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Abstract: Research into explainable artificial intelligence (XAI) methods has exploded over the past
five years. It is essential to synthesize and categorize this research and, for this purpose, multiple
systematic reviews on XAI mapped out the landscape of the existing methods. To understand how
these methods have developed and been applied and what evidence has been accumulated through
model training and analysis, we carried out a tertiary literature review that takes as input systematic
literature reviews published between 1992 and 2023. We evaluated 40 systematic literature review
papers and presented binary tabular overviews of researched XAI methods and their respective
characteristics, such as the scope, scale, input data, explanation data, and machine learning models
researched. We identified seven distinct characteristics and organized them into twelve specific
categories, culminating in the creation of comprehensive research grids. Within these research grids,
we systematically documented the presence or absence of research mentions for each pairing of char-
acteristic and category. We identified 14 combinations that are open to research. Our findings reveal a
significant gap, particularly in categories like the cross-section of feature graphs and numerical data,
which appear to be notably absent or insufficiently addressed in the existing body of research and
thus represent a future research road map.
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1. Introduction

Explainable artificial intelligence (XAI) is a set of methods used to tackle the in-
terpretability problem [1] by providing users explanations on how a model came to its
conclusion. By providing these additional insights into its reasoning or internal workings,
the model’s transparency is increased, resulting in higher trust from the user.

In the context of deep learning, the model learns from the data, and the internal
learning of the model is, generally, a black box. There is a constant call to make these
black-box models more interpretable. It is especially crucial to understand how the model
made certain decisions for critical systems. It is also essential for systems that are not
critical, but where their black-box nature induces biases or other ethical dilemmas.

One example of the usage of XAI in daily life is reasons why a mortgage is approved
or denied by a bank. This benefits two parties: the applicant for the mortgage and the
bank. The applicant benefits because accepting a possible denial may be easier if a reason is
provided. At the same time, the bank benefits from increased insight into how their model
behaves and can therefore avoid biases or other ethical issues induced by the model [2].

Another example concerns healthcare [3], where a heavy debate is ongoing on AI
implementation as “explainability is not a purely technological issue, instead it invokes a
host of medical, legal, ethical, and societal questions that require thorough exploration” [3].
Another example is the bias in diagnosis based on X-ray data. The diagnosis is biased
toward under-served-populations (see Seyyed-Kalantari et al. [4]).
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Embracing the need for XAI, in April 2021 the European Commission proposed a
regulation to ensure that complex “high-risk AI systems shall be designed and developed
in such a way to ensure that their operation is sufficiently transparent to enable users to
interpret the system’s output and use it appropriately” [5] [Article 13]. Half a year later,
in September 2021, Brazil followed by approving a similar proposal.

Although the terms “explainable AI” and “interpretable AI” are often confused as
synonyms, they have subtle differences. Interpretable AI refers to the characteristic of
an AI system that allows humans to understand the processes it uses to make decisions
or predictions. In other words, “we will consider interpretability as the possibility of
understanding the mechanics of a Machine Learning model, but not necessarily knowing
why [6]”. On the other hand, XAI focuses on the overall understanding of the data,
including the unobserved cases. This also includes certain feature values not present in the
data or some data points that have not occurred. In this paper, we do not use both terms in
their strict meaning; instead, we focus on the larger class of XAI while keeping in mind
that the cited paper may have used these terms interchangeably.

Numerous XAI methods have been developed over the past 5 to 10 years [7], ranging
from model-agnostic methods (those that can be applied to all existing and future models)
to model-specific intrinsic methods (those that can only be applied to a single or subset
of methods). New methods and techniques are actively researched and the number of
scientific papers describing these techniques is rapidly increasing.

The current rapid publication rate calls for higher-tier research that summarizes and
synthesizes the current state of the art and highlights existing gaps. The most commonly
used method is conducting systematic literature reviews that summarize and synthesize
the current state of research on a topic [8].

Systematic literature reviews (SLRs) aim to summarize multiple individual research
articles, whereas meta-reviews are used to summarize both individual research articles as
well as existing SLRs. The top-tier evidence synthesis method is called a tertiary review,
which is a systematic review of systematic literature reviews [9].

In this article, we will conduct a tertiary review of existing XAI methods and their
characteristics, such as input data type or model type. Furthermore, we aim to categorize
these methods into well-defined boxes to create a clear overview of the existing literature.
Example categories could be heat maps, graphs, or decision trees.

Therefore, the goal of this paper is to provide a mapping of XAI categories with their
characteristics and fill this mapping with existing XAI methods. This mapping will result
in 2D matrices, with each cell indicating whether an XAI method in that category has or
has not been researched with that characteristic.

We want to emphasize that this paper is aimed at meta-level reviews where the focus
is on summarizing existing literature reviews and finding open research directions. There
are multiple literature reviews (and most of them are cited in the coming section) written
discussing an exciting research topic within the realm of explainable artificial intelligence
(as it is detailed in this paper). However, to the best of our knowledge, this paper is the
first attempt to combine knowledge from existing literature reviews into a single article.
During the final editing of this paper, we came across the recent paper work of Saeed
and Omlin [10] where they provided a scoping review of the field of XAI. Their review
presents challenges and research directions in XAI as discussed in the research papers. Their
approach is different from ours. Instead of focusing on the discussion points mentioned
in primary review papers, we catalog which research directions have and have not been
explored and extract new research gaps from this. Furthermore, this paper specifically
focuses on XAI techniques, whereas Saeed and Omlin [10] discuss challenges in XAI in a
broader sense.

To clarify the terminology used in this research, the terms used throughout this paper
are defined in Section 2. In Section 3, the research method used for this tertiary review is
explained. In Section 4, we synthesize the findings of the review. We then describe the
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limitations of our research guidelines for future work in Section 5. Finally, we conclude our
findings in Section 6.

