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Abstract: In farming technologies, it is difficult to properly provide the accurate crop nutrients
for respective crops. For this reason, farmers are experiencing enormous problems. Although
various types of machine learning (deep learning and convolutional neural networks) have been
used to identify crop diseases, as has crop classification-based image processing, they have failed to
forecast accurate crop nutrients for various crops, as crop nutrients are numerical instead of visual.
Neural networks represent an opportunity for the precision agriculture sector to more accurately
forecast crop nutrition. Recent technological advancements in neural networks have begun to provide
greater precision, with an array of opportunities in pattern recognition. Neural networks represent
an opportunity to effectively solve numerical data problems. The aim of the current study is to
estimate the right crop nutrients for the right crops based on the data collected using an artificial
neural network. The crop data were collected from the MNIST dataset. To forecast the precise
nutrients for the crops, ANN models were developed. The entire system was simulated in a MATLAB
environment. The obtained results for forecasting accurate nutrients were 99.997%, 99.996%, and
99.997% for validation, training, and testing, respectively. Therefore, the proposed algorithm is
suitable for forecasting accurate crop nutrients for the crops.

Keywords: artificial neural network; precision agriculture; big data; validation; forecasting; accurate

1. Introduction

Artificial neural networks (ANNs) can be trained on the historical data of crop yields,
weather patterns, soil conditions, and other relevant factors to accurately predict future
crop yields. This helps farmers plan their operations more effectively. Artificial neural
networks are one of the most important elements of machine learning [1]. They are inspired
by the human brain structure, and function as if they are based on interconnected nodes in
which simple processing operations take place. The aim of the current paper is to analyze
various data sources, such as soil conditions, weather patterns, and historical yields, to
predict crop yields with greater accuracy, enabling farmers to optimize resource allocation
and maximize production [2]. By analyzing data on soil moisture, nutrient levels, and
crop growth stages, ANNs can help farmers determine the optimal timing and amount of
irrigation and fertilization, reducing waste and improving resource efficiency [3]. Although
the principles of artificial neural networks are incredibly important for different sectors, they
have not been applied in precision agriculture. Most likely, different researchers have used
CNN and deep learning algorithms for precision agriculture systems in order to identify
crop diseases and crop classification [4]. Although those algorithms are frequently used for
crop disease identification and classification, they fail to forecast accurate crop nutrients
due to the fact that crop nutrients are collected in numbers rather than images [5]. CNN
and deep learning tend to be a more powerful and accurate way of solving classification
problems based on images. On the other hand, ANN tends to be the most powerful and
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accurate way of solving numerical data problems, with image inputs not being necessary [6].
Even if one or more cells of the ANN become corrupted, the generation of outputs will not
be affected when a dataset is applied; this is not the case for CNN and deep learning. For
these reasons, the authors propose an artificial neural network for forecasting the effects of
nutrients on crops and providing good information to the farming system. The objective of
the current study is to forecast crop nutrients, providing the best optimal crop nutrients
to the crops for precision farming sectors based on the dataset. The crop nutrient dataset
used to train, validate, and test the ANN model included rice, maize, chickpeas, kidney
beans, pigeon peas, moth beans, mung beans, black gram, lentils, pomegranates, bananas,
mangoes, grapes, watermelons, muskmelons, apples, oranges, papayas, coconuts, cotton,
jute, and coffee. The novelty of the current study lies in its forecasting of the most accurate
crop nutrients based on a numerical array of various crop nutrients. It uses many crop
nutrition datasets at the same time, training them together and forecasting the accuracy of
the respective crop nutrients. This concept makes the current work unique in comparison
to existing works as these were trained on a single crop nutrient dataset.

This paper is organized as follows: A literature review is carried out in Section 2, and
mathematical models for an artificial neural network are discussed in Section 3. Results
and discussions are presented in Section 4, and conclusions are drawn in Section 5.

2. Literature Review

Neural networks can analyze images of plants and identify early signs of pests or
diseases, allowing for timely intervention and the prevention of major crop losses. Neural
networks are a key component of agricultural machinery and autonomous systems, which
can perform tasks like weeding, harvesting, and mapping field conditions with greater
precision and efficiency than manual labor. Neural networks can analyze complex envi-
ronmental data to help farmers adapt to the effects of climate change, such as changing
weather patterns and pest populations [6,7].

Massive parallelism, distributed representation and computing, learning capacity,
generalization ability, and adaptivity, which may all appear straightforward but are actually
rather complex, are just a few of the amazing qualities of the human brain. For computer
scientists, building a machine capable of solving challenging perceptual puzzles at this
speed has always been a goal. ANN models are an attempt to use the same technique that
the human brain employs to resolve perceptual issues [8,9].

