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Abstract: Bayesian optimization due to its flexibility and sample efficiency has become a standard
approach for simulation optimization. To reduce this problem, one can resort to cheaper surrogates
of the objective function. Examples are ubiquitous, from protein engineering or material science to
tuning machine learning algorithms, where one could use a subset of the full training set or even a
smaller related dataset. Cheap information sources in the optimization scheme have been studied
in the literature as the multi-fidelity optimization problem. Of course, cheaper sources may hold
some promise toward tractability, but cheaper models offer an incomplete model inducing unknown
bias and epistemic uncertainty. In this manuscript, we are concerned with the discrete case, where
f (x, wi) is the value of the performance measure associated with the environmental condition wi and
p(wi) represents the relevance of the condition wi (i.e., the probability of occurrence or the fraction of
time this condition occurs). The main contribution of this paper is the proposal of a Gaussian-based
framework, called augmented Gaussian process (AGP), based on sparsification, originally proposed
for continuous functions and its generalization in this paper to stochastic optimization using different
risk profiles for combinatorial optimization. The AGP leverages sample and cost-efficient Bayesian
optimization (BO) of multiple information sources and supports a new acquisition function to select
the new source–location pair considering the cost of the source and the (location-dependent) model
discrepancy. An extensive set of computational results supports risk-aware optimization based on
CVaR (conditional value-at-risk). Computational experiments confirm the actual performance of
the MISO-AGP method and the hyperparameter optimization on benchmark functions and real-
world problems.

Keywords: Bayesian optimization; simulation; combinatorial optimization; value-at-risk; network
design; multi-fidelity; information sources

1. Introduction

Simulation-based optimization problems are usually black-box and computationally
expensive and have been receiving increasing attention for their relevance in ubiquitous
applications [1]. Bayesian optimization (BO), due to its flexibility and sample efficiency,
has become a standard approach for simulation optimization. The computational cost,
notwithstanding its sample efficiency, can still represent an obstacle to a wider diffusion.
To mitigate this problem, in many situations, one can resort to cheaper surrogates of the
objective function such as the output of a computer simulation. Examples are ubiqui-
tous, including experimental design in protein engineering or material science, where the
“ground truth” is given by a physical prototype as extremely expensive synthesis and char-
acterization of a new material in a laboratory. In other cases, sources of different fidelities
are given by the output of a partial differential equation solver using different discretization
parameters. Sources of different fidelities can be also exploited tuning machine learning

Mach. Learn. Knowl. Extr. 2024, 6, 2232–2247. https://doi.org/10.3390/make6040110 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6040110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-4187-4209
https://orcid.org/0000-0003-1431-576X
https://doi.org/10.3390/make6040110
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6040110?type=check_update&version=1


Mach. Learn. Knowl. Extr. 2024, 6 2233

algorithms. Rather than using the full dataset, one could use a smaller related dataset [2]
or terminate the training procedure early as in [3]. Cheap information sources in the op-
timization scheme have been studied in the literature as the multi-fidelity optimization
problem. Specific methods have been developed to leverage cheaper sources in more effi-
cient methods [4]. Of course, cheaper sources may hold some promise toward tractability,
but cheaper models offer an incomplete model inducing unknown bias and epistemic
uncertainty. Multi-fidelity optimization methods require that sources are hierarchical orga-
nized. This means that once a source has been queried at location x, no further knowledge
can be obtained querying any other source of lower fidelity at any location [5]. Moreover,
hierarchical source organization relies on the assumption that information sources are
unbiased, admitting only aleatoric uncertainty that must be independent across sources.

To overcome these limitations, the multi-fidelity setting was generalized under differ-
ent headings as multi-task BO [2], non-hierarchical multifidly [6], or multiple information
source BO [7,8]. In [9], it is shown how more cost-effective sources of information can
be integrated with more accurate, as in computational chemistry, in material discovery.
Another application of BO for material optimization is [10].

The above difficulties were first addressed in [11], which considered a single model
integrating the different information sources into a single model with relative discrepancies
between each source and the function to optimize depending on the location proposed
and change across the search space. Moreover, [8] introduces a general notion of location-
dependent model discrepancy to quantify the difference between each source and the
objective function. Under these general assumptions, sources are no longer necessarily
unbiased and allow for epistemic error.