2. Terminology

As the XAI research area is still young, a consensus has not been reached yet for
every term that is used. Therefore, this section serves as a glossary that we will use for the
remainder of this article.

1. ML: abbreviation of machine learning.
2. XAI: abbreviation of explainable artificial intelligence, also used as “Explainable AI”,

“Explainable Machine Learning”, and “Interpretable AI”.
3. Articles: any peer-reviewed scientific paper or article.
4. ML techniques: ML techniques are the areas in which machine learning models are

applied, such as natural language processing, speech processing, computer vision,
and predictive analysis.

5. ML domains: ML domains are application domains wherein ML models are being
applied, like healthcare, retail, financial/banking, and industry.

6. Explainable AI methods: methods developed to increase the explainability and/or
interpretability of either the outcomes of a model or the model itself.

7. Systematic Literature Review (abbreviation: SLR): an SLR identifies, selects, and
critically appraises research in order to answer a clearly formulated question (https:
//libguides.csu.edu.au/review/Systematic accessed on 27 August 2024).

8. Tertiary Review: a systematic approach to summarizing information from existing
SLRs and meta-reviews.

3. Review Methodology

This section describes the search strategy, search string, and inclusion and exclusion
criteria. A complete overview of their application, from research question formation to
collected studies, is provided to ensure a rigorous and reproduceable approach for this SLR.

3.1. Research Questions and High-Level Synthesis

Over the last five years, numerous systematic literature reviews on XAI have been
conducted (as we shall see in the coming section).

We aim to present a high-level synthesis based on these literature reviews focused on
answering the following questions:

• RQ 1: What are distinguishing characteristics of XAI methods?
• RQ 2: What are the distinct categories that can be established to classify various XAI

methods based on their shared characteristics and methodologies?
• RQ 3: Which combinations of XAI categories and characteristics have been researched?

The tertiary review (see [9]) method is considered above a systematic literature review
in the hierarchy of evidence synthesis methods, as seen in Figure 1. Since there are no
well-defined guidelines for conducting tertiary reviews, we adapted the guidelines of
Kitchenham et al. [8], where only existing systematic literature reviews and meta-analyses
are taken into account, instead of individual articles.

https://libguides.csu.edu.au/review/Systematic
https://libguides.csu.edu.au/review/Systematic
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Figure 1. Hierarchy of evidence synthesis methods, based on Fusar-Poli and Radua [9].

3.2. Literature Retrieval and Selection

To retrieve literature, we need to craft a query. To craft the search query, we adapted a
fine-tuning-based approach, where we started with a query and fine-tuned it by looking
at the results returned by the database Scopus [11]. Scopus was chosen since it contains
articles from a broader area of science and engineering and due to the ease of retrieving the
returned results.

Based on the research question, we started with the combination of “Explainable AI”
and “Systematic Literature Review”, together with their respective synonyms, as the initial
search query. After a couple of iterations, it resulted in a more comprehensive search query,
as given in Listing 1.

Listing 1. Search query.

( ( sys temat i c AND review ) OR ( meta AND a n a l y s i s AND review ) )
AND

( ( e x p l a i n a b l e AND a i )OR( e x p l a i n a b l e AND a r t i f i c i a l AND i n t e l l i g e n c e )
OR ( xa i )OR( i n t e r p r e t a b l e AND a i )
OR( e x p l a i n a b l e AND machine AND l earn ing ) )

As can be seen in Listing 1, the synonyms used for “explainable AI” are “explainable
artificial intelligence”, “xai”, “interpretable AI”, and “explainable machine learning”. The
synonyms used for “systematic literature review” are “systematic review” (which makes
the search term “systematic literature review” redundant), and “meta-analysis review”.
We search the broader area of science and engineering instead of confining ourselves to
computer science. This choice is made because relevant articles could be focused on a
specific domain and would then generally be published in sources associated with the
application domain.

To reduce the bias of database choice, this query was run in multiple databases re-
sulting in varying results. Executing this query string on Scopus resulted in 92 articles.
After applying the same query to IEEE Xplorer (12 results), ACM (four results), ScienceDi-
rect (80 results), and Springer (41 results), 229 articles were retrieved. The search query is
adapted to match the specific needs of each database.

Furthermore, one article was added manually, as this article is not yet published but
does fit the search query, resulting in 230 articles, as seen in Figure 2.
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Figure 2. PRISMA flow diagram of the tertiary review.

3.3. Literature Selection

The proceeding subsection describes the steps followed based on the guidelines
outlined in [8] to select only the literature relevant to our research questions.

3.3.1. Step 1: Duplicate Removal

Some of the resulting articles appear in multiple databases. Hence, the duplicates
were removed. In total, 33 duplicates were removed, resulting in 197 unique articles.

3.3.2. Step 2: Inclusion Criteria

To find the most relevant articles, the following inclusion and exclusion criteria are defined:

• IC1: include only articles performing a systematic literature review or meta-analysis
on XAI methods.
Motivation: this is the aim of our tertiary review.

• IC2: include only articles fully available through the queried databases or manually
added, using the University of Twente academic access.
Motivation: fully available papers are needed to summarize the papers properly.

• IC3: include only articles written in English.
Motivation: as the research is performed in English, only English-written articles are
taken into account.

• IC4: include only scientific peer-reviewed papers.
Motivation: Scientific papers that went through a peer-review process ensure a level
of credibility and quality.

The initial selection step included abstract and title screening. The first author read the
remaining 197 articles after duplicate removal, and the fourth and fifth authors critically
evaluated this process. After the title and abstract screening, 51 articles were selected.
IC1 provided the foundation for the exclusion of 146 articles. One major discovery of the
title and abstract screening is the significant number of articles that contain the relevant
keywords. However, upon closer examination, these articles did not substantively address
the concepts in question or contribute novel methodologies to the field.