Layered feed-forward ANNs employ the backpropagation algorithm. This algorithm
indicates that the artificial neurons are layered, transmitting signals "forward" before faults
spread in the opposite direction. Neurons in the input layer provide inputs to the network,
and neurons in the output layer provide the network’s output. One or more intermediary
hidden levels might also exist. By giving the algorithm examples of the inputs and outputs
we want the network to compute, the backpropagation algorithm employs supervised
learning. The errors in the discrepancy between the actual and expected results is then
computed. Reducing this inaccuracy is the goal of the backpropagation algorithm, allowing
the ANN to gain knowledge of the training set. The objective of the training process is to
fine-tune the initial random weights to minimize error [10,11].

The input that is multiplied by an artificial neuron will be stronger with greater weight.
The signal is suppressed by the negative weight because weights can also be negative [12].
The computation of the neuron will vary according to the weights. We can achieve the
desired output for particular inputs by varying the weights of an artificial neuron [13],
but it would be difficult to determine all of the required weights by hand when dealing
with an artificial neural network (ANN) that has hundreds or thousands of neurons [14].
However, there are algorithms that allow us to modify the weights of an ANN and obtain
the required output from the network. This process of changing the weights is referred to as
training or learning [15]. There are many different kinds of ANNs and applications for them.
Hundreds of distinct models that are regarded as ANNs have been built since McCulloch
and Pitts’ initial neural model in 1943 [16], and there can be variations in the functions,
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accepted values, topology, learning techniques, etc., between them [17]. Furthermore, there
are several hybrid models in which every neuron has additional qualities beyond the ones
we review here [18]. Owing to space constraints, we will only demonstrate one ANN,
which is based on the backpropagation method, one of the most widely used models in
ANNs, which learns proper weights. Because ANNs handle information, their primary
applications are in related domains [19]. An enormous range of ANNs are available for
modeling real neural networks, studying animal and machine behavior and control, and
designing applications including pattern recognition, forecasting, and data compression.

RNNs excel at processing sequential data, CNNs excel at automatically extracting
features from raw data (eliminating the need for manual feature engineering), and tensor
flow’s computational graph system allows for efficient and flexible model building (al-
though it fails to learn and adapt to new data without explicit programming), making them
ideal for complex and dynamic tasks [20]. Although models can continuously learn and
improve over time as they are exposed to new data, making them adaptable to changing
circumstances and evolving needs, they fail to process information in parallel, making them
much faster than traditional algorithms for certain tasks [21]. This is especially beneficial
for tasks that require real-time processing, such as precision agriculture data. ANNs can
learn and adapt to new data and situations, making them ideal for tasks that are difficult to
program through traditional methods, such as data forecasting [22]. ANNs can learn and
adapt to new data without being explicitly programmed, making them ideal for complex
tasks where traditional algorithms struggle. Conversely, training deep learning models
require significant computational resources, including powerful GPUs and large amounts
of data. This can be expensive and time-consuming, especially for complex models. ANNs
can process information in parallel, making them significantly faster than traditional algo-
rithms for certain tasks, but building and maintaining the infrastructure needed for deep
learning, such as high-performance computing clusters and specialized hardware, can
be costly. This can be a barrier for individuals and organizations with limited resources.
ANNs are relatively fault-tolerant, meaning they can continue to function even if parts of
the network are damaged; CNN and deep learning are unable to do this [23]. ANNs can
self-regulate their data processing, eliminating the need for complex manual adjustments.
Deep learning models can be difficult to interpret, making it challenging to understand how
they arrive at their results. This lack of transparency can raise concerns about bias, fairness,
and accountability. The CNN, on the other hand, has interpretability challenges, limited
effectiveness for sequential data, and tends to be much slower. The ANN is the most power-
ful tool for numerical datasets, whereas the CNN and deep learning are powerful for image
processing. RNNs can suffer from vanishing or exploding gradients, which hinder learning
and make it difficult to train the network effectively. This occurs when the gradients of the
loss function become too small or too large during backpropagation, making it challenging
to update the network’s weights accurately [24]. However, ANNs can self-regulate their
data processing, eliminating the need for complex manual adjustments. Training RNNs
can be computationally expensive, especially for long sequences or large datasets. This is
because the network needs to process each element of the sequence individually, making it
slower than other types of neural networks; ANNs do not need to do this [25].

