
Citation: Li, Z.; Dib, O. Empowering

Brain Tumor Diagnosis through

Explainable Deep Learning. Mach.

Learn. Knowl. Extr. 2024, 6, 2248–2281.

https://doi.org/10.3390/

make6040111

Academic Editor: Luca Longo

Received: 7 August 2024

Revised: 26 September 2024

Accepted: 30 September 2024

Published: 7 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Empowering Brain Tumor Diagnosis through Explainable
Deep Learning
Zhengkun Li 1,2,3 and Omar Dib 1,2,3,*

1 Computer Science and Artificial Intelligence Center, Wenzhou-Kean University, 88 Daxue Rd, Ouhai,
Wenzhou 325060, China; lizheng@kean.edu

2 Department of Computer Science, Wenzhou-Kean University, 88 Daxue Rd, Ouhai, Wenzhou 325060, China
3 Department of Computer Science, Kean University, 1000 Morris Avenue, Union County, NJ 07083, USA
* Correspondence: odib@kean.edu

Abstract: Brain tumors are among the most lethal diseases, and early detection is crucial for improving
patient outcomes. Currently, magnetic resonance imaging (MRI) is the most effective method for
early brain tumor detection due to its superior imaging quality for soft tissues. However, manual
analysis of brain MRI scans is prone to errors, largely influenced by the radiologists’ experience and
fatigue. To address these challenges, computer-aided diagnosis (CAD) systems are more significant.
These advanced computer vision techniques such as deep learning provide accurate predictions
based on medical images, enhancing diagnostic precision and reliability. This paper presents a
novel CAD framework for multi-class brain tumor classification. The framework employs six pre-
trained deep learning models as the base and incorporates comprehensive data preprocessing and
augmentation strategies to enhance computational efficiency. To address issues related to transparency
and interpretability in deep learning models, Gradient-weighted Class Activation Mapping (Grad-
CAM) is utilized to visualize the decision-making processes involved in tumor classification from
MRI scans. Additionally, a user-friendly Brain Tumor Detection System has been developed using
Streamlit, demonstrating its practical applicability in real-world settings and providing a valuable
tool for clinicians. All simulation results are derived from a public benchmark dataset, showing that
the proposed framework achieves state-of-the-art performance, with accuracy approaching 99% in
ResNet-50, Xception, and InceptionV3 models.
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1. Introduction

A brain tumor arises from the proliferation of abnormal cells within the brain, which
can lead to damage to critical brain tissues and potentially progress to cancer [1]. According
to the American Cancer Society, an estimated 24,810 people are projected to be diagnosed
with malignant brain tumors in 2024, with 18,990 expected to die from the disease [2].
There are approximately 150 different types of brain tumors in humans, broadly classified
into benign and malignant tumors [3]. Benign tumors grow slowly and do not spread to
other tissues, posing less immediate danger compared to their malignant counterparts,
which are aggressive and can spread rapidly [4]. Among malignant brain tumors, the
most common types include Gliomas, Meningiomas, and Pituitary tumors [5]. Gliomas
originate from glial cells in the brain and are particularly destructive due to their rapid
growth. Meningiomas develop on the protective membranes covering the brain and spinal
cord, often leading to significant neurological symptoms as they expand [6]. Although
typically benign, Pituitary tumors arise in the Pituitary gland, which is crucial for hormone
production and can still cause severe health issues due to hormone imbalances and pressure
effects on nearby brain structures.

Magnetic resonance imaging (MRI) is the leading method used in clinical settings
for detecting brain tumors due to its ability to produce high-resolution images of soft
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tissues [7]. However, the manual analysis of brain MRIs requires extensive expertise and
experience, presenting inevitable challenges in avoiding misdiagnoses [8]. In recent years,
the importance of intelligent healthcare has grown significantly, driven by substantial
advancements in computer vision and natural language processing [9]. Computer-aided
diagnosis (CAD) systems exemplify this progress by offering swift and precise medical
image analysis, yielding consistent and reproducible results. These systems are highly
beneficial in the early and accurate diagnosis of brain tumors, crucial for optimizing
treatment outcomes [10].

By integrating deep learning with human expertise, the application of deep learning
in radiology enhances the capabilities of radiologists [11]. Accurate detection is crucial for
effective brain tumor treatment, and deep learning models offer a significant advantage in
expediting this process [12]. Despite its invasiveness and associated health risks, biopsy
remains the most precise method for identifying specific tumor types. Non-invasive
MRI-based techniques are increasingly reliable alternatives being developed. Machine
learning algorithms utilize MRI data to differentiate between various types of brain tumors.
Convolutional Neural Networks (CNNs) and their variants, such as Inception, Xception,
MobileNet, and EfficientNet, have effectively classified brain tumors using MRI data [13].

However, employing deep learning techniques for brain tumor classification poses
several challenges. Firstly, the computational cost of deep CNNs is substantial due to
their large number of parameters, often requiring long training times even with advanced
hardware [14]. Another significant challenge is the availability of data [15]. Deep CNN
models thrive on extensive labeled datasets [16,17], yet medical image labeling demands
specialized expertise, resulting in smaller datasets than standard computer vision tasks.
This scarcity of data can lead to overfitting when training deep CNNs on limited datasets.
Lastly, the morphological variability, complex tumor appearances in images, and irregular
lighting conditions pose additional challenges. Addressing these complexities requires ef-
fective techniques for brain tumor classification to support radiologists in making informed
decisions [18].

To address these challenges, this paper establishes a robust framework for the multi-
class classification of brain tumors using MRI scans, leveraging deep learning and transfer
learning techniques. The main contributions of this paper are outlined as follows:

• Established an efficient framework for multi-class brain tumor classification. This
framework is based on MRI scans and is designed to improve the accuracy and
efficiency of diagnosing different types of brain tumors.

• Developed and optimized multiple deep learning models. These models leverage
transfer learning, specifically fine-tuned for the Brain Tumor MRI Dataset, to utilize
pre-trained models for superior classification performance.

• Designed a Grad-CAM-based interpretability method. This method is used to visu-
alize decision pathways within deep learning models when predicting tumor types,
enhancing the understanding and trust in the model’s decision-making process.

• Engineered a practical Brain Tumor Detection System with Streamlit, emphasizing
improved user interaction and accessibility in medical diagnostics.

The remainder of this paper is organized as follows: Section 2 provides a compre-
hensive review of brain tumor diagnosis and treatment research. Section 3 outlines the
workflow of the proposed framework for brain tumor diagnosis, detailing the Brain Tumor
MRI Dataset, data partitioning, and image augmentation techniques. Section 4 discusses
the models’ architecture, transfer learning methods, and optimization strategies tailored
specifically to the Brain Tumor MRI Dataset. Section 5 presents the experimental setup,
results, visualization of decision pathways, real-world application, and comparisons with
state-of-the-art methods. Finally, Section 12 summarizes the findings and suggests future
research directions.
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2. Literature Review

Brain tumors exhibit significant variability in type and severity, influenced by factors
such as their location, size, and malignancy [19]. A comprehensive understanding of
these classifications is essential for developing effective treatment strategies and advancing
research in this field. This section provides a concise overview of recent advancements in
brain tumor classification using MRIs. Table 1 presents a comparative study of brain tumor
classification methods, highlighting selected recent studies. The table summarizes the
models employed, datasets (including database size and image types), types of classification
tasks, and the specific challenges addressed in each paper. This comparative analysis
aims to provide insights into current methodologies and their implications for improving
diagnostic accuracy and patient care.

Rajput et al. [13] (2024) introduced a diagnostic approach utilizing pre-trained CNN
models such as VGG19, InceptionV3, and ResNet-50 via transfer learning. These models
extracted features from MRI scans and were fine-tuned through fully connected layers for
multi-class tumor classification, achieving an average accuracy of 90%. However, a significant
limitation of their approach is the allocation of only 10% of the data for testing, which can
significantly compromise the testing process by not providing a representative sample of the
overall population. Additionally, prior knowledge about the test data can introduce bias,
affecting the evaluation’s integrity and undermining the method’s generalizability.

Wang et al. [20] (2024) presented RanMerFormer, a novel method for brain tumor clas-
sification. This framework utilizes a pre-trained vision transformer as its core model, incor-
porating a merging mechanism to enhance computational efficiency by reducing redundant
tokens. Additionally, a randomized vector functional link facilitates rapid model training. The
evaluation of two public benchmark datasets showcased RanMerFormer’s state-of-the-art per-
formance, indicating promising applications in real-world brain tumor diagnosis. Nonetheless,
the method is critiqued for its high computational requirements and system complexity.