3.3.3. Step 3: Quality Assessment

To further strengthen the screening process, we defined quality criteria. It is possible
that an article may inadvertently be included after the initial title and abstract screening,
even if it is not completely relevant to our research focus. This could occur when the article
employs certain terminology from our search query in a manner that is primarily attention-
grabbing, thereby giving an impression of relevance that may not be entirely accurate.
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Additionally, there are cases wherein an article discusses the topic of explainable artificial
intelligence (XAI) but does not engage in a detailed exploration of specific XAI method-
ologies. We adopted these two considerations as key aspects of our quality assessment
criteria. From the 51 articles, 11 were excluded via the quality assessment. An overview of
the excluded papers with their exclusion reasoning can be found in Appendix A.

3.3.4. Step 4: Backwards Snowballing

To mitigate the risk of missing important articles, we used the backwards snowballing
technique (see [12]). This technique allowed us to add articles found in the reference
list of included articles when they matched our inclusion criteria. In total, we identified
27 additional articles by performing this technique. Due to time constraints, these articles
were not explicitly read in full but instead were added in Appendix B. However, these
papers are already included at a meta level since they are referenced by the papers that
were already included in this review. Therefore, we have not used these papers explicitly
in our results.

4. Results

In this section, the results gathered from the 40 included articles are presented. We
start with general insights into these articles in Section 4.1. In the proceeding section,
the selected articles are used to answer the research questions defined in Section 3. For
RQ 1, the identified characteristics can be found in Section 4.2. For RQ 2, the identified
categories are presented in Section 4.3. Finally, we give an overview of which combinations
of characteristics and categories have been researched, according to the included articles,
in the “XAI research matrix”. This matrix serves to answer RQ 3 and can be found in
Section 4.4.

4.1. Article Insights

As mentioned in Section 3.1, we expected the number of systematic literature reviews
on XAI to increase in recent years. As shown in Figure 3, which illustrates the number of
included articles per publication year, this hypothesis is correct. A rapid increase in SLRs
on XAI can be observed. The value for 2023 is not representative, since the papers included
are either published before 20 December 2022, or are scheduled to be published later in
2022 or early 2023; therefore, it is grayed out.

Figure 3. Overview of included articles per publication year.

4.2. XAI Methods Characteristics

In this section, we present the characteristics of XAI methods found in the selected
articles. Out of the 41 included papers, we identified five papers [5,13–16] which are found
to be most relevant to categorize XAI methods based on their characteristics.

Vilone and Longo [13] introduced five dimensions to characterize XAI methods that
we adopt: explainability method (they refer to this as “stage”), scope, problem type,
input data type, and explanation data type (they refer to this as “output format”). Fur-



Mach. Learn. Knowl. Extr. 2024, 6 2003

thermore, whereas they split the post hoc explainability method into model-specific and
model-agnostic methods, we incorporate this division into the separate model depen-
dency characteristic.

European Commission [5], Saleem et al. [15] and Groen et al. [14] have presented
comparable characteristics. However, they used more compact, less granular, sets of char-
acteristics. For our purposes, including more characteristics will increase the granularity of
the categorization, which allows us to specifically identify research gaps. Therefore, we
choose to follow Vilone and Longo [13].

Finally, Guidotti et al. [16] characterized explainability methods by the model type.
We added this characteristic to the list by Vilone and Longo [13].

In the following subsection, each category is briefly described.

4.2.1. Explainability Method

There are two primary means by which a method can increase the explainability of a
machine learning model, namely intrinsic and post hoc explainability. Figure 4 (adapted
from [17]) illustrates the difference between intrinsic and post hoc explainability and they
are further described below.

Figure 4. Visual overview of intrinsic (ante hoc) and post hoc explainability [17].

Intrinsic explainable models are designed to be naturally interpretable, meaning that
their decision-making process is transparent and understandable from the outset. This
intrinsic transparency is a key feature, as it allows users and developers to understand how
and why specific decisions are made by the model.

In contrast, post hoc explainability methods are applied after the model has been
trained. These methods attempt to shed light on the decision-making process of complex,
often black-box models like deep neural networks. While post hoc methods can be quite
effective in providing insights, they have limitations. One of the primary challenges is that
they do not alter the underlying model to make it intrinsically more interpretable; instead,
they try to interpret the model’s outputs or internal state after the fact.

4.2.2. Model Dependency

XAI methods that provide intrinsic explainability are always model-specific, as ex-
plainability is integrated into the model itself rather than being applied separately. In
contrast, post hoc explainability methods can potentially be applied to all existing machine
learning models, making them model-agnostic. Since only post hoc methods can be model-
agnostic, we consider the model dependency characteristic as an elaboration on post hoc
explainability. Model-specific methods are tied to a specific set of machine learning models,
whereas model-agnostic methods can be applied to virtually any machine learning model.

4.2.3. Scope

The scope of an explanation refers to what part of the inferential process of a model is
explained by an XAI method. There are two possible scopes for an explanation, namely
local and global. In local explanation, the method explains how the model arrives at the
prediction for a single data input, stating nothing about the overall (inner) working of the
model. On the other hand, global explanation methods provide insights into the inner
workings of the model, for instance by identifying patterns in the data and potential bias in
the model. Global methods provide an overview of the overall working of the machine
learning model that may not provide useful information for a single instance.
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4.2.4. Problem Type

Each machine learning model has a task it should perform or a problem it should
solve. A wide variety of tasks exist, but in this review, we will only consider the two tasks
that are by far the most popular [18], namely classification and regression.

In classification, one is focused on categorizing data points into predefined categories
such as “yes/no”, “cat/dog”, or “high, medium, low”. Note that segmentation, a common
computer vision problem, can be considered as an extension of classification problem, since
in segmentation we assign a category at the pixel level.