Another feature of simulation-based optimization is that the evaluations of the objec-
tive functions are noisy (aleatoric or observational errors) and can be affected by uncertain
(epistemic) errors and model uncertainty. The usual solution considers as the objective func-
tion the sample average approximation (SAA), as is done in the cross-validation procedure
in machine learning. The reference problem is:

min
x∈X⊂Rd

F(x) (1)

Real-world optimization problems tend to have stochastic elements in the objective
function, the constraints, or the context of the problem. This is the case when querying the
objective functions requires the execution of a stochastic simulation model accounting for
different scenarios, but also the choice of a stochastic optimizer of the loss function or the
randomness in the initialization of the optimization algorithm.

A more general formulation considers the different sources of randomness synthetized
by a random variable w. Consequently, the objective function F(x) in (1) becomes a random
function F(x) = f (x, w), and the problem (1) becomes:

min
x∈X⊂Rd

∑
i

f (x, wi)p(wi) (2)

If F(x) is a performance metric of a system, this defines the optimization of the average
performance. In this manuscript, we are concerned with the discrete case where f (x, wi)
is the value of the performance measure associated with the environmental condition wi.
p(wi) represents the relevance of condition wi (i.e., the probability of occurrence or the
fraction of time this condition occurs).

This is for instance the case of optimal sensor placement in a network where the integer
variable x corresponds to the placement of a number of sensors over the nodes of a network,
while the environmental condition wi is the injection of a contaminant at a node and F(x)
is a performance score of the placement x to monitor the propagation process and detect
the detection/intrusion as early and effectively as possible. F(x) is the sample average
approximation of the detection time corresponding to x.
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A relevant limitation of SAA is that it is a risk-neutral measure, while infrastructure
networks like water, energy, or transport, among others, must weigh specifically the
downside risk. The networks considered in this paper use a different risk profile given by
value-at-risk (Var) and conditional VaR (CVaR), borrowed from financial analysis.

Among simulation optimization problems, combinatorial domains present challenges
due to the generalization of the Gaussian process to combinatorial structures and the
combinatorial optimization of the acquisition function. In this paper, the authors consider
a “naïve” solution given by a continuous embedding of a solution. A continuous relaxation
allows for an efficient optimization of the acquisition function, but it does not account for
the discretization needed before the next function evaluation.

The general objective of this paper is to propose a Gaussian-based framework, called
augmented Gaussian process (AGP), based on sparsification, originally proposed in [7],
for continuous functions, and to show that it can be generalized to stochastic optimization
using different risk profiles for combinatorial optimization. Some approaches to deal with
integer and categorical variables are analyzed in [12,13].

The AGP, used in [14] for fine-tuning the hyperparameters of a machine learning model
to optimize simultaneously accuracy and fairness while also reducing energy consumption,
is shown in this paper to provide a solution that can be generalized to simulation-based
combinatorial and network problems. The AGP leverages into sample and cost-efficient
BO over multiple information sources and supports a new acquisition function to select
the new source–location pair which combines the AGP confidence bound, the cost of the
source, and the (location-dependent) model discrepancy between the source-specific GP
and the AGP model.

An extensive set of computational results supports risk-aware optimization based on
CVaR. The multiple information source acquisition function avoids variance starvation,
premature convergence to local optima, as well as ill-conditioning in the GP training.

Computational experiments confirm the performances of the MISO-AGP (multiple
information source optimization through AGP) methods on both benchmark functions and
real-world problems.

1.1. Related Works

Multi-fidelity and multiple information source BO have been a thriving research
domain. Many approaches have been proposed and leveraged into effective algorithms
among which only a few are here commented. The case of unreliable information sources
is considered in [15], where a methodology is proposed which makes multi-fidelity BO
robust meaning that a theoretical guarantee is given to the effect that the addition of
an auxiliary information source will not lead to worse performance than “vanilla” BO.
Also, [16] proposes multi-fidelity BO with the acquisition function max-value entropy
search and analysis of a parallel version. A general framework for multi-fidelity BO
based on mutual information and the greedy strategy (namely, MF-MI-greedy) is proposed
in [17], specifically requiring that strict relations between the quality and the cost of a
lower fidelity function are likely to lead to sub-optimal experiment design and to limit their
practicality. Moreover, it is proposed that a simple notion of regret which incorporates the
cost of different fidelities and proves that (MF-MI-Greedy) achieves a low regret. Another
strategy for adaptive sampling of multi-fidelity GP is proposed in [18] to reduce predictive
uncertainty as well as the cost of the execution of the simulation runs.

The key approach proposed in this paper is the AGP [7], which proposes sparsifying
over multiple information sources. The strategy is to “augment” the observations of the high-
fidelity source with only the “reliable” ones coming from the cheaper sources, and to extend
the acquisition function to the selection among sources which can be considered reliable.