Mehnatkesh et al. [21] (2023) proposed an advanced framework integrating deep
learning with evolutionary algorithms for brain tumor classification. Their approach
focuses on automatically designing efficient ResNet architectures using an optimization-
based strategy known as IACO-ResNet. This method optimizes both model architecture and
hyperparameters using differential evolution and multi-population operators to balance
solution diversity and convergence speed. A drawback noted is the time-consuming nature
of the optimization process.

Zhu et al. [22] (2023) introduced RBEBT, a novel model utilizing a fine-tuned ResNet-18
for feature extraction from brain tumor images. Unlike traditional CNNs, RBEBT employs
a randomized neural network for classification, optimized via the bat algorithm (BA).
However, criticism includes the lack of comparative analysis and the model’s restriction to
binary classification tasks.

Asif et al. [23] (2023) proposed a transfer learning model for multi-class brain tu-
mor classification using MRIs. They leveraged popular architectures such as Xception,
DenseNet201, DenseNet121, ResNet152V2, and InceptionResNetV2, augmented with a
dense block and softmax layer to enhance accuracy. Their study evaluated the model
through experiments on three-class and four-class classifications, demonstrating its effec-
tiveness. However, using single protocol T1W MRI data limits the model’s generalizability.

Sharma et al. [24] (2023) introduced a brain tumor detection method based on trans-
fer learning ResNet-50. Their approach involved modifying the ResNet-50 architecture by
removing its final layer and incorporating additional layers tailored to the specific task require-
ments. Performance evaluation indicated improved accuracy in brain cancer categorization.
Challenges included the lack of dataset availability and a focus on binary classification tasks.

Kumar et al. [25] (2023) presented a novel Convolutional Neural Network for classify-
ing brain tumors in MRI scans as benign or malignant using transfer learning. Their study
compared their proposed model with several existing pre-trained networks, highlighting its
potential. However, a drawback cited was the limited size of the dataset used for training
and evaluation.
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Table 1. A comparative study of brain tumor classification methods.

Author(s) and Year Models Dataset (DS) Classes of Tumors Total Images Classification Type Drawback

Rajput et al., 2024 [13] VGG19, InceptionV3,
ResNet-50 Brain tumor MRI dataset Glioma, Meningioma, Pituitary,

and No-tumor 7023 Multi-class
Small test set and

potential bias from test
data knowledge

Wang et al., 2024 [20] RanMerFormer Brain tumor MRI
dataset, Figshare dataset

DS1: Glioma, Meningioma,
Pituitary, and No-tumor DS2:

Glioma, Meningioma, and
Pituitary

DS1: 7023
DS2: 3064 Multi-class High computational

time, system complexity

Mehnatkesh et al., 2023 [21] IACO-ResNet Figshare dataset Glioma, Meningioma, and
Pituitary 3064 Multi-class Time-consuming

Zhu et al., 2023 [22] RBEBT Harvard Medical School
website

Normal brain, Cerebrovascular
disease, Neoplastic disease,
Degenerative disease, and

Infectious disease

Not described Binary Lack of comparative
analysis

Asif et al., 2023 [23] Xception
Brain Tumor

Classification (MRI),
Figshare dataset

DS1: Glioma, Meningioma,
Pituitary, and No-tumor DS2:

Glioma, Meningioma, and
Pituitary

DS1: 3264
DS2: 3064 Multi-class Used single protocol

T1W MRI data

Sharma et al., 2023 [24] ResNet-50 Kaggle dataset Benign, Malignant Not described Binary Unavailable dataset
Kumar et al., 2023 [25] ResNet-50 BMIBT dataset Benign, Malignant 159 Binary Small dataset
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This study presents a robust computer-aided diagnosis (CAD) framework for Brain
Tumor Classification. Based on their location, the model distinguishes between benign and
malignant tumors and classifies them into specific types, such as Glioma, Meningioma, and
Pituitary tumors. To address the challenge of limited brain tumor MRI datasets for training,
the comprehensive Brain Tumor MRI Dataset [26] was utilized, aggregating images from
Figshare, the SARTAJ dataset, and the Br35H dataset, totaling 7023 images—currently the
largest dataset available for such research.

Gradient-weighted Class Activation Mapping (Grad-CAM) was also employed in-
novatively to visualize decision pathways within deep learning models, enhancing inter-
pretability and transparency in model decision-making, which are often overlooked aspects
in prior studies. Additionally, a practical brain tumor diagnosis system was developed
using Streamlit, demonstrating its applicability in real-world settings. This system aims to
facilitate seamless engagement with medical professionals and enhance the integration of
deep learning technologies into clinical workflows. Additionally, comparative evaluations
with other models using the same datasets were conducted, addressing a gap in the current
literature where such comparative analyses are frequently absent.

3. Proposed Framework

The proposed framework is depicted in Figure 1, illustrating an abstract representa-
tion of the various steps for brain tumor classification using MRI scans. The methodology
encompasses several essential steps: Firstly, the Brain Tumor MRI Dataset, containing
Meningioma, Glioma, and Pituitary MRI scans, was obtained from freely accessible sources.
Subsequently, rigorous image preprocessing operations were applied to enhance data qual-
ity. Following this, the dataset underwent random partitioning into training, testing, and
validation sets, with exclusive application of image augmentation techniques to augment
the training images.

Next, this study employed six fine-tuned pre-trained models: VGG19, ResNet-50,
Xception, MobileNetV2, InceptionV3, and NASNetLarge. These models were chosen to
evaluate their efficacy in classifying various types of brain tumors. The CNN architectures
were initialized with pre-trained layers, and the final layers were adapted to accommodate
the specific image classes (Meningioma, Pituitary, and Glioma). The performance of the
proposed framework was assessed using standard metrics, including overall accuracy,
specificity, sensitivity, F1-score, and confusion matrix.

To enhance transparency and interpretability in the prediction process, Grad-CAM
was utilized to visualize the decision pathways of the models. This technique provided
insights into how the models made predictions based on MRI scans of brain tumors.

3.1. The Brain Tumor MRI Dataset

The Kaggle-sourced brain tumor MRI dataset represents an extensive resource, encom-
passing 7023 MRI scans. These images are classified into one of four categories: Glioma
tumors, Meningioma tumors, Pituitary tumors, and images where no tumor is present [26].
This classification structure is visually depicted in Figure 2, offering a clear overview of
the dataset’s composition. The dataset integrates images from Figshare, the SARTAJ, and
the Br35H datasets, ensuring a robust variety of MRI scans. The dataset is partitioned into
training and testing subsets. The training set comprises 1457 Pituitary, 1339 Meningioma,
1321 Glioma, and 1595 No-tumor images. Meanwhile, the testing set includes 300 Pituitary,
306 Meningioma, 300 Glioma, and 405 No-tumor images.
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Figure 1. The structure of the proposed framework for brain tumor classification.
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GliomaNo Tumor Meningioma Pituitary
Figure 2. Overview of the brain tumor MRI dataset.

3.2. Preprocessing Techniques for the Brain Tumor MRI Dataset

Effective image preprocessing is crucial in enhancing the performance of deep learning
models, particularly in medical imaging tasks. This study systematically applied several
preprocessing techniques to the Brain Tumor MRI Dataset to prepare the images for training
and improve model accuracy. The preprocessing steps include image cropping, noise
removal, colormap application, and resizing. Each step plays a significant role in refining
the images, ensuring that the learning algorithms can focus on the most relevant features
and standardizing the dataset for consistent input into the model.

3.2.1. Cropping the Images

The first step in preprocessing involves cropping the images. This step is crucial
for eliminating unwanted background noise that may be present in the raw MRI scans.
Background noise can include non-brain structures or artifacts that are irrelevant for tumor
detection. By cropping the images, the algorithm focuses solely on the brain region where
tumors are located, enhancing the accuracy of feature extraction. This isolation of the region
of interest (ROI) ensures that the model is not distracted by irrelevant parts of the image,
thereby improving the quality of the input data for the learning model.

Figure 3 illustrates the process of cropping a brain tumor MRI scan through four
distinct steps:

• Step 1: Obtain the Original Image. The first image displays the initial MRI scan,
capturing the entire head, including the brain and surrounding tissues.

• Step 2: Find the Biggest Contour. In the second image, the largest contour (blue
outline) is detected around the brain area, highlighting the primary object of interest.

• Step 3: Find the Extreme Points. The third image indicates the extreme points (red,
blue, green, and yellow dots) located on the edges of the brain, which are used for
cropping purposes.

• Step 4: Crop the Image. The final image shows a cropped MRI, focusing solely on the
brain region and excluding extraneous areas like hair and skin. This step results in a
concentrated view of the brain, facilitating subsequent processing and analysis tasks
for brain tumor detection and classification.