Classification has the task of predicting discrete variables and in contrast regression
predicts continuous variables such as room temperature, mortality probability, or stock price.

4.2.5. Input Data Type

For each XAI method, we determine what type(s) of input data it can handle. We
identify the following input data types:

• Visual data: this mostly includes images and videos.
• Textual data: this includes natural language and is unstructured.
• Tabular/structured data: this is the data that can be stored in spreadsheets or databases.

Usually, the data type of each column is the same, mostly categorical or numerical data.
• Time-series data: represent an event over time. This data type records time as one

dimension while the second dimension is the numerical or categorical representa-
tion of an event. The representative examples of this data type are sales data or
weather forecasts.

• Data-agnostic: this includes models that can handle any type of data as their input.

It is important to note that we categorize videos as visual data rather than time-series
data. This classification is based on the similarity between machine learning models
designed for video data and those used for processing visual data. Therefore, our approach
aligns videos with visual data models to leverage their inherent processing capabilities.

4.2.6. Explanation Data Type

Input data type determines the input that a certain XAI technique can handle. On the
other hand, the produced explanation can be represented using different data types. We
categorize explanation data types into the most commonly (see e.g., [19]) utilized types for
clarity and specificity.

• Visual data: In this instance, explanation is returned as a visual object, for instance, a
heatmap or saliency map.

• Textual data: Explanation is provided in the form of text generation via natural lan-
guage processing.

• Numerical data: This is one of the common time outputs.The returned number can
represent different things depending on the context and application. For example, com-
puted importance score for a (sub)set of features is returned or it could be probabilities
of outcomes, or influence percentages per input feature.

• Rule-based data: The explanation is returned in the form of decision rule(s) that explain
why a certain prediction was made, possibly combined with a set of counterfactual
rules which would have led to another prediction.

4.2.7. Model Type

ML models can be categorised based on their internal working mechanism. The catego-
rization varies depending on the use case. We base the ML model types on Guidotti et al. [16].
The model types we identified are the following:

• Deep neural networks are machine learning models consisting of a network of nodes
(the neurons) that compute a prediction, using their weighted average. There are many
different types of neural networks such as convolutional neural network and recurrent
neural network.
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• Tree ensemble models work by combining (ensembling) multiple tree-based models
by bagging and/or boosting, such as XGBoost or Random Forest models.

• Support vector machines work by finding an optimal hyperplane in high-dimensional
space that separates the data.

Note that the above list is not exhaustive; however, it covers the most used machine
learning models.

4.3. Explanator-Based XAI Categories

XAI methods provide output in a certain form, referred to as an explanator (see [16]).
One can classify XAI methods on the basis of the explanator used. Such a classification
first appeared in the works of Guidotti et al. [16] and was later extended and updated by
Nauta et al. [19]. The classification presented below is an adapted version of Nauta et al. [19].
We do not consider localization and white-box as classes, since white-box is used as a
synonym for intrinsic methods, which are already covered in the earlier section. We
included conterfactuals as categories since they have gained more attention recently and
deserve to be a separate class. The classification is given below.

• Graphs: It is an explanation in the form of a graph, consisting of nodes and edges, like
Knowledge Graphs [20].

• Feature importance: It is a list of numbers showing the relevance and importance
of each feature of the input data. Two of the most popular XAI methods (LIME
(For documentation visit https://lime-ml.readthedocs.io/en/latest/ accessed on
27 August 2024) [21] and SHAP (Detailed documentation can be found here: https:
//shap.readthedocs.io/en/latest/contributing.html accessed on 27 August 2024) [22])
are part of this category.

• Heatmaps: It is an image indicating the relevant parts of the input data, for ex-
ample, indicating the part of an image that contributed the most to the classifica-
tion of the image. There are several variants [23] available which are now part
of standard machine learning libraries (there are several implementations avail-
able; the implementations documented here cover a number of variants: https:
//github.com/jacobgil/pytorch-grad-cam accessed on 27 July 2024).

• Rule-based explanators: It is a rule, or set of rules, that determine why a prediction was
made. The paper [24] describes a rule-based XAI package.

• Decision Trees: It is a rooted set of rules with a decision at every node in the tree. The
earliest work in this regard is the paper [25].

• Disentanglement: It is a breakdown of the high-dimensional input features into lower-
dimensional features, which may be directly interpretable (see, e.g., [26]).

• Feature plot: It is a plot that illustrates the correlation of multiple input features.
There are two notable algorithms, namely partial dependence plot and conditional
expectation plots (see, e.g., [27]). Both of them are part of scikit-learn (https://scikit-
learn.org/stable/modules/partial_dependence.html accessed on 27 July 2024).

• Counterfactuals: It is an artificially generated example data point, similar to the input
data point, where the predictive model gives a different prediction (see, e.g., [28]).

• Prototypes: It is a set of data examples that shows what the predictive model considers
to be similar to the input, for example, its nearest neighbors. One well-known tech-
nique is MMD-critics [29]. The implementation can be found on the authors’ github.

• Text generation: It is an explanation in the form of natural language, for example, using
generated text (see, for example, [30]).

• Representation Synthesis: It is an artificial visualization produced as an explanation of
the predictive model, like synthetic data samples. Feature visualization [31] is one
such example.

• Representation Visualizations: It is a visualization produced to explain the predictive
model, for example, principle component analysis.

https://lime-ml.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/contributing.html
https://shap.readthedocs.io/en/latest/contributing.html
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://scikit-learn.org/stable/modules/partial_dependence.html
https://scikit-learn.org/stable/modules/partial_dependence.html
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4.4. XAI Knowledge Grid

In this section, we integrate the XAI characteristics and categories outlined in
Sections 4.2 and 4.3. Our objective is to map and visualize the researched combinations
in the existing literature and identify areas where research is lacking. Note that lacking
research does not necessarily imply that these combinations have never been researched. It
may be the case that the combination is researched but it has not appeared in the selected
SLRs. Therefore, these recommendation should be taken with caution. Moreover, XAI is an
active area of research, and since this paper is a meta study based on published SLRs, it
may be the case that there is already published research since the inception of this paper or
the selected SLRs (see also Section 3). Additionally, we will address certain combinations
deemed currently unfeasible to research, as defined and discussed in Section 4.4.6).