3. Mathematical Models of Artificial Neural Network

The soil sensors detect a deficiency in nutrient content in the fields and give the data to
ANN algorithms (Figure 1). Then, the ANN algorithm analyzes the crop nutrient content
and provides commands to the robot to give optimal nutrients in cases where the deficiency
occurred. Based on instructions from the ANN, the robot provides optimal nutrients to
the crops. A complete nutrition service is offered by Precise Crop Nutrition, which uses
satellite imagery to provide accurate nutrition application plans and maps, supplemented
with key advice on optimal rates and timing [26]. The precise N-Maps take raw satellite
data and process them in-house to avoid the challenges associated with cloud inclusion.
Precise Crop Nutrition also offers variable-rate P, K, Mg, and lime application maps, based



Mach. Learn. Knowl. Extr. 2024, 6 1939

on precision grid soil sampling methodologies and nutrient analysis carried out by an
accredited ANN.

Figure 1. Precision agriculture process [16].

According to the procedures outlined in Figure 2, artificial neural networks (ANNs)
are nonlinear statistical data-modeling tools that find complex correlations between input
and output. Normalizing the data is the first step in the process. Data normalization is the
process of changing data into a specified range. In order to prevent the network from being
ill-conditioned, input data in ANNs must be standardized. Achieving the same range of
values for every input in the ANN mode is not feasible, guaranteeing a steady convergence
of biases and weights. The data partition is the second phase. Random data division
(divider) is used in ANN training to use the maximum data when training (generally,
splitting the data into training data, validation data, and test data). During the training
process, the backpropagation algorithm is used to define the weights on connections and
for calculating the outputs. Generally, for some applications, these weights can be used to
initialize the neural network and are updated using an online training algorithm. Network
weights and biases are updated during training. Validation is used to measure network
generalization; when generalization stops improving, it stops training. An independent
measure of network performance during and after training is achieved by testing data and
has no effect on training [27].

The LMA (Levenberg–Marquardt algorithm) is used as an online training algorithm.
The LMA provides a numerical solution to the minimization problem of a nonlinear
function. In the field of artificial neural networks, for training small- and medium-sized
problems, the LMA is the best option. The LMA is the combination of the steepest de-
scent method and the Gauss–Newton algorithm, combining the speed advantage of the
Gauss–Newton algorithm and the stability of the steepest descent method. In many cases,
it can converge well even if the error surface is much more complex than in the quadratic
situation, making it instantaneous compared to the Gauss–Newton algorithm. In conver-
gent situations, the LMA tends to be a little slower than the Gauss–Newton algorithm, but
it converges much faster than the steepest descent method. The basic idea of the LMA
is that it executes a combined training process: around areas with a complex curvature,
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the LMA switches to the steepest descent algorithm until the local curvature is correct, to
make a quadratic approximation, at which point it becomes similar to the Gauss–Newton
algorithm, speeding up the convergence significantly [28]. Weights and biases are updated
during training, and data are presented according to which network is adjusted based on
its error. An independent measure of network performance during and after training is
achieved by testing data and has no effect on training. The third step is the architecture
of the network, in which a two-layer feed-forward network is applied with a standard
function fitting, comprising a sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer. The fourth step is the learning algorithm used for
training the network to fit the inputs and targets. It helps in achieving accurate results
and analysis. The fifth step is the evaluation of the network, which allows for testing
of the network using more data, which can be retained if we are not satisfied with the
results [29]. The sixth step is to determine the deployable solution; in this way, a trained
neural network is generated in the form of a Simulink diagram or code. In this research,
this algorithm is implemented because of the ease of model building and it requiring less
formal statistical knowledge. Unlike other prediction techniques, ANN does not impose
any restrictions (e.g., distribution), and it gives data with a nonconstant difference and
high volatility. With the evolving technology of ANNs, motor fault detection problems can
easily be solved using an advanced approach based on a useful measurement without the
need for expensive equipment and precise mathematical models that are obtained from
conventional fault detection techniques. Therefore, it is a more feasible option than any
other conventional technique. The nodes in one kind of network are viewed as "artificial
neurons", a computational model that draws inspiration from natural neurons. We refer
to these as artificial neural networks, or ANNs. Natural neurons have synapses on their
membranes, or dendrites, where they receive signals. The neuron is activated and sends
out a signal along the axon when the signals it receives are powerful enough to reach a
threshold. It is possible that this signal will reach another synapse and cause more neurons
to fire.