Figure 3. The cropping process of MRI scans.
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3.2.2. Noise Removal

After cropping, noise removal is performed using a bilateral filter. The bilateral filter
is particularly effective for MRI scans because it smooths the image while preserving edges
and fine details [27]. Unlike other filters that might blur important structures along with
noise, the bilateral filter considers spatial distance and intensity similarity between pixels.
This dual consideration allows the filter to reduce noise while maintaining the integrity
of the edges, which are crucial for identifying tumor boundaries. This step is important
because MRI scans can be acquired using different imaging protocols and parameters,
leading to varying noise levels. The bilateral filter ensures a consistent, high-quality image
by minimizing noise without losing important structural details.

3.2.3. Applying Colormap

The next step involves applying a colormap to the images. Colormap application en-
hances the interpretability of MRI scans by improving the contrast between different tissues
or structures within the brain. In grayscale MRI scans, subtle differences in tissue density or
type may not be easily distinguishable. A colormap can accentuate these differences, aiding
human observers and algorithms in detecting and classifying abnormalities. By mapping
pixel intensity values to colors, the colormap adds information highlighting critical features,
such as the distinction between tumor and non-tumor areas. This step is crucial in medical
imaging, where clear visualization of anatomical structures is essential for accurate diagnosis.

3.2.4. Resize

The final preprocessing step is resizing the images, which is essential for standardizing
the input size of the images fed into the learning model. Deep learning models, particularly
deep CNNs, require input images of a fixed size [28]. Resizing ensures that all images in
the dataset conform to this required size, facilitating consistent processing and analysis.
Standardizing the image size also reduces computational complexity and memory usage,
enabling more efficient model training. During resizing, care is taken to preserve the aspect
ratio of the images to avoid distortion, which could result in the loss of important features.
In this experiment, the images were resized to 200 × 200 pixels, except for NASNetLarge,
which required an input size of 331 × 331 pixels.

After all those techniques, the brain tumor MRI scans are obtained as depicted in Figure 4.
These preprocessing steps systematically refine the images, ensuring that relevant features
can be effectively focused on by the deep learning model. Unnecessary areas are removed
through cropping; clarity is enhanced by noise removal; visual representation is standardized
by applying a consistent colormap, and uniform input dimensions are ensured by resizing. This
process aims to optimize the dataset for improved model accuracy in medical imaging tasks.

Figure 4. The brain tumor MRI after preprocessing.
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3.3. Data Partitioning: Training, Validation, and Testing Sets

Splitting the dataset into distinct subsets for training, testing, and validation is a critical
step in ensuring the robustness and generalization of the model [29]. In this study, the
dataset was partitioned into three subsets: training, validation, and testing, as depicted in
Table 2.

The training subset, encompassing a substantial 5712 images, is pivotal for the model
to learn a broad spectrum of brain tumor variations. To further enhance the model’s
adaptability and mitigate overfitting, a subset—constituting 20% or 1143 images of the
initial training data—is designated as the validation set. This serves as an intermediary
checkpoint, allowing for the tuning of hyperparameters. It ensures that the model does
not merely memorize the training data but develops an understanding that is transferable
to novel instances. With the validation process iterating upon a subset, the remaining
4569 images within the training dataset continue to refine the model’s learning, reinforcing
its capacity to generalize across various cases.

In parallel, a distinct testing set comprising 1311 images remains entirely isolated
throughout the model’s development and training phases. Acting as the litmus test for
the model’s efficacy, this unseen dataset offers an impartial benchmark for assessing the
model’s proficiency in accurately categorizing brain tumor images into predefined classes.
Thus, the model’s performance on this test set serves as a critical indicator of its potential
in real-world applications, where its ability to handle previously unseen data is essential.

Table 2. The details and distribution of datasets.

Dataset Training Validation Testing

Glioma tumor 1060 261 300
Meningioma tumor 1072 267 306

Pituitary tumor 1158 299 300
No-tumor 1279 316 405

Total 4569 1143 1311

3.4. Image Augmentation

Medical image datasets are critically important yet inherently challenging due to several
key factors. Accurate labeling demands specialized expertise, as errors during annotation
can significantly impact model training and predictive accuracy. Moreover, stringent data
security measures are essential due to the sensitive nature of health information, limiting
dataset sharing and complicating the acquisition of adequate training data. Ethical and legal
considerations, including compliance with regulations like the Health Insurance Portabil-
ity and Accountability Act of 1996 (HIPAA), further complicate data handling and access
protocols, underscoring the complexity of managing medical image datasets.

Given these challenges, the limited size of medical image datasets poses a signifi-
cant hurdle. Effective utilization of image augmentation techniques becomes pivotal to
overcome this limitation [30]. ImageDataGenerator, provided by Keras, is a crucial tool
for augmenting datasets in real-time [31]. By applying diverse transformations such as
rotations, shifts, and flips to each image, this approach effectively expands the training
dataset. Such augmentation not only enhances model generalization but also helps mitigate
overfitting, especially when dealing with sparse training data. These techniques play
an instrumental role in improving the robustness and performance of machine learning
models trained on medical image datasets.

As depicted in Figure 5, a comparison of four sets of brain tumor MRI scans before
and after image augmentation is illustrated. The first row displays a random selection of
four images from the training set that have undergone preprocessing, as shown in Figure 4.
The second row presents the same images after applying image augmentation.
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Figure 5. The brain tumor MRI before and after augmentation. (a–d) correspond to the original
images, while (a’–d’) correspond to their augmented versions.

The experimental configuration included parameters: rotation_range = 10, width_shift_
range = 0.05, height_shift_range = 0.05, and horizontal_flip = True. The rotation_range controls
the random angle range for rotation applied to each image. Meanwhile, width_shift_range and
height_shift_range determine the images’ random horizontal and vertical shifts, respectively.
The horizontal_flip parameter decides whether each image is randomly flipped horizontally,
with a 50% probability.

It is crucial to emphasize that operations specified in ImageDataGenerator, such as
rotation, shift, and flip, are randomly applied to each image. Therefore, each batch of
generated images may exhibit variations. This stochastic process enhances the diversity of
the training dataset, thereby strengthening the model’s ability to generalize effectively.

4. Deep Learning Models: Design and Implementation
4.1. Convolutional Neural Networks (CNNs)

CNNs represent a pivotal deep learning architecture extensively applied in image
classification tasks, adept at automatically discerning patterns from raw image data with
minimal preprocessing. Over time, CNNs have advanced significantly, leveraging so-
phisticated techniques such as transfer learning through fine-tuning and layer freezing,
which have markedly elevated their performance beyond traditional machine learning
models [32]. Fundamentally, a CNN comprises three essential types of layers, each fulfilling
distinct roles within the network structure:

• Convolutional Layer: This applies various kernels to convolve across input images
or intermediate feature maps, generating diverse feature maps that capture different
facets of the input data’s spatial hierarchy.

• Pooling Layer: Typically situated post-convolutional layers serve to downsample
feature maps, effectively reducing spatial dimensions and network parameters. Com-
mon implementations include max-pooling and average-pooling functions, pivotal
for aggregating information while retaining critical features.

• Fully Connected Layer: It integrates network outputs into a vector of predefined
size, typically serving as the final step for classification tasks. However, its extensive
parameterization necessitates substantial computational resources during training.

Many adaptations and refinements have been introduced to customize the original
architecture of CNNs, aiming to achieve specialized learning outcomes and enhance per-
formance. These modifications have led to the development of various models, including
Inception, Xception, ResNet, and others. In this study, six deep learning models—VGG19,
InceptionV3, ResNet-50, Xception, MobileNetV2, and NASNetLarge—were selected for
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brain tumor classification using MRI scans. These models were chosen due to their proven
effectiveness and widespread use in image classification tasks. Their diverse architectures
and capabilities provide a comprehensive approach to assessing their effectiveness in the
specific task of brain tumor classification.

4.1.1. VGG19

VGG19 is renowned for its simplicity and efficiency in object recognition models.
It comprises 16 convolutional layers, each followed by pooling layers, and concludes
with 3 fully connected layers, totaling 20 million parameters. Despite its straightforward
architecture, VGG19 often surpasses other models in performance.

4.1.2. InceptionV3

InceptionV3 is a popular CNN architecture specifically designed for classification
tasks. It was developed by enhancing the Inception module and incorporates multiple
blocks of convolutional, pooling, and fully connected layers. Additionally, dropout layers
are employed to address overfitting concerns. InceptionV3 is structured with 42 layers
and a total parameter count of 21.8 million, making it a robust choice for various image
classification applications [33].