The combinations of characteristics and categories are visualized as a matrix. Each
cell in each matrix is filled with a referenced paper (if that paper mentions the combination
as having been researched), an “O” (open for research), or an “X” (currently considered
unfeasible), which provides an overview of the current research opportunities in this field.

In the remainder of this section, we will first explain which existing papers contributed
significantly to our review. Afterwards, in Sections 4.4.2–4.4.5, we will display and explain
the result matrices of this tertiary review. Finally, in Section 4.4.6, we will explain the
“unfeasible” cells in more detail.

4.4.1. Key Papers

In 2018, Guidotti et al. [16] were the first to systematically review existing methods
“for explaining black box models”. They created a classification of the main methods
concerning the explanation and type of black-box model used. The goal of the paper was
to offer researchers tools to find methods most useful for their work. As the research of
Guidotti et al. [16] can be seen as a “predecessor” of our paper, many XAI methods from
their reviewed primary papers were used to fill the matrices of this paper.

In 2021, Vilone and Longo [13] extended the classification created by Guidotti et al. [16]
by adding the “output formats” dimension, resulting in a practical tool for scholars to select
the most suitable type of explanation format for their problem. This extension on Guidotti’s
classification provided great added value to our tertiary review while filling the matrix.

In 2022, European Commission [5] conducted a systematic literature review on recently
developed XAI methods, together with their domains, tasks, and models. They found
that, in recent years, XAI methods were mostly developed for deep learning and ensemble
models. Additionally, they reviewed the problem type of XAI methods, like classification
and/or regression, in combination with the explanation data type. Especially on these last
two characteristics, the research of European Commission [5] significantly contributed to
our matrices.

Lastly, in 2023, Nauta et al. [19] conducted a systematic review on the evaluation
of XAI methods. Even though evaluation is not the aim of our review, Nauta et al. [19]
also provided an application (visit https://utwente-dmb.github.io/xai-papers/ accessed
on 27 July 2024) where papers that introduce XAI methods are indexed and labeled ac-
cording to characteristics and categories. As Nauta et al. [19] based their classification
on Guidotti et al. [16] and expanded this initial overview, their application contributed to
filling the last open cells of the matrices.

4.4.2. Explainability Method, Model Dependency, and Scope

The first research grid or matrix we present is concerned with the explanability method,
model dependency, and scope. The matrix is presented in Table 1. It is essential to point
out that post hoc scope is further classified as “model specific” and “model agnostic”.
It is evident from the Table 1 that there is a substantial interest for most combinations
of the explainability method, model dependency, and scope. Ante hoc counterfactuals
have not been researched; however, this combination is currently deemed unfeasible, as

https://utwente-dmb.github.io/xai-papers/
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counterfactuals are by definition generated after the model has computed its prediction.
For the scope characteristic, all combinations have been explored to a certain degree.

We would like to emphasize that Table 1 should not be misinterpreted as indicating
a scarcity of future research prospects in this area. Its binary representation, signifying
whether specific combinations have been researched, merely serves as a foundation for
future exploration. References are included as starting points for further inquiry. Moreover,
there is a significant need for future research to not only innovate but also refine existing
XAI techniques, ensuring continuous advancement in the field.

Table 1. Researched matrix on explainability method, model dependency (model-specific (MS) and
MA (model-agnostic), and scope. “O” (open for research), or an “X” (currently considered unfeasible).

Expl. Method and Model Dep. Scope

Ante Hoc Post Hoc Local Global
XAI Types Categories MS MA

Graphs [32] [32] [33] [34] [5]
Feature importance [35] [36] [37] [35] [35]
Heatmaps [36] [35] [19] [35] [38]
Rule-based explanators [36] [36] [16] [36] [36]
Decision Trees [36] [36] [16] [36] [5]
Disentanglement [5] [5] [19] [5] [5]
Feature plots [5] [5] [16] [5] [38]
Counterfactuals X [39] [5] [28] [28]
Prototypes [33] [19] [19] [5] [5]
Text generation [19] [13] [19] [13] [13]
Representation Synthesis [19] [33] [19] [5] [5]
Representation Visualizations [19] [19] [19] [5] [5]

4.4.3. Input Data Type

In this subsection, we discuss the categorisation of XAI on the basis of the input data
type. As can be seen in Table 2, for the input data type characteristic, most combinations
have been researched. We have identified three possible research directions and two
unfeasible research directions.

Table 2. Researched matrix on input data type, describing visual, textual, numeric (Num), categorical
(Cat), time-series (TS), and data-agnostic (DA) methods. “O” (open for research), or an “X” (currently
considered unfeasible).

Input Data Type

XAI Types Categories Visual Textual Num/Cat TS DA

Graphs [32] [32] [32] O [19]
Feature importance [35] [35] [16] [5] [16]
Heatmaps [35] [19] X [19] X
Rule-based explanators [13] [13] [16] [13] [16]
Decision Trees [19] [19] [16] [5] [16]
Disentanglement [19] [19] [19] [19] [19]
Feature plots [19] [19] [16] [19] O
Counterfactuals [28] [28] [40] [5] [28]
Prototypes [16] [19] [19] [19] [16]
Text generation [13] [13] [13] [13] O
Representation Synthesis [19] O [19] [19] [19]
Representation Visualizations [19] [19] [19] [19] [19]

Disregarding the few combinations currently deemed to be unfeasible, four combina-
tions are open for future research. Combinations that are deemed unfeasible to research are
detailed further in Section 4.4.6.

