewing), we easily observe a better Top 1 accuracy when
using the calculated Tmax. This result is in line with the one from Table 3 and shows the
advantages of analytically determining a Tmax value.

Table 3. Top 1 IL accuracy under temperature variation. ICaRL_mod stands for ICaRL modified.

Method
CIFAR ImageNet

T = 1 T = 2 T = Tmax T = 1 T = 2 T = Tmax

FOSTER 71.3 73.3 73.3 69.6 70.5 70.8

iCaRL_mod 73.5 74.8 76.6 72.2 72.3 73.4

LwF 61.7 61.8 70.7 60.1 72.7 74.4

8. Conclusions

In this paper, a novel method is proposed for optimal knowledge distillation and
non-heuristic control of dark knowledge, which was effectively used to mitigate the effect
of catastrophic forgetting in incremental learning models. This effect makes it impossible to
distinguish the new incrementally learned classes when the total number of classes increases
beyond a certain limit. For the numerical experiments, our solution has been tested by
modifying a well-known incremental learning algorithm that uses distillation i.e., the
Incremental Classifier and Representation Learning (iCaRL) algorithm [10] to accommodate
our method. The obtained results were compared with the standard implementations of
LwF and FOSTER.

While there exist many studies in the scientific literature dedicated to characterizing
incremental learning models based on knowledge distillation, many of them are either
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purely heuristic or extremely complicated theoretical constructions so they can be hard
for practitioners to apply. In this context, we provided in this paper a clear and easy-to-
follow proof of how to determine a maximum classification temperature Tmax and how
to further push the limits of classification using an incremental decision tree in order to
non-heuristically control the relevance of dark knowledge. Even though for the numerical
experiments we performed an ablation study of the ICaRL algorithm by removing the
last nearest exemplar classification layer, our method remains model-agnostic, as can be
seen in Table 3, since many practical particularities of incremental learning such as fine
tuning, weight standardization, memory constraints, bias of a classifier and so on are not
touched. One of the main contributions of the paper is represented by the analytical proof
of Hintons’ [5] heuristic observation.

For the future, our plan is to further study our theoretical findings in self-supervised
learning scenarios, where the labeled data are scarce like in the case of medical datasets [35],
to have a broader view of its application possibilities.
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