Figure 2. Flow chart of artificial neural network (ANN) [13].
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When modeling artificial neurons, the intricacy of genuine neurons is greatly ab-
stracted. These essentially consist of inputs (such as synapses) multiplied by weights (the
strength of the corresponding impulses), which are then calculated by a mathematical for-
mula that determines whether the neuron will activate (Figure 3). An additional function,
which could be the identity, computes the artificial neuron’s output, sometimes based on a
threshold. Artificial neurons are combined in ANNs to process information.

Figure 3. An artificial neuron model [13].

The algorithm is the given instances of the sources of inputs and outputs required for
the framework to enlist, and the error generated afterwards can then be found. It is likely
that this algorithm will diminish this error until the point that the artificial neural network
takes in the training information. The sum of the inputs xi is multiplied with corresponding
weights wj,i when generating activation function.

A f (x, w) =
n

∑
i=0

xiwj, i (1)

Sigmoidal function is used as the output function for this work.

Oj(x, w) =
1

1 + eA f (x, w)
(2)

We must adjust the weights in order to reduce error since the error refines between
actual and predicted outcomes based on the weights. The error function for each neuron’s
output can be represented as follows:

E f (x, w , d) =
(
Oj(x, w)− dj

)2 (3)

Then, we find how error value depends on the input’s outputs and weights.

∆wj, i = −µ
∂E

∂wj. i
(4)
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∆wj, i is the adjustment of each weight and “η” is the constant eta. Now, we find out
the degree to which error depends on output.

∂E
∂Oj

= 2
(
Oj − dj

)
(5)

To find the degree to which the output depends upon the activation and on weights,
we compute the following:

∂Oj

∂wj, i
=

∂Oj

∂Aj

∂Aj

∂wj, i
= Oj

(
1 − Oj

)
xi (6)

The difference with respect to each weight will be

∆wj, i = −2µ
(
Oj − dj

)
Oj

(
1 − Oj

)
xi (7)

If we must change MSEik, theweights (MSE ik) of a past layer, we expect first to
register how the error depends not on the weight, but on the observation from the past
layer, i.e., supplanting w by x, as shown in the equation below.

∆MSEik = −µ
∂E

∂MSEik
= −µ

∂E
∂xj,i

∂xj

∂MSEik
(8)

∂E
∂wj, i

= −2µ
(
Oj − dj

)
Oj

(
1 − Oj

)
wji (9)

∂xi
∂vj, i

= xi(1 − xi)MSEik (10)

Although there is no certain rule for estimating the number of hidden neurons, an
empirical formula proposed by many researchers is used [13–18].

NH =
1
2
(NI + NO) +

√
NT (11)

where NI , NO, NT , and NH are the number of input neurons, output neurons, train data,
and the number of hidden neurons, respectively. In this study, a 90/10 training/validation
split rule was adopted to avoid overfitting. The crop nutrients were split into 1980 and 220
for the training process. Six crop nutrients were taken separately as an unseen test dataset
to confirm the model accuracy. Using Equation (11), the number of hidden neurons can
be approximated as 10. The training was carried out through trial and error for hidden
neurons, starting from 2 to 30, while tracking the performance criteria of mean square error,
shown in Equation (12). Precision agriculture is currently popular, assisting farmers in
making well-informed decisions about their farming approach. Here, the authors were
given access to a dataset that would enable users to create a predictive model that would
suggest, in light of different factors, which crops would be best suited for production on
a specific farm [26]. This dataset was created by enhancing existing crop-related records
on rainfall, climate, and fertilizer. The current work makes use of the following essential
elements: temperature in degrees Celsius, relative humidity in percentage, soil pH value,
rainfall in millimeters, and the ratios of nitrogen, phosphorus, and potassium in soil (N,
P, and K). The authors used these components to obtain the 2200 crop dataset from the
AMNIST database, which they then used to conduct the present research.

Multiple R is the Pearson correlation coefficient; it is a value that tells you how strong
the linear relationship is. The R square coefficient of determination (Multiple Rx Multiple
R) gives the amount of variance the dependent variable can account for by the independent
variable. The adjusted R square takes into account the number of independent variables
in the analysis and corrects for bias. The standard error of the regression is the average
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distance that the observed values fall by from the regression line. A fundamental concern
in ANNs is the measure of forecasting error (goodness of fit or how well the forecasting
model) for a given dataset and ANN method. Among the best measurement methods are
mean square error (MSE), mean absolute deviation (MAD), and mean absolute percent
error (MAPE) [27].