4.1.3. ResNet-50

ResNet, short for Residual Network, is a deep architecture renowned for its high
accuracy in image classification tasks. It achieved first place in the ILSVRC challenge in
2015 [34]. As depicted in Figure 6, ResNet-50, a variant of ResNet, comprises 49 convolu-
tional layers followed by a fully connected layer, totaling 23.6 million learnable parameters.
It addresses the issue of vanishing gradients effectively through the use of skip connections.
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Figure 6. The architecture of the ResNet-50 model.

4.1.4. Xception

Xception, a convolutional neural network (CNN) architecture introduced by Chollet
in 2017, integrates pointwise convolution and depthwise separable convolution [35]. It
comprises 71 layers organized into three main flows: the entry flow, the middle flow, and
the exit flow. Unlike conventional architectures, Xception adopts a unique approach where
convolution is not conducted across all channels simultaneously. This strategic modifica-
tion reduces interconnections and effectively reduces the total number of parameters to
approximately 21 million.

4.1.5. MobileNetV2

MobileNetV2 is distinguished by its efficient design, leveraging point-wise and depth-
wise convolution methods for accelerated processing. It further enhances efficiency through
residual connections between bottlenecks. The network initiates with a 32-filter convolu-
tional layer and integrates 19-filter bottleneck layers, optimizing its computational through-
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put while maintaining performance [36]. In total, MobileNetV2 comprises approximately
2.2 million parameters, striking a balance between computational efficiency and model
complexity. This makes it well-suited for applications requiring rapid inference and limited
computational resources.

4.1.6. NASNetLarge

NASNetLarge, a notable CNN architecture, stands out for its extensive scale and
complexity, designed for achieving high accuracy in image classification. With its massive
structure, NASNetLarge incorporates 88 convolutional layers and global average pooling
layers, totaling around 84.9 million learnable parameters [37]. This architecture emphasizes
neural architecture search techniques to optimize its design, enabling robust performance
across diverse datasets.

4.2. Leveraging Transfer Learning with Imagenet Pre-Training

As illustrated in Figure 7, this study leverages transfer learning by initializing the
training of models for brain tumor classification with pre-trained weights from the Ima-
geNet dataset. ImageNet is a large-scale visual recognition database encompassing over
14 million labeled high-resolution images across over 20,000 categories. It is primarily used
for training and evaluating computer vision models, especially for image classification
tasks [38].

ImageNet Dataset
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Pituitary
Notumor

Cat
Dog
.
.
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The Brain Tumor 
MRI Dataset

Convolution 
Layers

Convolution 
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Fully Connected 
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Fully Connected 
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Predicted Labels

Predicted Labels

Transfer Learning

Figure 7. The transfer learning process leveraging imagenet pre-training.

The pre-trained weights of ResNet-50 on ImageNet include weights of convolutional
layers, Batch Normalization parameters, and weights of fully connected layers. Initial-
izing the ResNet-50 model with these pre-trained weights imbues it with knowledge of
fundamental features such as edges, textures, and shapes. These features are not specific to
any particular dataset but are universally applicable to a wide range of images, including
medical images. For brain tumor classification, this initialization is crucial because it allows
the model to start from a point where it already understands basic visual patterns, which
significantly reduces the amount of training data and time needed.

Moreover, brain tumor datasets are often limited in size due to the challenges associ-
ated with collecting medical imaging data. Training a deep neural network like ResNet-50
from scratch on a small dataset can lead to overfitting, where the model performs well on
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training data but fails to generalize to new, unseen images. By using pre-trained weights,
the model can leverage the extensive learning conducted on the ImageNet dataset, provid-
ing a robust starting point that helps prevent overfitting and improves generalization.

This initialization accelerates the training process for specific image classification tasks
and generally achieves better performance compared to training a model from scratch.
In the context of brain tumor classification, it means the model can more quickly and
accurately differentiate between tumor types, contributing to more reliable diagnostic tools
and better patient outcomes. Thus, leveraging pre-trained weights from ImageNet is not
just a convenience but a necessity for effective and efficient model training in medical
imaging applications.

4.3. Optimizing Brain Tumor Classification: Training and Tuning Strategies

Hyperparameter tuning further enhances the model’s efficacy after pre-training from
the ImageNet dataset. These settings, determined before the training phase begins and not
derived from the data itself, profoundly impact the model’s performance, as illustrated in
Table 3. In the context of brain tumor classification, hyperparameter tuning is especially
crucial due to the complex and varied nature of medical imaging data.

Table 3. The configuration of hyperparameters for the selected models.

Hyperparameter Configuration

Learning Rate 1 × 10−4

Mini-Batch Size 32 Images
Maximum Epochs 25
Validation Fraction 20%
Dropout Probability 0.4

Optimization Algorithm Adam
Activation Function (Final Layer) Softmax

Loss Function Categorical Cross-Entropy

A prime example is the learning rate, set at 0.0001. This parameter governs the pace at
which the model adjusts its weights in pursuit of optimization, carefully balancing swift
convergence against the risk of overshooting the ideal solution. A well-chosen learning
rate ensures that the model learns efficiently, making steady progress towards lower error
rates without oscillating or diverging. In medical image classification, where accuracy is
paramount, fine-tuning the learning rate can make the difference between a good model
and an excellent one.

Another pivotal hyperparameter is the dropout probability, fixed at 0.4. This technique
serves as a form of regularization, fortifying the model’s resilience by randomly deactivating
a proportion of nodes during training sessions. This process prevents overfitting, which is
a significant concern in medical imaging due to the often limited availability of annotated
data. By ensuring that the model does not become too tailored to the training data, dropout
helps it generalize well to new, unseen data, thus improving its performance on real-
world tasks.

Additional hyperparameters, such as batch size and the number of epochs, also play
critical roles. In the experiments conducted, the batch size was set to 32 and the number of
epochs to 25. The batch size influences the stability of the training process and the model’s
generalization capability. Smaller batch sizes can introduce more noise during training,
potentially aiding in better generalization, whereas larger batch sizes tend to offer more
stable and faster training. The number of epochs determines how many times the model
cycles through the entire training dataset and needs careful selection to avoid underfitting
(too few epochs) or overfitting (too many epochs).

Moreover, in brain tumor classification, the choice of optimizer, activation functions,
and the architecture of additional layers added to the pre-trained model can all be fine-
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tuned to enhance performance. The Adam optimizer was used in the proposed framework,
as it offers better convergence properties for medical imaging tasks.

4.4. Performance Evaluation Metrics

To comprehensively assess the models’ performance in brain tumor classification,
several evaluation metrics were utilized. Confusion matrices (CM) provided insights into
model predictions, including true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). From the CM, essential metrics such as accuracy, precision, recall,
and F1-score were derived to evaluate different aspects of classification performance.

4.4.1. Accuracy

Accuracy measures the overall correctness of the model’s predictions, calculated as the
ratio of correct predictions to the total number of predictions (Equation (1)). In multi-class
brain tumor diagnosis, high accuracy indicates that the model is effective in correctly
classifying various tumor types. However, it may not fully capture performance, especially
in imbalanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

4.4.2. Precision

Precision evaluates the proportion of positive predictions that are actually correct
(Equation (2)). High precision is essential in reducing false positives, which can lead to
unnecessary tests and treatments. This is particularly important in medical contexts to
avoid misdiagnosing benign conditions as tumors.

Precision =
TP

TP + FP
(2)

4.4.3. Recall (Sensitivity)

Recall (or sensitivity) measures the model’s ability to correctly identify actual positive
cases (Equation (3)). High recall is crucial for detecting as many true tumor cases as possible,
particularly malignant ones, to ensure timely treatment and improve patient outcomes.

Recall =
TP

TP + FN
(3)

4.4.4. F1-Score

F1-score provides a balance between precision and recall by calculating their harmonic
mean (Equation (4)). This metric is particularly useful when there is a need to balance false
positives and false negatives, offering a more holistic view of model performance.

F1 =
2 × Precision × Recall

Precision + Recall
(4)

Additionally, the time required for the model to make predictions (inference time) was
measured to ensure real-time applicability. Training time was also recorded to evaluate the
efficiency of retraining models with new data, supporting both offline and online learning
paradigms for adaptive healthcare solutions.

4.5. Visualization of Model Decision-Making Process Using Grad-CAM

Deep neural models based on CNNs have revolutionized computer vision tasks,
achieving remarkable performance across various domains. However, their complexity
and lack of decomposability into intuitive components pose challenges in interpreting their
decisions. For brain tumor classification using deep learning models, interpretability and
transparency are crucial. Building trust in these intelligent systems requires models that
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can elucidate the reasoning behind their predictions. Transparent models provide insights
into why certain features are weighted more heavily in classification decisions, offering
clinicians and researchers a clearer understanding of how the model processes MRI scans
and distinguishes between different tumor types.