It is evident from Table 2 that visual and numerical data have gained much attention,
reflecting their wide spread use. Sequential data can be seen as a variant of these two
data types in the form of video and time series data. Although there exists some research
for sequential data, it is limited and requires more focus and attention from researchers.
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Especially, time series data, which require methods unique to their nature, present an open
area for research.

Data-agnostic methods are another interesting open research direction. Although data-
agnostic methods exists for most input types, these techniques require further refinement.
Also, there are clear research gaps to develop data-agnostic type methods for feature plots
and text generation. The final open direction in this area is representation synthesis-based
explanation methods for textual data.

4.4.4. Explanation Data Type

The explanation data type can often be deduced from the XAI categories. Consequently,
it is understandable that some research areas are currently seen as unfeasible, as can be seen
from Table 3. Certain combinations require innovative breakthroughs to become viable,
whereas others face inherent conflicts; for example, numerical/categorical explanations are
unsuitable for heatmaps, as heatmaps, by definition, represent visual data types.

While many combinations are currently infeasible, some avenues remain open for
research, particularly textual explanations for XAI types like prototypes, representation
synthesis, and visualizations (see Table 3). We emphasize again that just because a combi-
nation has been researched does not mean the exploration is complete. Often, the progress
in these areas is just beginning, leaving many questions open and necessitating further
investigation. Similarly, the existence of research must be taken with caution, since there
could be ongoing research that has not appeared in the used SLR and thus in this paper.

Table 3. Researched matrix on explanation data type, describing visual, textual, numeric (Num),
categorical (Cat), and rule-based explanations. “O” (open for research), or an “X” (currently consid-
ered unfeasible).

Explanation Data Type

XAI Types Categories Visual Textual Num/Cat Rules

Graphs [32] [32] [32] [5]
Feature importance [35] [35] [5] [5]
Heatmaps [35] X X X
Rule-based explanators [5] [5] [5] [5]
Decision Trees [5] X X [5]
Disentanglement [5] [5] [5] [5]
Feature plots [5] X X X
Counterfactuals [28] [28] [40] [5]
Prototypes [5] O [5] [5]
Text generation X [13] X X
Representation Synthesis [5] O [5] [5]
Representation Visualizations [5] O [5] [5]

4.4.5. Problem Type and Model Type

The final interesting set of combinations deals with the problem type and model types.
The results are provided in Table 4. Since most ML problems are broadly categorized as
either classification or regression problem, it is not surprising that three is existing research
for both categories. It would be interesting to focus on sub-tasks such as segmentation or
detection to enhance the problem type categories. With a finer granularity of problem type,
we can discover more open questions.

Similarly, the notion of black-box models gained more attention after the dawn of
deep learning models and lead to surge in XAI research (see, e.g., [41]). Naturally, there is
existing research for each of XAI type categories for (D)NN. However, it is an active area of
research and there are many directions that are open to research.

With the dawn of deep learning, the use of traditional ML techniques is declining.
However, for use cases wherein a limited data or computational resources are available,
these techniques are relevant. For tree-ensembles and SVM, there are multiple combinations
that are open to further research. Especially, the research can be interesting in the context
of SVM, which is a popular method of choice for ML with limited data (see, e.g., [42]). It
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is interesting that the combination of tree-ensembles and heatmaps is not explored yet,
although both are used widely in ML applications. During the review process of this paper,
we came across recent research that explored this combination (see [43]). Once more, the
existence of research does not imply the research area is closed. Instead, it indicates the
active nature of research in XAI. Finally, the model-agnostic representation synthesis is an
interesting open direction.

Table 4. Researched matrix on problem type and model type. Problem types include classification
(Class.) and regression (Regr.). Model types include (deep) neural networks ((D)NN), tree-ensembles
(TE), support vector machine (SVM), and model-agnostic (MA) models. “O” (open for research),
or an “X” (currently considered unfeasible).

Problem Type Model Type

XAI Types Categories Class. Regr. (D)NN TE SVM MA

Graphs [5] [32] [32] [44] [19] [33]
Feature importance [35] [5] [37] [37] [37] [37]
Heatmaps [38] [35] [35] O [19] [19]
Rule-based explanators [36] [5] [16] [16] [16] [16]
Decision Trees [5] [5] [16] [16] [38] [16]
Disentanglement [5] [19] [5] [19] [19] [19]
Feature plots [38] [5] [19] O O [16]
Counterfactuals [28] [28] [39] [39] [5] [5]
Prototypes [5] [33] [45] [19] [19] [19]
Text generation [13] [13] [13] [13] O [19]
Representation Synthesis [5] [5] [33] [19] O O
Representation Visualizations [5] [19] [19] O O [19]

4.4.6. Unfeasible Cells

In the above tables, some cells are labeled as “currently unfeasible to research”. We will
briefly explain why they are deemed impossible. Firstly, counterfactuals are by definition
generated after the model has made its prediction; therefore, the explanation method
“intrinsic explainability” is not an option.

Next, heatmaps and feature plots are by definition visual explanations. Therefore, all
cells with explanation data type “not visual” are deemed unfeasible. Furthermore, by our
definition, heatmaps cannot be used on tabular or data-agnostic input data.

There are some more combinations with the explanation data type which are deemed
unfeasible. Firstly, decision trees are by definition either visual or state the node rules of
the decision tree; therefore, textual and numerical or categorical explanations are deemed
impossible. Secondly, for methods in the “text generation” category, the explanation data
type needs to be “textual” by definition; hence, other combinations are deemed impossible.

5. Discussion

This section will discuss possible threats to the validity of this tertiary review. Further-
more, we provide some recommendations for future tertiary reviews based on limitations
that we encountered.