SE =
n

∑
t=1

(xt − x̂t)
2

n
(12)

MPE =
n

∑
t=1

(
(|xt−x̂t |)2

xt

)
n

× 100% (13)

MAD =
∑n

t=1(|xt − x̂t|)
n

(14)

%improvment =
(

old value − new value
old value

)
× 100 (15)

4. Results and Discussion

Figure 4 illustrates how the quantity of hidden nodes affects an ANN’s performance.
It is evident that the ANN’s capacity for prediction is mostly unaffected by the quantity
of hidden layer nodes. A network with a single hidden layer node can, nonetheless, map
the underlying relationship well. Prediction errors are quite consistent, suggesting that
overtraining is not an issue for networks with more hidden layer nodes. Given that cross-
validation is the stopping condition, this is to be expected. The network with five hidden
layer nodes has the lowest prediction error, as seen in Figure 4. Nonetheless, the network
with two hidden layer nodes is regarded as ideal, as it has fewer connection weights and a
prediction error that is comparable to the network with five hidden layer nodes (roughly a
0.5% error difference).

Figure 4. Artificial neural network model’s performance with various hidden layer nodes (learning
rate = 0.2).

Figure 5 shows how the ANN model’s performance is mostly unaffected by a variety
of parameters, especially in the 0.01–0.6 range. A value of 0.7 for the number of nutrients
produced the best forecast. It illustrates the impact of the learning rate and number of factors for
the internal parameters that regulate the backpropagation algorithm on model performance.
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Figure 5. Impact of different element terms on the performance of artificial neural networks (learning
rate = 0.2, hidden layer = 2).

It was discovered that the ideal learning rate was 0.2 (as shown in Figure 6), which
illustrates the impact of the learning rate and number of factors of the internal parameters
that regulate the backpropagation algorithm on model performance.

Figure 6. Effect of various learning rates on artificial neural network performance (learning
rate = 0.2, hidden layer = 2).

Prediction errors were larger at lower learning rates, most likely because the networks
were unable to break out of local maxima on the error surface because of the small step
sizes used. Prediction errors somewhat increased with higher learning rates, presumably as
a result of the optimization algorithm’s pseudorandom behavior close to the local maxima
in the error surface brought on by the large step sizes used in the weight space. The ANN
trained with two hidden layer nodes, a number of factors value of 0.8, and a learning rate
of 0.2 showed minimal effect from varying random starting positions in weight space on
prediction inaccuracy. The fact that the error surface in weight space is comparatively
simple for the task at hand could be one explanation for this. Furthermore, as has been
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previously stated, the model is likely to avoid local maxima in the error surface during
training if a learning rate of 0.2 is used.

For all crop nutrients, the trained results demonstrated the same results with no
difference throughout the data training. The value of the regression square (R) is presented
in Figure 7. Regression squares indicate that the crops’ independent (nutrients) variables
can explain, for example, how crop training values of regression (R) (99.997%) change
all the dependent (crop growth, crop health) variables, validation values of regression
(R) (99.996%), and test values of regression (R) (99.997%), and all regression (R) (99.997%)
change the crops dependent variables. These results were for rice, maize, chickpeas, kidney
beans, pigeon peas, moth beans, mung beans, black gram, lentils, pomegranates, bananas,
mangoes, grapes, watermelons, muskmelons, apples, oranges, papayas, coconuts, cotton,
jute, and coffee.

Figure 7. Regression of the system.

The mean squared errors ( mg
L ) of the crops are depicted in Figure 8. The blue line

indicates the data train, the green line shows data validation, the red line gives the data
test, and the dotted hidden line represents the best fit of the data. Total epochs were 84,
and the best validation performance was obtained at epoch 78 with a mean square error
(MSE) of 0.999935. The set of sensor values that are predicted by the neural network based
on the input data is compared with the expected sensor values, and their difference is
calculated to find the mean square error or mean square deviation. Mean square deviation
values that are close to zero are good estimators. These results are related to the learning
process network. As seen from the presented characteristics, a network of relatively good
quality was obtained. Confirmation of this should be reflected in the results obtained in
the test sample. Conducted tests showed quality indicators and percentages of correct
classification of 95% for beta distribution and 90% for normal distribution. These indicators
were lower than those obtained in the learning process, but this is in large part due to the
small testing set.