Furthermore, transfer learning as a tool for multi-fidelity optimization is addressed
in [19], which proposes an acquisition function based on across-task transferable max-value
entropy that balances the need to acquire information about the current task with the goal
of acquiring information transferable to future tasks. Also, [20] considers the effects of
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heterogeneous errors on multi-fidelity BO and proposes a method to learn a noise model
for each data source and leverage highly biased low-fidelity sources which are only locally
correlated with the high-fidelity source.

A seminal paper for BO on combinatorial structure is [21], which proposes an approx-
imate optimizer of the acquisition function to overcome the difficulty of many acquisition
functions to large combinatorial domains. Another approach is [22], which provides a wide
analysis of BO over combinatorial spaces and samples discrete variables upon continuous
relaxation. The surrogate model is a Bayesian neural network with Thompson sampling and
variational optimization of the acquisition function. An entirely different approach is based
on autoencoders and deep learning to generate high-dimensional discrete objects. Ref. [23]
uses the epistemic uncertainty of the decoder to guide the exploration of new points. The
algorithm proposed in [24] integrates deep metric learning and a variational autoencoder and
provides vanishing regret guarantees. Another approach for solving combinatorial problems
was proposed in [25], which introduces a new learning-to-search approach that employs a
combinatorial search over a combinatorial space where each discrete structure is represented
by discrete variables. Heuristics are used to select good starting spaces while machine learning
is adopted to improve global knowledge. A different approach was proposed in [26] based
on recent advances in submodular relaxation for solving binary quadratic programming.
The approach is inspired by parametrized submodular relaxation which makes it possible to
optimize efficiently the acquisition function via minimum graph cut algorithms.

In [27], a new approach based on Mercer features for combinatorial Bayesian opti-
mization is proposed, based on diffusion kernels and using Thompson sampling as an
acquisition function. Finally, the method proposed in [28] maps the structural information
of the combinatorial space into a corresponding latent space, where the optimization takes
place. The next candidate latent solution is decoded into a discrete one to evaluate it. The
superiority of the method, especially in small-data setting, is empirically proven.

BO has been applied to a wide set of problems. In this manuscript, we focused on
problems characterized by main features such as combinatorial search spaces of discrete
variables, simulation-based optimization with stochastic elements, and multiple infor-
mation sources. Several application domains fit into this framework. Optimal sensor
placement in networks, which will be considered in our experiments, is one application.
Other problems considered in the experiments are the combinatorial optimization binary
quadratic problems, and standard multi-fidelity benchmarks.

Epidemic scenarios also fit into the simulation optimization setting. Given a network of
interacting people, the problem is to choose a small set of people whose surveillance enables
the early detection of any disease outbreak when very few people are already infected. In the
domain of the web, bloggers publish posts and use hyperlinks to other content on the web.
We want to select a set of links to most of the stories that propagate in the blogosphere.

1.2. Our Contributions

The key contribution of this paper is a new decision-theoretic approach based on the
AGP for generating a single model on different information sources which can be used also
for combinatorial and network design problems. The proposed acquisition function, to
select the new source–location pair combines the AGP confidence bound, the cost of the
source, and the (location-dependent) model discrepancy between the source-specific GP
and the AGP. A genetic operator was also proposed for the optimization of the acquisition
function over combinatorial structures.

The focus of the proposed method was on simulation optimization models which
typically generate black-box expensive optimization problems. The risk profile of the
problem has been accounted for, in the case of network design, using the risk measures VaR
and CVaR. The multiple information source acquisition function avoids variance starvation,
premature convergence to local optima as well as ill-conditioning in the GP training.
Computational experiments confirm the actual performance of the MISO-AGP method for
hyperparameter optimization on benchmark functions and real-world problems.
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1.3. Organization of the Paper

The rest of the paper is organized as follows. Section 2 provides the background on
the GP-based BO. Section 3 summarizes the MISO-AGP framework initially proposed
in [7] for continuous optimization problems. Section 4 presents the structure of BoTorch
(https://botorch.org/, accessed on 4 October 2024). The standard reference library for BO in
which MISO-AGP was recently included https://github.com/pytorch/botorch/pull/2152,
accessed on 4 October 2024. Section 5 provides the computational results of MISO-AGP
applied to a binary quadratic programming problem from literature. Then, Section 6
regards the adoption of MISO-AGP for solving a real-world application, specifically the
optimal sensor placement in a water distribution network. Finally, Section 7 summarizes
concluding remarks, perspectives, and limitations.