5.1. Future Research Directions

This review aims to provide a comprehensive overview of the current state of research
in explainable artificial intelligence (XAI), identifying key areas ripe for further investiga-
tion. Note that we have followed the matrix-based methodological approach where one
can assume that “If an XAI category on the vertical axis has not been matched with a set of
variables on the horizontal axis, it indicates a potential research gap to explore—unless it is
technically infeasible”, which may lead to the limited conclusion. Here, we would like to
highlight that the proposed combinations are not exhaustive, but they are a starting point
for an in-depth exploration direction.
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The gaps outlined in the tables of Section 4.4 guide our proposed research directions.
From the research grid presented in Section 4.4, one can easily identify 14 open research
directions and an equal number of combinations that are unfeasible for research.

We have used 12 XAI-type categorizations that span the current XAI research land-
scape. Future research should explore whether the given XAI type categorization is com-
plete. Since XAI is rapidly evolving, one can expect that the list of XAI type categories
will enlarge in the future. One noticeable opportunity for progress is developing visu-
alization methods that are accessible to non-experts. This need is echoed in the works
of [46,47], emphasizing the potential for making complex AI models more understandable
to a broader audience.

We observe a notable research gap in the utilization of various data types, particularly
time-series data, point cloud data, and other dynamic data forms. Time-series data, critical
in fields like finance, healthcare, and environmental studies, presents unique challenges
and opportunities for XAI. This is complemented by the emerging relevance of point cloud
data in sectors like autonomous vehicles and railway digital twins [48,49]. Time-series data
are currently actively researched (see, e.g., [43,50]), while point cloud data still need more
attention, though there are some attempt in this direction [51,52]. Expanding XAI research
to include these diverse data types, alongside unsupervised and semi-supervised learning
techniques, will broaden the scope and applicability of XAI methods.

An important aspect, as highlighted by [53,54], is the prevalent use of model-agnostic
methods that create local surrogate models. These methods need to be refined to more
accurately reflect the intricacies of the original “black box” models they are interpreting.
Improving the accuracy and reliability of these model-agnostic methods, especially in their
treatment of locality, is essential for the development of more transparent AI systems.

A pivotal direction for future research is enhancing the capabilities of existing XAI
methods. For instance, addressing the computational limitations of widely used techniques
like SHAP [55] is crucial. Research should focus on making these methods more computa-
tionally efficient and applicable for real-world industry scenarios. This enhancement will
ensure that existing techniques remain relevant and useful in rapidly evolving AI landscapes.

Despite theoretical advancements, a gap exists in the practical application of XAI methods
in industry. Future research must bridge this gap by refining XAI techniques to suit diverse
industrial needs, considering aspects such as computational efficiency, usability, and scalability.

While our review successfully navigates around the issues of double counting in
tertiary reviews, it primarily offers a binary overview of covered and uncovered topics in
XAI. An extension of this work through a quantitative analysis of the volume of research in
each identified gap could offer a more comprehensive understanding of the distribution
and depth of current research efforts in XAI.

5.2. Threats to Validity and Limitations

To perform a tertiary review on a field that has existed for roughly six years, various
assumptions are required, and certain limitations apply.

To conduct a comprehensive tertiary review, the choice of search query terms played a
crucial role. Initially, “meta-analysis review” was employed as the primary term for our
queries. However, upon reflection, the term “meta-review” may have been more inclusive,
potentially capturing a broader spectrum of existing literature. While this alternative could
have also increased the number of false positives, such instances could have been effectively
filtered out during the title and abstract screening stage. Adopting this approach may have
resulted in the inclusion of more relevant articles, thereby enriching our review.

A significant limitation we encountered was restricted access to some of the existing
literature. To counter this, we utilized the institutional access provided by the University
of Twente, which facilitated the collection of literature beyond what is openly accessible.
Despite these efforts, certain papers remained inaccessible in their entirety, leading to their
exclusion from our review. This restriction may have consequently narrowed the scope of
our analysis, impacting the comprehensiveness of our findings.
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Conducting a tertiary review inherently involves reliance on systematic literature
reviews of primary research, which adds a layer of abstraction to our conclusions. This
method means that our insights are indirectly shaped by the depth and interpretations
presented in these secondary sources. Such a reliance could introduce variations or potential
misinterpretations in our analysis, stemming from the methodologies, interpretations, and
selection bias used in both the primary studies and the systematic literature reviews.

5.3. Limitations

The presented methods and techniques are extracted from the published systematic
literature review; therefore, current state-of-the-art techniques could be missed from our
analysis. For example, the recent proposal that combines LIME and evolutionary algo-
rithms [56] is not included in our analysis because it has not yet been reported in any
systematic literature review.

Another limitation of our work is an absence of certain combinations in the matrices.
Due to the rapidly evolving nature of XAI, certain combinations may have been missed for
reasons such as their absence in the selected SLRs or because they were recently reported
in the literature and are therefore not part of the selected SLRs. Some examples are already
reported in Section 4.4, albeit not exhaustively. Therefore, possible research gaps should be
taken with caution.

We would like to emphasize an inherent limitation of tertiary reports, namely selection
bias (see, e.g., [57]), as they tend to include only studies that meet specific criteria or report
positive outcomes. Since a tertiary review is a meta study that extracts knowledge from
systematic reviews, the selection bias is potentially enhanced. This often results in missing
details from primary studies and an over-representation of successful or widely accepted
methods while excluding those that were less effective or industry-oriented.

In this paper, we consciously refrained from describing XAI methods in detail since
that would add more volume to the paper and there are other sources that describe them
much better. For a brief description of the most well-known techniques, we refer to the
chapter [58] and a detailed description can be found in the wonderful book by Molnar [27].