The greatest change in the crop dependent variables (gradient) is shown in Figure 9.
The best crop gradient was 2.16, obtained at epoch 84. Crop gradient represents the slope
of the tangent of a graph of a function. It gives the direction in which there is a high rate
of increase for the considering function (nutrients). “mu” is the control parameter for the
backpropagation neural network that is modeled, and the choice of mu directly affects
the error convergence. A crop validation check is used to terminate the learning of the
neural network. The number of validation checks will depend on the number of successive
iterations of the neural network. The values for “mu” and validation checks were 0.001 and
6 at epoch 84, respectively.
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Figure 8. Performance of the system.

Figure 9. Gradient of the system.

Table 1 summarizes the prediction performance of the ideal neural network model,
which consists of two hidden layer nodes, an element value of 0.7, and a learning rate of
0.2. The validation set’s r2 of 0.999 ( mg

L
2), RMSE of 0.999935 ( mg

L ), and MSE of 0.999935
( mg

L ) show that the ANN model operates satisfactorily. Additionally, it demonstrates that
the model’s validation findings are mostly in line with its training and testing outcomes,
suggesting that the model can generalize within the training dataset. Obtained results for
training, validation, and test for regression (R) were 0.99997 mg

L , 0.99996 mg
L , and 0.99997 mg

L ,
respectively. This implies that the relationship of crop nutrients is strongly important for
crop growth. The magnification of regression (R) for training was 0.99994 mg

L ; for validation,
it was 0.99992 mg

L ; and for test, it was 0.99994 mg
L . This gave the variance of the crops that

the dependent variable (crop growth, crop health) can account for with the independent
variable (crop nutrients). Absolute errors were obtained, with 0.99997 mg

L , 0.99996 mg
L ,

0.99997 mg
L for training, validation, and test, respectively. Absolute deviation for training,

validation, and test were 0.00045453 mg
L each. The smaller the deviation, the better the

model prediction, so the ANN model was excellent at forecasting crop nutrients. MSEs
for training, validation, and test were 0.999935 mg

L , 0.999934 mg
L , and 0.999935 mg

L , whereas
MADs for training, validation, and test were 0.999968 mg

L , 0.999967 mg
L , and 0.999968 mg

L ,
and MAPEs were 0.045453 mg

L each.
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Table 1. Artificial neural network results.

Specifications R ( mg
L ) R Square

(mg
L
)2 Absolute Error ( mg

L ) Absolute Deviation ( mg
L ) MSE ( mg

L ) MAD ( mg
L ) MAPE ( mg

L )

Training 0.99997 0.99994 0.99997 0.045453 0.999935 0.999968 0.045453

Validation 0.99996 0.99992 0.99996 0.045453 0.999934 0.999967 0.045452

Test 0.99997 0.99994 0.99997 0.045453 0.999935 0.999968 0.045453

All R 0.99997 0.99994 0.99997 0.045453 0.999935 0.999968 0.045453

At epoch 1000, the best performance of crop nutrient prediction was 0.21068, which
is well within the R values (Figure 10). At first, it was dynamically dropping, reaching an
equilibrium at 300 epochs, and fluctuating between 350 and 550 epochs.

Figure 10. Performance of the system at 1000 epochs.

As shown in Figure 11, at epoch 1000, the gradient, mu, number of parameters,
sum squared parameters, and validation check were 0.046278, 50, 80.5641, 31.498, and
0, respectively. When training a neural network using the train function in MATLAB, a
validation check = 0 means that the algorithm might be failing to perform validation checks
properly, leading to unexpected results at epoch 1000.

Figure 11. Parameter values at 1000 epochs.
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In Figure 12, the values of the regressions (R) were excellent. In all cases, the values of
R were the same as 0.99997 without validation. As the number of epochs increased, the
degree of prediction decreased, due to the validation check approaching zero.

Figure 12. Regression of the system at 1000 epochs.

The ANN predictions were compared against each other using MSE, MAPE, and MAD.
Of the three measurements, MAD provides the most accurate and fair comparison of ANN
methods (Table 2). MSE, MAPE, and MAD for linear regression were 0.8 mg

L , 0.723 mg
L , and

0.83 mg
L ; this gave the linear relationship between a dependent (crop growth, crop health)

variable and one or more independent variables (crop nutrients). For exponential regression,
these were 0.77 mg

L , 0.79 mg
L , and 0.87 mg

L . From exponential regression, situations where
growth starts slowly and then accelerates rapidly could be seen. MSE, MAPE, and MAD for
cubic regression were 0.5567 mg

L , 0.78 mg
L , and 0.86 mg

L , with cubic regression in this context
implying a relationship between variables, allowing for predictions based on the data. The
ANN first-order function links were 0. 999935 mg

L , 0.999934 mg
L , and 0.999935 mg

L . MSE, MAPE,
and MAD for single layer multiple input were 0. 999935 mg

L , 0.00045453 mg
L , and 0.999968 mg

L .