2. Background
2.1. Gaussian Processes and Bayesian Optimization in Brief

BO is a sequential and sample-efficient algorithm for solving the global optimization
problem (1). Briefly, the basic BO algorithm consists of two components, a probabilistic
surrogate model approximating F(x), depending on the candidate solutions evaluated so
far, and an acquisition function whose optimization drives the identification of the next
candidate solution by dealing with the exploitation–exploration dilemma [29–31].

We refer to the most common setting, which uses a Gaussian process as probabilistic
surrogate model and the GP’s lower confidence bound (GP-LCB) as acquisition function.

Denote with X1:n =
{

x(i)
}

i=1,...,n
the candidate solutions evaluated so far, and with

y1:n =
{

F
(

x(i)
)}

i=1,..,n
the corresponding observed values of the objective function. The

GP’s equations related to the prediction of F(x), namely µ(x), and the square of the associ-
ated predictive uncertainty, with respect to the dataset D = (X1:n, y1:n), are:

µ(x) = k(x, X1:n) K−1 y1:n (3)

σ2(x) = k(x, x)− k(x, X1:n) K−1 k(X1:n, x) (4)

where k(x, x′) is a kernel function, k(x, X1:n) =
{

k
(

x, x(i)
)}

i=1:n
, and K is a n× n matrix with

entries Ki,j = k
(

x(i), x(j)
)

. The choice of kernel function implies structural assumptions on the
shape of µ(x) ≃ F(x), which is adjusted by tuning the kernel hyperparameter(s). In this paper, we
consider the kernel Matérn-5/2. Observations can be considered noisy, that is y(i) = F

(
x(i)

)
+ ε(i),

with ε(i) ∼ N
(
0, λ2), leading to replace K−1 with

[
K+ λ2I

]−1
in (3) and (4).

Finally, we also report the equation of the GP-LCB acquisition function, which com-
bines µ(x) and σ(x) =

√
σ2(x) to identify the next candidate solution:

GP-LCB(x) = µ(x)− β σ(x) (5)

The parameter β regulates the so-called uncertainty bonus and, consequently, the
trade-off between exploitation and exploration. In our experiments, we used β = 3.

2.2. Dealing with Integer Variables

When the problem contains some categorical or integer-valued variables the objective
function output of the GP cannot be evaluated at all potential input locations. A commonly
chosen solution, for instance followed in the BO in Spearmint (https://github.com/HIPS/
Spearmint, accessed on 4 October 2024) and suggested in BoTorch, is to optimize the acqui-
sition function assuming that all variables can take continuous values and subsequently
replace the continuous minimizer of the acquisition function by the closest integer. In this
paper, we propose a different approach in which the minimization of the acquisition is
performed directly over the integer variables.

https://botorch.org/
https://github.com/pytorch/botorch/pull/2152
https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
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We set up the discrete solutions as real-valued in the GP, while the optimization of the
acquisition function is performed in the combinatorial space, by considering the possible
(discrete) solutions only. This means that there is no need to modify the probabilistic
model (i.e., the AGP)or the acquisition function. The only required modification regards
the method used to optimize the acquisition function. Genetic algorithms (GA) were used.
The Pymoo implementation of GA was used to optimize the acquisition function. As GA’s
mutation operator, a standard bitflip mutation was used, while as a crossover operator, the
problem-specific operator previously and successfully proposed in [32], was used.

3. Multi-Information Source Optimization and Augmented Gaussian Processes
Multiple Information Source (Bayesian) Optimization

Assuming that we worked with S information sources, each identified by an index
s ∈ 1, . . . , S and having a different cost for evaluating a candidate solution x. For simplicity,
and without loss of generality, we assume that the sources are sorted by descending cost,
so that s = 1 denotes the ground truth. Then, denote with Ds =

{(
x(i), y(i)

)}
i=1,...,ns

the

current set of ns solutions and associated values collected on the information source s.
In the MISO framework, the goal is to solve (1) by using the cheaper information

sources to reduce the cost accumulated over the entire optimization process. The common
idea of the MISO approach is to model every source independently—through an indepen-
dent GP—and then combine them into a unique model. In this paper, we used one of the
most recent, promising, and efficient MISO approaches, namely MISO-AGP, which uses a
particular combination technique called augmented Gaussian process (AGP).