Grad-CAM (Gradient-weighted Class Activation Mapping) is a powerful class dis-
criminative localization technique that generates visual explanations for any CNN-based
network without necessitating architectural changes or re-training [39]. This method lever-
ages the gradient information flowing into the last convolutional layer of a CNN-based
deep learning model, assigning importance values to each neuron for a particular decision
of interest. By doing so, Grad-CAM highlights the regions of the input image that are most
influential in the model’s prediction.

Interpretable Gradient-weighted Class Activation Mapping (Grad-CAM) visualiza-
tions provide a window into the decision-making processes of deep learning models. For
example, when a model classifies an MRI scan as containing a Glioma, Grad-CAM can
highlight the specific areas of the scan that the model focused on to make this determina-
tion. These visual explanations are crucial as they reveal whether the model is accurately
identifying the tumor regions or if irrelevant features or artifacts are influencing it. By
examining these visualizations, clinicians can gain insights into the reliability and accu-
racy of the model’s predictions. This transparency is particularly important in medical
applications, where understanding the basis for a model’s decision can help in assessing its
trustworthiness and ensuring it aligns with clinical knowledge and expectations. Moreover,
Grad-CAM can aid in identifying potential shortcomings in the model, guiding further
refinement and improvement to enhance its diagnostic capabilities.

5. Experimental Study
5.1. Experimental Setup

The experiments were conducted on a Dell Precision 3660 Tower server (Dell Tech-
nologies, Round Rock, TX, USA) featuring a 13th Gen Intel Core i9-13900 CPU (16 cores,
2.40 GHz), 64 GB RAM, and an NVIDIA RTX A5000 GPU, running Windows 11. The
development environment utilized PyCharm v2024.2.3 for code editing and debugging,
Anaconda v2.6.2 for managing Python packages and environments, and Visual Studio
Code v1.93.1 for its versatility.

The machine learning pipeline was implemented using Python libraries such as Pandas
for data handling, Matplotlib for visualization, and Scikit-learn for machine learning tasks.
A comprehensive list of libraries and dependencies is available in the GitHub repository [40]
to ensure reproducibility.

The models selected for this study—ResNet-50, VGG19, InceptionV3, NASNetLarge,
MobileNetV2, and Xception—are well known for their effectiveness in image classification
and their suitability for transfer learning. Each model was trained with a standardized
set of hyperparameters (Table 3) to provide a consistent comparison for multi-class brain
tumor classification.

The experiments included an analysis of the impact of preprocessing and augmenta-
tion techniques on model performance. Models were evaluated using both original and
preprocessed datasets, with additional analysis on the effect of augmentation specifically
for the ResNet-50 model.

The model performance was assessed using the following metrics:

• Training and Validation Accuracy: to evaluate the model’s generalization ability.
• Training and Validation Loss: to track the convergence behavior.
• Confusion Matrices (CMs) on Test Set: to provide insights into prediction errors.
• Training Time: to assess computational efficiency.
• Number of Model Parameters: to gauge model complexity.
• Prediction Time: to evaluate suitability for real-time applications.



Mach. Learn. Knowl. Extr. 2024, 6 2263

To enhance model interpretability, Grad-CAM was used with the ResNet-50 model to
provide visual explanations for its predictions. This approach aids clinicians in interpreting
AI-based diagnostic results. The best-performing model was further compared with exist-
ing studies using the same dataset to highlight its strengths and suggest potential areas
for improvement.

5.2. Experimental Results

Table 4 summarizes the performance metrics of the different models, while Figure 8
illustrates their confusion matrices. A comparative analysis of the models indicates that
ResNet-50, Xception, and InceptionV3 are particularly effective for multi-class brain tumor
diagnosis, each achieving nearly 99% accuracy, precision, recall, and F1-scores across the
four brain tumor classes. Additionally, VGG19, MobileNetV2, and NASNetLarge also
demonstrate robust performance, with accuracy levels exceeding 95%.

Table 4. The comparison of different models in terms of different classification metrics.

Models Class Precision Recall F1-Score Accuracy

Glioma 0.84 0.99 0.91
ResNet-50 Meningioma 0.99 0.77 0.87

Without Augmentation No-tumor 0.94 0.99 0.96 93.14%
Pituitary 0.97 0.97 0.97

Weighted Avg 0.94 0.93 0.93

Glioma 0.96 0.92 0.94
Meningioma 0.96 0.91 0.93

MobileNetV2 No-tumor 0.99 0.98 0.99 95.15%
Pituitary 1 1 0.94

Weighted Avg 0.95 0.95 0.95

Glioma 0.97 0.94 0.95
Meningioma 0.93 0.99 0.96

VGG19 No-tumor 1 0.99 0.99 97.18%
Pituitary 0.99 0.97 0.98

Weighted Avg 0.97 0.97 0.97

Glioma 0.97 0.95 0.96
Meningioma 0.98 0.98 0.98

NASNetLarge No-tumor 0.96 0.99 0.98 97.56%
Pituitary 0.99 0.98 0.99

Weighted Avg 0.98 0.98 0.98

Glioma 0.98 0.99 0.98
Meningioma 0.98 0.97 0.98

InceptionV3 No-tumor 1 0.98 0.99 98.55%
Pituitary 0.99 0.99 0.99

Weighted Avg 0.99 0.99 0.99

Glioma 0.98 0.98 0.98
Meningioma 0.98 0.98 0.98

Xception No-tumor 0.99 0.99 0.99 98.63%
Pituitary 0.99 0.99 0.99

Weighted Avg 0.99 0.99 0.99
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Table 4. Cont.

Models Class Precision Recall F1-Score Accuracy

Glioma 0.98 0.98 0.98
Meningioma 0.97 0.98 0.98

ResNet-50 No-tumor 0.99 0.99 0.99 98.70%
Pituitary 1 0.99 1

Weighted Avg 0.99 0.99 0.99

glio
ma

men
ing

iom
a

no
_tu

mor

pit
uit

ary

Predicted label

glioma

meningioma

no_tumor

pituitary

Tr
ue

 la
be

l

295 5 0 0

2 301 3 0

4 1 400 0

0 2 0 298

Confusion matrix

0

50

100

150

200

250

300

350

400

(a) ResNet-50.
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(b) VGG19.
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(c) MobileNetV2.
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(d) InceptionV3.

Figure 8. Cont.
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(e) NASNetLarge.
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(f) Xception.

Figure 8. The confusion matrices for different models.

ResNet-50 has the lowest precision for Meningioma at 0.97. As shown in Figure 8a, out of
309 images predicted as Meningioma, 301 were correctly classified. Among the 8 misclassified
images, 5 were Glioma, 2 were Pituitary, and 1 was no-tumor. This high precision highlights
the model’s ability to effectively distinguish Meningioma from other tumor types despite its
slightly lower performance compared to other classes. InceptionV3 also demonstrates a recall
of 0.97 for Meningioma. Analyzing the confusion matrix in Figure 8d, out of 306 “Meningioma”
images, 298 were correctly classified. The primary reasons for misclassification were that 3
“Meningioma” images were incorrectly classified as “Glioma” and 4 as “No-tumor”. This
indicates robust performance, as the misclassifications are relatively few, highlighting the
model’s general capability to accurately classify these tumors.

Upon examining the confusion matrices for ResNet-50, Xception, and InceptionV3,
significant misclassifications were evident. Specifically, ResNet-50 inaccurately labeled
4 “No-tumor” images as “Glioma”, while Xception and InceptionV3 misclassified 4 and
3 such images, respectively. Figure 9 underscores that three “No-tumor” images were
consistently misdiagnosed as “Glioma” across all models, with InceptionV3 exclusively
misclassifying all “No-tumor” images as “Glioma” from these instances.

These misclassifications can be attributed to various factors. The complexity of these
models may limit their ability to capture intricate patterns in MRI scans effectively. Issues
like low resolution or blurry scans can impede accurate feature extraction, thereby affecting
classification precision. Additionally, artifacts or noise prevalent in MRI scans might
introduce confusion, challenging the models’ interpretation of image content. Furthermore,
discerning early-stage Glioma from MRI scans showing no tumors, which may present
minimal discernible differences, poses a notable challenge.