Table 2. Error calculation for training set.

Specification Linear Regression Exponential Regression Cubic Regression ANN First-Order
Function Link

Single Layer
Multiple Input

MSE
(mg

L
)

0.8 0.77 0.5567 0.999935 0.999935

MAPE
(mg

L
)

0.723 0.79 0.78 0.00045453 0.00045453

MAD
(mg

L
)

0.83 0.87 0.86 0.999968 0.999968

The holdout method is a common technique in model evaluation where the dataset
is split into training and test sets (Table 3). During holdout sampling, MSE, MAPE, and
MAD for linear regression were 0.6 mg

L , 0.43 mg
L , and 0.12 mg

L ; for exponential regression,
they were 0.44 mg

L , 0.6 mg
L , and 0.22 mg

L ; for cubic, they were 0.34 mg
L , 0.14 mg

L , and 0.23; for
ANN first-order function link, they were 0.999930 mg

L , 0.00045453 mg
L , and 0.999961 mg

L ; and
for single layer multiple input, they were 0. 999935 mg

L , 0.00045453 mg
L , and 0.999968 mg

L .
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Table 3. Error calculation for the holdout sample.

Specification Linear Regression Exponential Regression Cubic Regression ANN First-Order
Function Link

Single Layer
Multiple Input

MSE
(mg

L
)

0.6 0.44 0.34 0.999930 0.999930

MAPE
(mg

L
)

0.12 0.6 0.14 0.00045451 0.00045451

MAD
(mg

L
)

0.43 0.22 0.23 0.999961 0.999961

Table 4 shows the comparison of the current results and existing works’ results with
the same crop nutrients history. The square of regression (R) for the current work over
the existing work improved by 15.6%, 15.9%, and 22.1% for the datasets training, testing,
and validation, respectively. The root mean squared error (RMSE) improvements by the
current works over the existing were training set: 90.01%, testing set: 90.1%, and validation
set: 90.9%. Results obtained for mean absolute errors were training set: 85.4%, testing set:
84.4%, and validation set: 88.6%. Even though the current works and the existing works
were tested using the same model (ANN), the existing works were not able to demonstrate
the best performance. This implies that the existing works mostly lead to underfitting and
overfitting, whereas the current work demonstrated generalized forms, since the dataset
used win the existing works was relatively small and the attributes were very few.

Table 4. Comparison of the current work with existing work.

Data Set

Current Work Existing Works [30] Comparison

R Square
( mg

L

)2 RMSE ( mg
L ) MAE ( mg

L ) R Square
( mg

L

)2 RMSE ( mg
L ) MAE ( mg

L )

% R Square
of Current
Work over

Existing
Work

% RMSE of
Current Work
over Existing

Work

% MAE of
Current Work
over Existing

Work

Training set 0.99994 0.999935 0.999968 0.865 10.01 6.87 15.6 90 85.4

Testing set 0.99992 0.999934 0.999967 0.863 10.12 6.43 15.9 90.1 84.4

Validation set 0.99994 0.999935 0.999968 0.819 11.01 8.78 22.1 90.9 88.6

Table 5 shows the results of regression and its RMSE to estimate certain crop nutrients
based on datasets. From the results, the conclusions were drawn that low bias and low
variance were obtained, since individual regression results were similar to the overall
trained dataset. The models were properly furcated into the right crop nutrients. The
model estimated the amount of the required nutrients for the respective crops. Based
on these, the regression values for rice, maize, chickpeas, kidney beans, pigeon peas,
moth beans, mung beans, black gram, lentils, pomegranate, bananas, mangoes, grapes,
watermelon, muskmelon, apple, orange, papaya, coconut, cotton, jute, and coffee were
0.996, 0.9959, 0.9958, 0.9959, 0.996, 0.9959, 0.9958, 0.9959, 0.9978, 0.9968, 0.996, 0.9959, 0.9958,
0.9959, 0.996, 0.9959, 0.9958, 0.9959, 0.9978, 0.9968, 0.9958, and 0.9966, respectively. These
imply that proper nutrients for the crops were forecasted, since during the estimation,
the obtained root mean squares were relatively small. These were 0.0056, 0.0067, 0.008,
0.0012, 0.0056, 0.0077, 0.0056, 0.0067, 0.008, 0.0012, 0.0056, 0.0077, 0.0055, 0.0089, 0.0034,
0.0056, 0.0067, 0.008, 0.0012, 0.0056, 0.0077, and 0.0056 for rice, maize, chickpeas, kidney
beans, pigeon peas, moth beans, mung beans, black gram, lentils, pomegranate, bananas,
mangoes, grapes, watermelon, muskmelon, apple, orange, papaya, coconut, cotton, jute,
and coffee, respectively. These imply that the obtained results were relatively excellent at
estimating the right crop nutrients for the right crops since they showed high regression
value and less error.
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Table 5. Estimated outputs and accuracy analyses of the ANN input variables.