We summarize here the basics of the MISO-AGP method. Starting from all the obser-
vations collected on the ground truth, this dataset is augmented by including observations
from other information sources that can be considered reliable. Reliability is computed in
terms of the discrepancy between the GP modeling the ground truth and the GP modeling
the cheap source. The set of augmented locations, denoted with DAUG, is computed as
DAUG ← D1 ∪D , where D1 is the dataset of the observations on the ground truth and D is:

D = {(x, y) : ∃s : (x, y) ∈ Ds ∧ |µ1(x)− y| < mσ1(x)} (6)

In simpler terms, an observation (x, y) from a cheap source s ̸= 1 is considered reliable
and hence included into the augmented set DAUG if the difference between the prediction
on the ground truth—i.e., µ1(x)—and the value observed on the cheap source¯s—is lower
than m times the predictive uncertainty on the ground truth.

While the main differences between the AGP and the fusing-GPs method, initially
proposed for multiple information source optimization, were deeply addressed in [7], it
is useful here to also consider the differences with cokriging methods. Cokriging uses
covariance between two or more regionalized variables that are related, and it is a suitable
method to deal with GP-based modeling when the main variable of interest is sparse and,
on the contrary, related secondary information is abundant. The mutual spatial behavior of
the regionalized variables is also named co-regionalization. Cokriging requires the same
assumptions as kriging but entails a higher computational cost. Furthermore, cokriging
requires the computation of the spatial covariance model of the primary attribute (i.e.,
ground truth source), the spatial covariance model of the secondary attribute (i.e., the cheap
source), and the spatial cross-covariance model of primary and secondary attributes.

Figure 1 shows what the AGP looks like on the well-known Forrester problem considering
two sources.

To select the next source-solution pair to evaluate, denoted with (s′, x′), the MISO-AGP
approach uses a revised formulation of the GP-LCB, able to deal with multiple information
sources. Formally:

AGP-LCBs(x) =
ŷ+ − (µ̂(x)− β σ̂(x))
cs(1 + |µ̂(x)− µs(x)|)

(7)
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with ŷ+ the best function value observed among those in the current DAUG, and µ̂(x) and
σ̂(x) the prediction and associated uncertainty provided by the AGP.

Thus, AGP-LCB considers, for every information source s and every candidate solution
x, the most optimistic improvement with respect to ŷ+, penalized by both the source-
specific cost cs and the discrepancy between the predictions provided by the AGP and the
GP modeling the source s, that is |µ̂(x)− µs(x)|.
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Figure 1. Forrester function with ground truth (solid black line) and one cheap source (dashed black
line), along with two GPs (green and blue solid lines for predictive means and shaded areas for
predictive uncertainty) individually modeling the two sources depending on source-specific observa-
tions. Finally, the resulting.AGP model is depicted (orange solid line). Three out of four observations
from the cheap source are considered reliable and used to augment the set of observations on the
ground truth, leading to the AGP.

In Figure 2, we summarize the MISO-AGP approach into a flow chart. In the case of a
combinatorial problem, only the optimization of the acquisition function (7) is different.
Specifically, we used an evolutionary algorithm whose cross-over operator was designed
to guarantee feasibility of the solutions, as better detailed in the next section.
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4. The Software Environment
4.1. BoTorch and Competing Algorithms

This section introduces the implementation of MISO-AGP, and its acquisition function
based on GP-LCB for multi-information source problems. The key idea of the AGP is to fit
a GP model for each information source and augment the observations on the high-fidelity
source with those from cheaper sources which can be considered reliable.

The AGP implementation in BoTorch is based on the SingleTaskGP class. Each source
is implemented as an independent SingleTaskGP and all the reliable observations are used
to fit the SingleTaskGP representing the AGP, namely SingleTaskAugmentedGP. The AGP-
LCB implementation is based on the UpperConfidenceBound—by default BoTorch solves
maximization problem, so it uses GP_UCB. It is sufficient to solve maximization of −F(x)
to solve the minimization of F(x)—but it is penalized by the cost of the source and the
discrepancy between the source-specific GP and the AGP.

The competing algorithms considered in this paper are max-value entropy search
(MES) [33,34] and general-purpose information-based Bayesian optimization (GIBBON) [35].
Both use an information-theoretic perspective to select the next solution to evaluate and
the next information source. The key idea behind MES is to maximize the information
gain of the optimal function value. The multi-fidelity implementation, namely MF-MES,
considers the information gain over the optimal function value on the highest fidelity. The
multi-fidelity version MF-GIBBON is a lightweight version of the multi-fidelity MES and
uses a determinantal point process-based formulation to allow it to have a fully analyti-
cal expression.