In Figure 10, the error analysis among ResNet-50, Xception, and InceptionV3 illus-
trates that each model made errors in 17, 18, and 19 images, respectively. Notably, a
significant portion of Xception’s and InceptionV3’s errors originated from the same images,
highlighting consistent performance trends for these two models on this dataset. This
overlap in error patterns can be attributed to the fact that Xception is an evolution of the
Inception architecture. Xception builds upon the Inception framework by incorporating
depthwise separable convolutions, which maintain a high degree of structural similarity
with InceptionV3. Consequently, the similarity in model construction explains why both
architectures exhibit comparable error patterns on the same images. Furthermore, six
images were misclassified by all three models, emphasizing common challenges across dif-
ferent model architectures. Further in-depth analysis is crucial to pinpoint specific reasons
behind these misdiagnoses, offering deeper insights and enabling effective mitigation of
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underlying issues. Such meticulous examination is pivotal for enhancing the accuracy of
model predictions in intricate tasks like multi-class brain tumor classification.
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Figure 9. Instances of no-tumor images misdiagnosed as Glioma on ResNet-50, Xception, and
InceptionV3 models.
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Figure 10. Error analysis among ResNet-50, Xception, and InceptionV3 models.

The convergence speed of ResNet-50, Xception, and InceptionV3 is prominently dis-
played in the accuracy and loss plots depicted in Figure 11. These models demonstrate
rapid stabilization, often achieving stability within fewer than five epochs. This swift
convergence suggests that these models require less training time, thereby potentially
reducing overall training costs and computational resources, which is particularly advanta-
geous for large-scale applications in brain tumor medical diagnostics. Conversely, VGG19
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exhibits slower convergence, typically taking 10 to 15 epochs to stabilize. This slower
convergence not only increases the demand for computational resources but also results in
lower accuracy compared the top-performing models.

(a) ResNet-50.
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(c) MobileNetV2.
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Figure 11. Cont.
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Figure 11. The accuracy and loss plots for different models.

MobileNetV2 and NASNetLarge display fluctuating trends in their training curves,
struggling to converge even after 25 epochs. This difficulty in achieving stability during
training correlates with their lower accuracy on the test set. These insights suggest that
these models may be less suitable for the precise demands of brain tumor classification due
to their instability during the training process.

6. Discussions
6.1. Relationship between Accuracy and the Number of Parameters for Different Models

Table 5 provides an overview of the relationship between model parameters, training
time, and accuracy for various models. MobileNetV2 stands out with its minimal 2.2 million
parameters and a swift training time of 101 min, achieving an accuracy exceeding 95%.
These attributes make it highly suitable for scenarios where computational resources and
time are limited, although its accuracy does not match the top-tier performance of more
complex models like ResNet-50 and Xception.

Table 5. Comparison of different models in terms of number of parameters.

Model Number of Parameters Training Time Accuracy
(Millions) (Minutes)

MobileNetV2 2.2 101 95.19%
VGG19 20 498 97.18%

Xception 20.8 217 98.63%
InceptionV3 21.8 104 98.55%
ResNet-50 23.6 162 98.70%

NASNetLarge 84.9 1188 97.56%

Conversely, NASNetLarge exhibits the highest complexity, with 84.9 million parame-
ters and a lengthy training time of 1188 min. While achieving an impressive accuracy of
97.56%, its substantial size poses challenges in terms of computational efficiency and over-
fitting risk, limiting its practicality in real-world applications that demand both efficiency
and robust generalization.

Figure 12 illustrates the performance of ResNet-50, Xception, and InceptionV3, each
equipped with slightly over 20 million parameters and achieving nearly 99% accuracy.
These models demonstrate a balance between complexity, training time, and performance,
showing reduced model complexity and shorter training times compared to NASNetLarge.
Specifically, InceptionV3 requires 104 min for training, which is comparable to MobileNetV2,
which takes 101 min. Despite this similarity in training time, InceptionV3 has a parameter
count that is ten times larger than that of MobileNetV2. This indicates that InceptionV3
not only achieves a performance level comparable to other high-performing models but
also manages to do so with a relatively efficient training duration. In contrast, Xception
completes training in 217 min, reflecting the additional computational complexity of its
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architecture. Thus, InceptionV3 demonstrates a notable advantage in training efficiency
relative to its parameter size and performance.
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Figure 12. The relationship between accuracy and the number of parameters across different models.

6.2. Comparison of the Prediction Time Across Different Models

The prediction time is a critical factor in the practical application of brain tumor
classification models. In a clinical setting, faster prediction times can lead to quicker
decision-making and improved patient outcomes. Models with shorter prediction times are
preferable for integration into medical imaging systems where real-time analysis is essential.

Table 6 summarizes the average, maximum, and minimum prediction times (in mil-
liseconds) for each model on the entire test set. The average prediction time stands out as
the most compelling and representative metric among these measurements.

Table 6. Comparison of different models in terms of prediction time (ms).

Model Min. Time (ms) Max. Time (ms) Avg. Time (ms)

MobileNetV2 37.4 199.3 40.6
InceptionV3 39.4 203.2 53.7

Xception 74 254.1 84.9
ResNet-50 76.5 249.1 90.1

VGG19 97.9 301.1 128.6
NASNetLarge 260 537.4 329

The number of parameters in a model directly impacts its prediction time. Mo-
bileNetV2, with a minimal parameter count of 2.2 million, exemplifies the benefits of a
lightweight model in terms of speed. It achieves the shortest average prediction time
of 40.6 ms and maintains an accuracy of 95.15%. This efficiency is due to its reduced
model complexity, which significantly shortens prediction time. Such characteristics make
MobileNetV2 highly suitable for applications where quick predictions are crucial, such as
real-time diagnostics.
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On the other end of the spectrum, NASNetLarge exhibits the longest average pre-
diction time of 329 ms, even surpassing the maximum prediction times of the other five
models, despite achieving an accuracy of 97.56%. The extensive parameters of NASNet-
Large contribute to its substantial complexity and size, thereby significantly increasing
the prediction time. While a high number of parameters can potentially enhance model
accuracy by capturing more complex patterns, it also results in heightened computational
demands and slower inference times. This trade-off is evident in NASNetLarge, which,
despite its high accuracy, is less suitable for real-time applications due to its considerable
prediction time.

From Figure 13, it is evident that InceptionV3 exhibits superior average prediction
times compared to the other two best-performing models, ResNet-50 and Xception. When
their prediction accuracies are similar, InceptionV3 achieves an average prediction time of
only 53.5 ms, whereas Xception averages 84.9 ms, and ResNet-50 averages 90.1 ms. These
models demonstrate that high performance can be achieved without excessively increasing
prediction times, making them well-suited for practical deployment in medical imaging
applications. Their balanced combination of accuracy and efficiency is crucial for real-time
diagnosis and decision-making processes in clinical settings.
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Figure 13. The relationship between the accuracy and the average prediction time in different models.

6.3. Impact of Image Preprocessing

As illustrated in Figure 14, the experiment compared the classification accuracy of
various models on both the original and preprocessed test sets, revealing significant im-
provements after preprocessing steps like cropping and noise removal. On average, these
techniques enhanced accuracy by around 10%. Notably, MobileNetV2 showed a substantial
increase from 72.08% to 95.19% after preprocessing, marking a notable 23% improvement.

MobileNetV2, known for its lightweight architecture with just 2.2 million param-
eters, initially struggles to extract crucial features from raw datasets, often affected by
background noise. However, preprocessing enhances data quality by isolating the brain
region and removing noise, significantly improving the model’s ability to capture essential
information accurately.
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In contrast, NASNetLarge demonstrated nearly identical performance on both datasets
depicted in Figure 14. This consistency can be attributed to NASNetLarge’s robust archi-
tecture, boasting over 80 million parameters, which allows it to extract critical features
effectively from raw data, showcasing its strong learning capabilities. However, it is es-
sential to consider that NASNetLarge requires significantly longer training and prediction
times compared to other models, which is a critical factor in practical applications where
computational efficiency is paramount.
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Figure 14. The comparison of the classification accuracy of the proposed models on the original and
preprocessed dataset.

6.4. Impact of Image Augmentation

Figure 15 displays the confusion matrix, and Figure 16 shows the accuracy and loss
plot for ResNet-50 without image augmentation. The accuracy of the ResNet-50 model
without image augmentation is 93.14%, compared to 98.70% with image augmentation.
This significant increase in accuracy with augmentation highlights the effectiveness of the
applied augmentation techniques in enhancing the model’s performance for multi-class
brain tumor diagnosis.