Crops Regression Results (R2(mg
L
)2) RMSE ( mg

L )

Rice 0.996 0.0056

Maize 0.9959 0.0067

Chickpeas 0.9958 0.008

Kidney beans 0.9959 0.0012

Pigeon peas 0.996 0.0056

Moth beans 0.9959 0.0077

Black gram 0.9958 0.0056

Mung beans 0.9959 0.0067

Lentils 0.9978 0.008

Pomegranate 0.9968 0.0012

Bananas 0.996 0.0056

Mangoes 0.9959 0.0077

Grapes 0.9958 0.0055

Watermelon 0.9959 0.0089

Muskmelon 0.996 0.0034

Apple 0.9959 0.0056

Orange 0.9958 0.0067

Papaya 0.9959 0.008

Coconut 0.9978 0.0012

Cotton 0.9968 0.0056

Jute 0.9958 0.0077

Coffee 0.9966 0.0056

5. Conclusions

In this study, we addressed the application of artificial neural networks in precision
agriculture. The ability of artificial neural networks (ANNs) to forecast suggested crop
nutrients was demonstrated using a backpropagation neural network. A database was
compiled from the MNIST data collection, which includes 2200 dataset instances of rainfall,
temperature, humidity, phosphorus, potassium, and nitrogen. Based on the ANN used
to identify the crop nutrients, the number of epochs was 84, and the best validation
performance was obtained at epoch 78. Three conventional techniques were used to
compare the outcomes between the measured and predicted crop nutrients that were
produced through the use of ANNs. According to the findings, backpropagation neural
networks might reasonably accurately forecast crop condition variables and crop nutrients,
with an R square = 0.99994 mg

L , RMSE = 0.999935 mg
L , and MAPE = 0.00045453 mg

L . With a
learning rate of 0.2, it was clear that the number of hidden layer nodes had little bearing
on the ANN’s prediction ability. Even so, a network with just one hidden layer node is
still able to accurately map the underlying relationship. The consistency of prediction
errors indicates that overtraining does not pose a problem for networks with a higher
number of hidden layer nodes. This is expected as cross-validation is the ending condition.
A wide range of parameters, particularly in the 0.01–0.6 range, mostly have no effect on
the performance of the ANN model. The best forecast was obtained when the number
of nutrients was at 0.7. Of the three metrics, MAD offers the most precise and equitable
evaluation of ANN techniques. We were informed of a linear relationship between a
dependent variable (crop growth, crop health) and one or more independent variables
(crop nutrients) by the linear regression’s MSE, MAPE, and MAD values of 0.8 mg/L,
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0.723 mg/L, and 0.83 mg/L. The first-order function link for the ANN, however, was
0.999935 mg/L, 0.999934 mg/L, and 0.999935 mg/L. For a single layer multiple input, the
MSE, MAPE, and MAD values were 0.9999935 mg/L, 0.00045453 mg/L, and 0.999968 mg/L.
The results of the forecasting comparison illustrate how the most basic neural network
can outperform for crop nutrient identification. The first-order functional link network
yielded the best results for the training set. The results showed that one example of the
power neural networks can predict the best crop nutrients. The novelty of the current paper
is that it uses various crop nutrition type datasets at the same time, training them at the
same time and forecasting the accuracy of the respective crop nutrients. Since the existing
literature focuses on single crop nutrients when forecasting accurate crop nutrients, current
algorithms were used for multipurpose crop nutrition forecasting. Therefore, the proposed
algorithms are suitable for forecasting precision crop nutrients.

Author Contributions: S.A.: Visualization, writing, original draft, review and editing, conceptual-
ization, data curation, formula analysis, investigations, methodology, software, validation, project
management. G.G.: Supervision, validation, funding, acquisitions, project management, review
and editing, conceptualization. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kujawa, S.; Niedbała, G. Artificial neural networks in agriculture. Agriculture 2021, 11, 497. [CrossRef]
2. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of artificial

neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 2020, 10, 3835. [CrossRef]
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