4.2. Code Availability

To ensure reproducibility of experiments and results, we made our code and data
freely available at the following GitHub repository, where all the other technical details
and settings can be retrieved: https://github.com/andreaponti5/miso-bocs (accessed on 4
October 2024).

5. Test Problem: Binary Quadratic Programming

The MISO-AGP approach was compared against two state-of-the-art information-
based multi-fidelity approaches, whose implementations are available in the BoTorch
platform. As far as the MISO-AGP is concerned, all the GPs, including the AGP, use a
Matern 5/2 kernel. Moreover, to prevent over-reliance on the cheap information source, a
minimum number of evaluations on the ground truth was established.

Throughout the optimization process, if the threshold was violated, then the algorithm
was forced to evaluate the ground truth.

To mitigate the effect of randomness in the initialization of the three algorithms, five
independent runs were performed. For each run, the three algorithms shared the same set
of initial random solutions.

The objective in the binary quadratic programming problem was a quadratic function
with regularization.

F(x)− λ ∗ P(x) = xTQx− λ||x||1
where Q ∈ Rdxd is a random matrix with zero-mean Gaussian entries, multiplied elements-

wise by a matrix K ∈ Rdxd with entries Ki,j = e−(
i−j
Lc )

2

which decays smoothly away from
the diagonal at a rate determined by the correlation length.

According to the literature, we set d = 10, and sampled 50 independent realizations
for Q. Every algorithm was run 10 times on each instance for each realization of Q. The
tests were performed for the two cases: Lc = 10, λ = 0 and Lc = 100 and λ = 1. For the
cheaper source cost, we considered 50% and 10% of the high fidelity.

Experiment with λ = 0, Lc = 10, and cheap source’ cost: 50% of the ground truth’s cost.

As depicted in Figure 3, MISO-AGP achieves, on average, a lower best-seen value
(Figure 2 on the left) and a smaller accumulated query cost (Figure 2 on the right). Although

https://github.com/andreaponti5/miso-bocs
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the final best-seen of MISO-AGP was lower than the other two approaches, there was not a
statistically significant difference, as evaluated via a Wilcoxon test (p-value > 0.05). Further,
MISO-AGP is significantly more efficient than MF-MES and MF-GIBBON.
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Finally, MISO-AGP uses the ground truth in 79% of the total queries, against 25% for
MF-MES, and 20% for MF-GIBBON. This behavior is motivated by a relevant discrepancy
between the ground truth and the cheap source, leading the AGP to rely on the expensive
source instead of the cheap one. This is crucial because, contrary to other standard methods
for combining GPs (e.g., fusing GPs), the AGP discards cheap observations if the two
sources are—even locally—uncorrelated. This crucial property of the AGP model—at the
core of its design—was specifically and carefully addressed in [7].

Experiment with λ = 0, Lc = 10, and cheap source’ cost: 10% of the ground truth’s cost.

As depicted in Figure 4, MISO-AGP achieves, on average, a lower best-seen (on the
left) and a smaller accumulated query cost (on the right).
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In this case, MISO-AGP uses the ground truth in 91% of the total queries, against
29% for MF-MES and 20% for MF-GIBBON. It is important to remark that both MISO-
AGP and MF-MES have increased the number of queries on the ground truth, even if the
query cost of the cheap source decreased from 50% to 10% of the ground truth’s query
cost. Both the algorithms increased the number of queries on the cheap source in the first
iterations—due to its small cost—leading them to understand that it is poorly correlated
to the ground truth and, consequently rely only on the expensive source for most of the
remaining queries.

Experiment with λ = 1, Lc = 100, and cheap source’ cost: 50% of the ground truth’s cost.

For this specific experiment, MISO-AGP shows worse results than the other two
approaches, with a significantly larger value of the final best-seen (Wilcoxon test: against
MF-MES, p-value = 0.0143; against MF-GIBBON, p-value = 0.0141). However, the cumulated
runtime of MISO-AGP was still significantly lower than those of the other two methods, as
depicted in Figure 5.
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Anyway, MISO-AGP queried the ground truth in 83% of the iterations, against 31% for
MF-MES and 20% for MF-GIBBON. Again, MISO-AGP is more capable of understanding
that the two sources are—locally—poorly correlated.

Experiment with λ = 1, Lc = 100, and cheap source’ cost: 10% of the ground truth’s cost

As depicted in Figure 6, MISO-AGP, again, achieves on average a lower best-
seen value and at a lower accumulated query cost. Moreover, the final value of the
best-seen is significantly smaller than those provided by the other two approaches
(Wilcoxon test).