The recall of ResNet-50 without image augmentation for Glioma is only 0.84, the
lowest among the four classes. As shown in Figure 15, for the ResNet-50 model, out
of 353 images classified as Glioma, 297 were correctly classified, while 45 Meningioma
images were misclassified as Glioma. The precision for Meningioma in the ResNet-50
model without image augmentation is the lowest among the four classes, at only 0.77. Out
of 306 Meningioma images, only 235 were correctly identified, with 45 misclassified as
Glioma, 18 as No-tumor, and 8 as Pituitary. This demonstrates that the primary reason for
the poor performance of the ResNet-50 model without image augmentation is its inability
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to accurately identify Meningioma, leading to a large number of Meningioma images being
misclassified into other categories.

This analysis highlights the critical role of image augmentation in improving the
model’s recognition accuracy. The augmentation techniques not only enhance the overall
accuracy of the model but also significantly improve its ability to correctly classify chal-
lenging cases, such as Meningioma and Glioma. The robust performance of ResNet-50,
Xception, and InceptionV3 with augmentation underscores the importance of employing
such techniques in training effective multi-class brain tumor diagnosis models.
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Figure 15. The confusion matrix of ResNet-50 without image augmentation.

Figure 16. The accuracy and loss plot of ResNet-50 without image augmentation.

7. Visualization of Decision Pathways in Deep Learning Models

Figure 17 depicts the Visualization of Brain Tumor Classification in ResNet-50. A
representative MRI scan of a Meningioma tumor was selected, as depicted in Figure 17a.
The image highlights a prominent white region on the right side of the MRI scan, which
indicates the presence of the Meningioma tumor. Figure 17b–f display the final heatmap
outputs from each stage of ResNet, respectively. It is noticeable that the color intensity
increases gradually in the tumor region and decreases in unrelated areas, illustrating the
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dynamic process that explains the decision-making process of the ResNet-50 model and
the basis for its final decision. This visualization not only aids in understanding how the
model identifies and distinguishes tumor regions but also provides valuable insights into
the features influencing its predictions.

(a) Original MRI scan. (b) Heatmap from Stage 1. (c) Heatmap from Stage 2.

(d) Heatmap from Stage 3. (e) Heatmap from Stage 4. (f) Final Heatmap.

Figure 17. The Grad-CAM visualization of ResNet-50 decision pathways in brain tumor classification.

Figure 18 includes three correctly classified Glioma images alongside three No-tumor
MRI scans that were misclassified as Glioma, as discussed earlier. Grad-CAM was used
to elucidate the decision-making process of ResNet-50. As observed, when predicting
Glioma, ResNet-50 focuses on the cranial edge of the brain MRI, a similar pattern to the
Glioma heatmap. Similarly, the three misclassified No-tumor images also exhibit focus
around the cranial edges, resembling the Glioma heatmap. This explains why the model
misclassified these three no-tumor images as Glioma. Further analysis of MRI scans reveals
significant similarity between some No-tumor and Glioma MRI scans, contributing to their
misclassification across multiple models.

The application of Grad-CAM in brain tumor detection offers invaluable benefits
to clinical settings by enhancing the transparency and interpretability of AI models. By
visually highlighting the specific regions within MRI scans that influence the model’s
predictions, Grad-CAM enables clinicians to thoroughly validate and comprehend the AI’s
diagnostic decisions. This capability improves the accuracy of brain tumor classification
and lays the foundation for developing more resilient and dependable diagnostic systems.
In practice, the detailed visual explanations provided by Grad-CAM empower healthcare
professionals to make informed treatment decisions based on AI-driven insights. By
understanding which features the model prioritizes in identifying tumor characteristics,
clinicians can confidently integrate AI predictions into their diagnostic workflows. This
integration streamlines the diagnostic process and ensures that patients receive timely and
accurate assessments, potentially leading to earlier detection and intervention. Moreover,
Grad-CAM’s ability to generate interpretable visualizations fosters trust in AI technologies
among healthcare providers and patients alike. By elucidating the reasoning behind AI
predictions in a clear and accessible manner, Grad-CAM facilitates collaborative decision-
making and enhances the overall efficacy of medical teams.
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(a) Glioma. (b) Glioma. (c) Glioma.

(d) Misclassified No-tumor. (e) Misclassified No-tumor. (f) Misclassified No-tumor.

Figure 18. The comparison of Glioma and misclassified No-tumor MRI heatmaps.

8. Proposed Application for Real-World Brain Tumor Detection System

A Brain Tumor Detection System has been developed using Python and Streamlit and
is available in the GitHub repository (Zhengkun, 2024, [40]). This system is specifically
designed to classify brain tumors into three types—Meningioma, Glioma, and Pituitary
tumors—and distinguish normal cases (no tumor) based on MRI scans. The primary
objective of this system is to assist clinicians by providing visualizations of the decision
pathways taken by the deep learning model.

This interactive platform not only facilitates precise tumor classification but also offers
deep insights into the decision-making process of the AI model. By integrating sophisti-
cated AI capabilities with intuitive visualization tools, the system empowers healthcare
professionals to make well-informed diagnostic decisions based on AI-driven insights.

In real-world applications, this system is a crucial decision-making tool for doctors and
healthcare teams. When a doctor uploads an MRI scan of a suspected tumor to the “Disease
Recognition” page (refer to Figure 19), the system begins its analysis using advanced
algorithms trained to classify various brain tumors accurately—such as Meningioma,
Glioma, and Pituitary tumors—alongside distinguishing cases with no tumors. Upon
clicking the “Predict” button, the system rapidly processes the image, giving the doctor
detailed prediction results and confidence scores.

Moreover, the system generates visualizations illustrating the rationale behind the AI
model’s decision. These visual aids show which regions of the MRI scan were critical in
determining the tumor classification. This capability enhances the doctor’s understand-
ing of the AI’s assessment and facilitates collaborative decision-making among multiple
healthcare professionals.

By enabling doctors to interact with AI-driven insights in a transparent and compre-
hensible manner, this platform supports collaborative efforts in clinical settings. Multiple
doctors can review the same visualizations and prediction results, share insights, and
collectively determine the most appropriate treatment strategies for their patients. This col-
laborative approach not only improves diagnostic accuracy but also ensures that treatment
decisions are well-informed and based on the combined expertise of the healthcare team.
Thus, the system is pivotal in enhancing diagnostic precision and patient care outcomes in
clinical practice.
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Figure 19. The proposed web-based interactive application for real-world brain tumor detection.

9. Comparison with Existing Approaches

The results presented in Table 7 provide a comprehensive comparative analysis of
the best outcomes from five referenced studies alongside this study’s results. Each study
utilized the same Brain Tumor MRI Dataset to ensure consistency and reliability in the
comparison. The performance metrics reported for the five referenced papers reflect their
results on the entire test set, encompassing various evaluation criteria such as accuracy,
precision, recall, and F1-score. This thorough comparison highlights the strengths and
weaknesses of each approach, offering valuable insights into the effectiveness of different
deep-learning models for brain tumor classification using MRI scans.

Alnemr et al. [41] (2021) employed a modified pre-trained ResNet152V2 model with
data augmentation techniques to classify brain tumors using MRI scans, achieving an
overall accuracy of 98.9%. However, this paper lacks specific experimental data, such as
precision, recall, and F1-score, and does not provide details on the experimental setup.
Additionally, the absence of source code makes the results difficult to replicate, undermining
the credibility of the findings.
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Table 7. A comparative analysis of the best model with state-of-the-art models using the same dataset.

Author(s) and Year Models Precision Recall F1-Score Accuracy Training Time
(Minutes)

Average Inference
Time (ms)

Alnemr et al., 2021 [41] ResNet152V2 - - - 98.9% - -

Rauf et al., 2022 [42] DCST + SVM 0.978 0.966 0.972 97.71%
(binary) - -

Gómez-Guzmán et al.,
2023 [43] InceptionV3 0.9797 0.9659 0.9727 97.12% 323 -

Özkaraça et al., 2023 [44] Dense CNN 0.96 0.965 0.96 94%-97% - -

Shilaskar et al., 2023 [45] HOG-XG Boost 0.9207 0.9182 0.9185 92.02% - -

Rasheed et al., 2023 [46] Improved
CNN 0.9785 0.9785 0.979 97.84% - 830

Celik et al., 2023 [47] CNN+KNN 0.97 0.97 0.97 97.15% 67 -

Proposed method Modified
ResNet-50 0.99 0.99 0.99 98.7% 162 90.1

Rauf et al. [42] (2022) utilized the Discrete Cosine-based Stockwell Transform (DCST)
for feature extraction and a Support Vector Machine (SVM) for binary classification of brain
MRI scans into tumor and non-tumor categories, achieving an accuracy of 97.71%. Despite
addressing a binary classification problem with images of various brain tumor types, this
study does not delve into specific tumor subtype classification.