6. Conclusions

This comprehensive tertiary review systematically synthesized XAI methodologies,
distilling key characteristics and categorizing them into a grid framework. Our analysis of
40 systematic literature reviews from 1992 to 2023 has revealed significant gaps in the field,
particularly in under-researched areas of XAI characteristics and categories. We identified
14 open research directions and a similar number for research directions that are unfeasible
to research. These findings underscore the necessity for targeted research to bridge these
gaps, enriching the body of knowledge in XAI. Also, it emphasizes the need to further
refine the existing methods and develop new techniques for the other underdeveloped
areas in the XAI landscape. Furthermore, this study highlights the diverse nature of XAI
methods, ranging from intrinsic to post hoc explainability. The implications of our findings
are far-reaching, offering a road map for future research and development in XAI, which
is crucial for the advancement of transparent, accountable, and ethical AI systems. While
our study provides a foundational understanding of the current state of XAI research, it
also acknowledges its limitations, including potential selection biases and the scope of the
literature reviewed. This work serves as a call to action for the research community to
delve deeper into the unexplored territories of XAI, fostering innovation and progress in
this vital field.

In conclusion, the future of XAI research lies in its expansion to unexplored domains,
diversification of data types and methodologies, and the bridging of the gap between
theoretical research and practical, industry-oriented applications. This directional shift will
not only enrich the field of XAI but also ensure its relevance and applicability in solving
real-world problems.
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Appendix A. Quality Assessment Papers

Table A1. Full-text read articles with exclusion reason.

Article Included? Exclusion Reason

Haque et al. [59] ✓
Groen et al. [14] ✓
Chen et al. [60] ✓
Ahmed et al. [35] ✓
Loh et al. [61] ✓
Doh et al. [62] ✓
Okolo et al. [63] ✓
Yuan and Bertini [64] ✓
Adak et al. [37] ✗ Irrelevant
Hauser et al. [45] ✓
Chou et al. [28] ✓
Hakkoum et al. [65] ✓
European Commission [5] ✓
Nimmy et al. [66] ✓
Askr et al. [34] ✓
Rajabi and Etminani [44] ✓
Engelmann et al. [67] ✓
Giuste et al. [68] ✓
Vo et al. [69] ✗ Irrelevant
Li et al. [33] ✓
Salahuddin et al. [70] ✓
Tiddi and Schlobach [32] ✓
Nor et al. [71] ✗ Irrelevant
Vilone and Longo [72] ✓
Vilone and Longo [13] ✓
Antoniadi et al. [36] ✓
Wells and Bednarz [73] ✓
Darias et al. [40] ✓
Nazar et al. [74] ✓
Chakrobartty and El-Gayar [38] ✓
Chazette et al. [75] ✓
Alamri and Alharbi [76] ✓
Stepin et al. [77] ✓
Payrovnaziri et al. [78] ✓
Chatzimparmpas et al. [79] ✓
Grossberg [80] ✓
Kadam and Ahirrao [81] ✗ Does not introduce XAI methods
Cirqueira et al. [82] ✗ Does not introduce XAI methods
Naiseh et al. [83] ✓
Chromik and Schuessler [84] ✗ Does not introduce XAI methods
Anjomshoae et al. [85] ✓
Seeliger et al. [86] ✓
Neto et al. [87] ✗ Irrelevant
Saleem et al. [15] ✓
Emaminejad and Akhavian [88] ✗ Does not introduce XAI methods
Weber et al. [89] ✓
Siering et al. [90] ✗ Irrelevant
Heckler et al. [91] ✗ Irrelevant
Guidotti [39] ✓
Nunes and Jannach [92] ✗ Does not introduce XAI methods
Nauta et al. [19] ✓
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Appendix B. Backwards Snowballing

Table A2. Resulting articles from backwards snowballing, including references paper, based on title
and abstract screening.

Newly Found Article Referenced by

Guidotti et al. [16] Nauta et al. [19]
Adadi and Berrada [41] Nauta et al. [19]
Mary [93] Chazette et al. [75]
Linardatos et al. [94] Antoniadi et al. [36], Haque et al. [59], Nazar et al. [74]
Nunes and Jannach [92] Chazette et al. [75], Naiseh et al. [83], Nauta et al. [19]
Gulum et al. [95] Chen et al. [60], European Commission [5]
Salahuddin et al. [70] Chen et al. [60], Li et al. [33]
Verma et al. [96] Chou et al. [28], Darias et al. [40], Guidotti [39],

Salahuddin et al. [70], Yuan and Bertini [64]
Mueller et al. [97] Seeliger et al. [86]
Yang et al. [98] Groen et al. [14], Nazar et al. [74], Salahuddin et al. [70],

Weber et al. [89]

Anjomshoae et al. [85] Chazette et al. [75], Guidotti [39], Haque et al. [59],
Stepin et al. [77], Wells and Bednarz [73]

Barakat and Bradley [99] Hakkoum et al. [65]
Wells and Bednarz [73] Haque et al. [59]
Laato et al. [100] Haque et al. [59]
Gerlings et al. [101] Haque et al. [59]

Payrovnaziri et al. [78] European Commission [5], Loh et al. [61], Nazar et al. [74],
Weber et al. [89]

Lacave and Diez [102] European Commission [5], Vilone and Longo [72]

Vilone and Longo [103] European Commission [5], Vilone and Longo [13], Weber
et al. [89]

Alam and Mueller [104] Li et al. [33]
Antoniadi et al. [36] Li et al. [33], Weber et al. [89]
Fuhrman et al. [105] Li et al. [33]
Nazar et al. [74] Li et al. [33], Okolo et al. [63]
Joshi et al. [106] Nauta et al. [19]
Kulakova and Nieuwland [107] Stepin et al. [77]
Kulakova and Nieuwland [107] Vilone and Longo [13]
Minh et al. [108] Weber et al. [89]
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