Finally, MISO-AGP uses the ground truth in 87% of the total queries (slightly increase
with respect to the previous experiment), against 33% for MF-MES and 20% for MF-GI. The
underlying motivation is the one already provided for the previous experiments.
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6. A Real-Life Application: Risk-Averse Optimal Sensor Placement in Water
Distribution Network
6.1. Conditional Value-at-Risk (CVaR)

CVaR is based on the value-at-risk (VaR), which is the maximum potential value of a
metric of interest, at a certain confidence level α. Formally:

P(Dx ≤ VaR) ≥ α (8)

where Dx is the distribution of the metric of interest with respect to a given solution x.
When the distribution Dx is discrete, VaR is easily computed as the q-quantile of the

distribution, with q = 1− α. A general framework for Bayesian quantile and expectile
optimization is established in [36]. A BO approach for CVaR is given [37], which received a
BoTorch implementation. An application of the CVaR metric to water distribution networks
was given in Naseridaze [38] using genetic algorithms.

Then, CVaR is the expected value of the metric of interest, given that it is beyond the
VaR. For discrete distributions, CVaR is computed as:

CVaR =
1

jVaR

jVaR

∑
j=1
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The optimal sensor placement 𝐱∗ is the one that optimizes the CVaR over all the con-

tamination events 𝒜1, so we wanted to solve the following problem: 

*
j (9)

where jVaR is the CVaR index, which is the position indicating the values exceeding the VaR
threshold, within the sorted samples
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*
1, . . . ,
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6.2. The Optimal Sensor Placement Problem

The optimal sensor problem (OSP) problem aims at selecting a subset of locations
where a fixed number of sensors are to be deployed to minimize an impact measure. There
is not a unique impact metric because the final choice strictly depends on the specific case.
Some examples of frequently used impact measures are (i) the time required to detect a
contamination (aka detection time), (ii) the amount of contaminated water consumed up
to the detection as well as the affected number of inhabitants, or (iii) the probability of
detecting a contamination.

In this paper, we consider the detection time, and more precisely the CVaR of the
detection times under a set of scenarios. We briefly introduce some required notation and
then present the formalization of the OSP problem.
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A water distribution network was modeled as a graph G = (V , E), where the node
set V contains junctions and consumption points, while the edge set E consists of all the
pipes connecting pairs of nodes.

A sensor placement is defined as a binary vector x ∈ {0, 1}|L|, where L ⊆ V is the
subset of nodes where sensors can be possibly deployed. Specifically, each component
of the vector x refers to a location in the set L, thus xi = 1 if a sensor is deployed at the
correspondent ith location, xi = 0 otherwise. The number of sensors to deploy is fixed in
advance as b.

Now, we introduce the stochastic component of the problem, which is the definition
of simulation scenarios referred to different contamination events. Specifically, a set of con-
tamination events is denoted with A ⊆ V , which is a subset of nodes where a contaminant
is, in turn, injected. Each contamination event requires a simulation run and, therefore,
is uniquely associated with a scenario. Thus, we referred to scenarios or contamination
events indifferently.

6.3. Combinatorial Multi-Information Source Optimization (MISO) for Risk-Averse Optimal
Sensor Placement

As far as the MISO setting was concerned, we used two sets of scenarios, that were,
respectively,A1 = V andA2 ⊂ A1 with |A2| = |A1|/2 = |V|/2. Consequently, computing
CVaR by using A1 (the higher fidelity source i.e., the ground truth) led to a sampling cost
twice as large as that required for computing CVaR on A2 (i.e., the cheaper source).

The optimal sensor placement x* is the one that optimizes the CVaR over all the
contamination events A1, so we wanted to solve the following problem:

x* = argmin
x∈{0,1}|L|

CVaR(x|A1 )

s.t.
∑

i=1,...,|L|
xi ≤ b

(10)

where CVaR(x|A1 ) denotes the conditional value-at-risk of the detection times observed
on the A1 scenarios under the deployment x.

Specifically, the detection time for one event is the lowest time needed to detect the
contamination through any of the sensors in the placement x. This leads to as many
detection times as the number of scenarios, and their distribution is used to compute
CVaR(x|A1 ).

Since we are considering a MISO setting, we wanted to solve (9) by generating a
sequence of solutions that also involves evaluations on the cheap source (i.e., uses the
scenario set A2), with the aim to converge to the optimum with a low cumulative cost.
Indeed, denote the sequence of generated solutions with

{(
s(1), x(1)

)
, . . . ,

(
s(n), x(n)

)}
,

then the generic s(j) can be s(j) = 1 if CVaR must be computed by usingA1 (i.e., the ground
truth, entailing a nominal cost 1) or s(j) = 2 if CVaR must be computed by using A2 (i.e.,
the cheap source, entailing a nominal cost 0.5).