Gómez-Guzmán et al. [43] (2023) evaluated seven deep convolutional neural network
(CNN) models, achieving the highest accuracy of 97.12% with the InceptionV3 model.
However, this study lacks a comparative analysis of experimental results on the same
dataset and does not provide source code, limiting reproducibility. Our experiments using
similar models like ResNet-50, InceptionV3, and Xception consistently achieved higher
accuracies, showcasing the robustness and superiority of our framework employed.

Özkaraça et al. [44] (2023) developed a new modular deep learning model incorporat-
ing DenseNet, VGG16, and basic CNN architectures for brain MRI classification, achieving
improved performance but with increased processing time. Their model achieved an
accuracy of 94%, which is lower than our worst-performing model, MobileNetV2, demon-
strating the potential for enhancement compared to other models.

Shilaskar et al. [45] (2023) employed MRI-based preprocessing, HOG feature extraction,
and various ML classifiers, including SVM, Gradient Boost, KNN, XG Boost, and Logistic
Regression, achieving up to 92.02% accuracy in brain tumor classification. However, this
study achieved a maximum accuracy of 92%, indicating a noticeable gap compared to other
studies in the field.

In terms of inference time, Table 7 demonstrates that our method achieves superior
performance compared to the approach proposed by Rasheed et al. (2023) [46]. The
primary reason for this advantage is that their method relies extensively on pre-processing
techniques, which introduce additional overhead and delay during the inference phase.
In contrast, our approach minimizes such dependencies, resulting in a more efficient
inference process.

Regarding training time, a direct comparison with other works is not feasible due to
several factors. First, many prior studies, including Rasheed et al., do not comprehensively
report training times. Second, discrepancies in computational environments and hardware
configurations across studies make it challenging to draw meaningful comparisons. As
such, the reported results for training time remain non-comparable.

This research employs advanced methodologies, including data preprocessing, hyper-
parameter optimization, image augmentation, and Grad-CAM, utilizing models such as
ResNet-50, Xception, and InceptionV3, among others, to achieve outstanding performance
in brain tumor classification. The models ResNet-50, Xception, and InceptionV3 achieved
remarkable accuracies approaching 99%. These results highlight the robustness and relia-
bility of the framework in handling diverse brain tumor types, which is crucial for precise
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diagnostics and treatment planning. Moreover, to address the lack of interpretability and
transparency in deep learning models, Grad-CAM was employed to visualize the decision
pathways of the models. This method addresses a significant research gap by providing
insights into the decision-making process involved in using MRI scans for brain tumor
prediction. Additionally, a practical Brain Tumor Detection System was developed using
Streamlit, which enhances user interaction and accessibility in medical diagnostics, thereby
demonstrating its potential for real-world applications.

10. Project Reproducibility

Ensuring project reproducibility is of paramount importance for scientific integrity. To
facilitate this, we have made the complete source code of our project publicly available on
GitHub. The repository can be accessed using the following URL: https://github.com/O
verrated1987/Empowering-MRI-Based-Brain-Tumor-Classification-with-Deep-Learn
ing-and-Grad-CAM/ (accessed on 2 October 2023). By accessing the repository, readers
can inspect the code, explore the project structure, and understand the implementation
details comprehensively. The repository includes a detailed README file that provides
instructions on how to set up and utilize the source code effectively. This documentation
assists users in reproducing the project environment and replicating the experimental
results. To enhance the readability and transparency of our work, we have utilized Jupyter
Notebooks. These notebooks contain the code snippets, data preprocessing steps, DL
model implementations, and the corresponding results. The interactive nature of Jupyter
Notebooks allows readers to navigate through the code and observe the output easily. By
referring to these notebooks, users can gain deeper insights into our methodology and
reproduce the experimental outcomes. By providing open access to the source code and
utilizing Jupyter Notebooks, we strive to promote transparency, enable reproducibility, and
facilitate the verification of our project by the scientific community.

11. Limitations and Future Works

Despite the advancements introduced by our computer-aided diagnosis (CAD) frame-
work, several limitations remain, which need to be addressed to enhance the system’s
effectiveness and applicability.

1. Privacy Concerns and Data Sharing: One of the primary limitations of our current
approach is the reliance on MRI datasets, which are often subject to stringent privacy
regulations. These privacy concerns significantly restrict the sharing of datasets across
institutions and complicate the acquisition of diverse and representative training data.
The lack of access to varied datasets can hinder the development of models that are
robust and generalizable across different populations and imaging conditions.

2. Single-Protocol Limitation: The current framework utilizes only T1W MRI scans,
which restricts the model’s ability to generalize across different MRI protocols. Differ-
ent MRI protocols, such as T2W or FLAIR, can provide complementary information
that might improve the model’s diagnostic accuracy. Incorporating multiple MRI
protocols could enhance the robustness of the CAD system and its applicability to a
broader range of clinical scenarios.

To overcome the current limitations and further advance the capabilities of our CAD
system, several promising avenues for future research are outlined below.

1. Federated Learning (FL): To address the privacy issues associated with brain tumor
MRI datasets, future research could explore federated learning (FL) techniques. FL
allows multiple health institutions to collaboratively train a unified deep learning
(DL) model without sharing sensitive patient data. Instead, each institution trains the
model locally and only shares model updates, preserving the confidentiality of patient
information [48]. This approach could enable the development of more accurate and
generalized models while adhering to privacy regulations.

https://github.com/Overrated1987/Empowering-MRI-Based-Brain-Tumor-Classification-with-Deep-Learning-and-Grad-CAM/
https://github.com/Overrated1987/Empowering-MRI-Based-Brain-Tumor-Classification-with-Deep-Learning-and-Grad-CAM/
https://github.com/Overrated1987/Empowering-MRI-Based-Brain-Tumor-Classification-with-Deep-Learning-and-Grad-CAM/
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2. Blockchain Integration: Integrating blockchain technology with federated learning
could further enhance the transparency, security, and accountability of the model
training process. Blockchain can provide an immutable and verifiable record of
model updates and training activities, ensuring that all changes are traceable and
auditable [49–51]. This added layer of security would address concerns related to data
integrity and model reliability, contributing to more secure and trustworthy machine
learning practices in healthcare.

3. Expansion of Data Sources: Expanding the dataset to include MRI scans from multi-
ple institutions and incorporating various MRI protocols is another crucial area for
future work. This would involve collecting and integrating data from different sources
to build a more comprehensive and diverse dataset. Additionally, exploring tech-
niques such as data synthesis or augmentation could help in creating a more varied
training set, further enhancing the model’s performance and generalizability [52].

4. Real-World Applicability and Usability: Future research should also focus on
evaluating the system’s performance in real-world clinical settings. This includes
conducting longitudinal studies to assess the system’s effectiveness in diverse patient
populations and clinical scenarios. Furthermore, enhancing the user interface and
integrating the system with existing clinical workflows would improve its usability
and acceptance among healthcare professionals.

Addressing these limitations and pursuing the proposed future research directions
will contribute to the advancement of computer-aided diagnosis systems, paving the way
for more effective, accurate, and privacy-conscious solutions in brain tumor detection
and classification.

12. Conclusions

Recent advancements in medical image applications, particularly those utilizing deep
learning (DL) and optimization strategies, have attracted substantial attention due to their
practical applications in analyzing natural images. Magnetic resonance imaging (MRI)
data, in particular, has become increasingly prevalent in DL approaches for automatic
brain tumor detection and classification. This paper presents an effective computer-aided
diagnosis (CAD) framework for multi-class brain tumor classification using MRI scans.
The framework utilizes six pre-trained DL models and integrates comprehensive data
preprocessing and augmentation strategies to enhance computational efficiency. To address
challenges related to transparency and interpretability in DL models, Gradient-weighted
Class Activation Mapping (Grad-CAM) was employed to visualize the decision-making
processes involved in tumor classification from MRI scans. Additionally, a user-friendly
Brain Tumor Diagnosis System was developed using Streamlit, demonstrating its practical
applicability in real-world settings and providing a valuable tool for clinicians. The system
was evaluated using publicly available brain MRI datasets from Kaggle, which include four
classes: Glioma, Meningioma, Pituitary tumor, and No tumor, with a total of 7023 images.
In addition to accuracy, we assessed the system’s performance using various classification
metrics, such as precision, recall, F1-score, and confusion matrices, all of which consistently
demonstrated the framework’s effectiveness. Experimental results indicate that the pro-
posed framework achieves remarkable classification performance, with overall accuracy
approaching 99% for the ResNet-50, Xception, and InceptionV3 models. This CAD system
represents an effective tool for brain tumor classification, offering significant advancements
in both accuracy and usability for clinical applications.
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