Our Search Space is {0, 1}|L| × {1, 2}, where the first |L| dimensions refer to the
sensor placement x and the last dimension refers to the information source to use for
computing the objective function.

At a generic iteration of the MISO-AGP algorithm, the minimization of the acquisition
function (6) is performed under the following two constraints:

(x, s) ∈ {0, 1}|L| × {1, 2} and ∑|L|
i=1 xi ≤ b.

To solve this constrained combinatorial optimization problem, a Pymoo implementa-
tion of a genetic algorithm was used. As a mutation operator, a standard bitflip mutation
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was used with a probability of 1/|L|. As crossover operator, the problem specific operator
previously proposed in [32] was used.

It is briefly summarized here. Consider the example in Figure 7: Each offspring, O1
and O2, takes in turn a random sensor from each parent, P1 and P2, until no more sensors
are available. This strategy guarantees to produce feasible offspring when using feasible
parents, i.e., the offspring will have the same number of sensors as the parents.
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Figure 7. Example of the sensor placement crossover used. The parents P1 and P2 produces the
offspring O1 and O2. Colors are used to show from which parent each gene comes.

6.4. Numerical Results

A contamination event on each node was simulated using WNTR v1.1.0 (a Python
wrapper of EPANET, a water distribution network simulator). The simulations lasted
24 (simulated) hours and the contamination concentration in each node was registered
hourly. Sensors could be placed only on a subset of nodes L identified by sampling nodes
uniformly on their coordinates, to attain good coverage of the entire water distribution
network.

The network considered in the study was named Apulian, whose number of nodes is
1364. The number of allowed sensor locations was 63, and the number of sensors allowed
was set to b = 15.

In Figure 8, we report the best-seen value, which the is lowest CVaR value observed
so far, with respect to (top of the figure) the cumulative evaluation cost and (bottom of the
figure) the overall wall-clock time.
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The proposed MISO-AGP and MF-GIBBON were aligned in terms of performance,
while MF-MES results were slightly worse than the other two methods.

The main advantage of the proposed approach is the significantly lower standard
deviation over the different runs, making MISO-AGP a more robust framework than MF-
GIBBON and MF-MES. A drawback of MISO-AGP is the slightly higher wall-clock time.

7. Conclusions, Limitations, and Perspectives

We presented an extension of the basic BO algorithm to a distributionally aware,
constrained, and combinatorial multiple information source optimization setting.

The method proposes a new mechanism for generating a single model on the infor-
mation sources based on GP sparsification and a decision-theoretic approach based on
the MISO-AGP framework, initially and successfully tested on many test and real-world
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continuous optimization problems [7,14]. The extension to the combinatorial case was
quite straightforward, basically requiring modifying the way in which the MISO-AGP’s
acquisition function is optimized.

Specifically, the real world addressed in this paper is the optimal sensor placement in
water distribution networks, required to optimize the MISO-AGP’s acquisition function via
a genetic algorithm, whose cross-over operator was designed to address the feasibility of
the generated solutions, with respect to the combinatorial nature of the problem.

It is important to remark that, to account for risk measures that are non-neutral,
CVaR was considered as the objective function of the optimal sensor placement problem.
Computational experiments—also on a test problem from the literature—confirm the
previous results obtained on continuous optimization problems.

Examples of other combinatorial optimization problems which could benefit from
the approach proposed in this paper are epidemic source detection in contact tracing
networks [39] and fake news detection using a graph-based approach [40].

Although high-dimensionality is out-of-scope in our paper, authors are aware that the
scalability of MISO-AGP for high-dimensional problems is crucial. Fortunately, there are
many available GP-based methods for high-dimensional Bayesian optimization (HDBO),
such as TuRBO [41] and its recent extensions BAxUS [42] and BOUNCE [43], which are able
to perform scalable BO in high-dimensional spaces, directly working within the general GP-
based BO framework. Thus, equipping one of these algorithms with the AGP, with the aim
to target a MISO problem, would lead to a scalable MISO-AGP implementation. Moreover,
it is important to remark that the AGP is based on a GP sparsification technique (i.e., by
insertion of relevant observations), so the resulting AGP is fitted on a subset of all the
observations collected over all the information sources, leading to a lower computational
cost for training it, contrary to cokriging and fusing GPs methods.
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