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Abstract: Retailers depend on accurate sales forecasts to effectively plan operations and manage
supply chains. These forecasts are needed across various levels of aggregation, making hierarchical
forecasting methods essential for the retail industry. As competition intensifies, the use of promotions
has become a widespread strategy, significantly impacting consumer purchasing behavior. This study
seeks to improve forecast accuracy by incorporating promotional data into hierarchical forecasting
models. Using a sales dataset from a major Portuguese retailer, base forecasts are generated for
different hierarchical levels using ARIMA models and Multi-Layer Perceptron (MLP) neural networks.
Reconciliation methods including bottom-up, top-down, and optimal reconciliation with OLS and
WLS (struct) estimators are employed. The results show that MLPs outperform ARIMA models for
forecast horizons longer than one day. While the addition of regressors enhances ARIMA’s accuracy,
it does not yield similar improvements for MLP. MLPs present a compelling balance of simplicity
and efficiency, outperforming ARIMA in flexibility while offering faster training times and lower
computational demands compared to more complex deep learning models, making them highly
suitable for practical retail forecasting applications.

Keywords: hierarchical forecasting; deep learning; multi-layer perceptrons; ARIMAX; supply chain
management; promotions

1. Introduction

The increasing complexity of modern supply chains underscores the critical role of
accurate sales forecasting in informing retail planning and decision making. As highlighted
by Villegas and Pedregal [1], accurate forecasts are essential for optimizing supply chain
efficiency. Even minor forecasting errors can significantly impact retailers’ revenue due
to their substantial sales volumes. Retailers must carefully select forecasting methods
that balance accuracy with practical considerations such as ease of use and computational
demands. By mitigating stockouts, excess inventory, and product waste, accurate forecasts
contribute significantly to cost reduction and customer satisfaction. As Fildes et al. [2]
emphasize, robust forecasting is key to safeguarding against lost sales due to out-of-stock
situations and the potential erosion of customer loyalty.

Given these challenges, this study aims to enhance sales forecasting accuracy by
integrating promotional activities into hierarchical forecasting methods. The research
specifically investigates how the inclusion of promotional data can improve forecast accu-
racy across multiple levels of aggregation, such as SKUs, stores, and distribution centers.
This focus addresses a critical gap in the literature, as the impact of promotions on hierarchi-
cal sales forecasting remains underexplored. By doing so, this study seeks to provide a more
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coherent and accurate forecasting system for retailers, which is essential for optimizing
supply chain decisions and performance.

Retailers require sales forecasts at multiple organizational levels (SKUs, stores, and
distribution centers) to inform effective decision making [3,4]. Hierarchical forecasting
addresses this need by generating forecasts for different levels of aggregation. While
independent generation of forecasts for each level is possible, it fails to capture hierarchical
relationships and may lead to inconsistencies between aggregated and disaggregated
forecasts. Maintaining forecast consistency across levels is crucial for coherent supply
chain management. Reconciliation strategies offer a solution by aligning forecasts at
different levels, potentially enhancing overall forecast accuracy. The optimal reconciliation
approach depends on factors such as time-series characteristics, hierarchical structure,
and forecast horizon.

Intensified competition within the retail sector has led to a surge in promotional
activities, highlighting the need for forecasting models that accurately capture their impact
on sales [5]. Incorporating promotional information into sales forecasts has been shown to
enhance predictive accuracy [6,7], but its specific impact on hierarchical forecasting has not
been extensively studied. Therefore, this research focuses on exploring how integrating
promotional data can improve forecast accuracy within a hierarchical framework.

To achieve this, the study initially defines the most suitable hierarchical structure for
data aggregation based on the retailer’s needs. Base forecasts are then generated using
traditional Autoregressive Integrated Moving Average (ARIMA) models and Multi-Layer
Perceptrons (MLPs) across various hierarchical levels, while bottom-up, top-down, and op-
timal reconciliation strategies with OLS and WLS (struct) estimators are considered as
reconciliation procedures. Additional factors, such as prices, day of the week, and calendar
events, are integrated to further refine accuracy. The motivation for using MLPs stems from
recent studies suggesting that deep learning methods may outperform traditional models.
Although their potential is recognized, their application in sales forecasting is not yet
well explored, indicating a need for further investigation to understand their comparative
advantages. This study leverages real sales data from Pingo Doce stores provided by the
Jerónimo Martins Group to support its analysis.

The main contributions of this research are highlighted as follows:

• This work contributes to the field by incorporating promotional data into hierarchical
sales forecasting models. This addresses a gap in the existing literature and provides
valuable insights into the impact of promotions on forecasting accuracy.

• This study compares the performance of traditional ARIMA models with more ad-
vanced MLP models, providing insights into their relative strengths and weaknesses
in the context of hierarchical forecasting.

• This paper assesses the effectiveness of different reconciliation methods (bottom-up,
top-down, and optimal reconciliation) in improving forecast accuracy and consistency
across hierarchical levels.

• By utilizing a real-world dataset, this paper demonstrates the practical application of
the proposed methodology and its potential benefits for retailers.

• This study contributes to the ongoing development of hierarchical forecasting methods
by exploring the integration of additional variables and the application of advanced
modeling techniques.

This paper is structured as follows. Following this Introduction, Section 2 provides a
literature review, outlining key concepts and establishing a theoretical framework based on
existing literature. Section 3 details the methodology used to address the study’s objectives.
Section 4 presents a case study conducted with real data from a Portuguese retailer and
discusses the obtained results. Finally, Section 5 summarizes the main findings, addresses
potential limitations of the study, and suggests areas for future research.
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2. Related Work
2.1. Sales Forecasting in the Retail Sector

Sales forecasting involves estimating future sales values based on historical data and
variables that may influence them. Given the uncertainty associated with demand, sales
forecasting is essential for retailers to efficiently plan the distribution and restocking of
their products in stores. Accurate forecasts help prevent profit reductions caused by ineffi-
cient stock management [8]. Typically, the sales forecasting process utilizes a Forecasting
Support System (FSS), which generates initial forecasts that are subsequently refined by the
company’s demand management team. These adjustments account for factors not included
in the initial forecast calculations [9]. However, it is essential to evaluate whether these ad-
justments improve forecast accuracy or, instead, introduce bias [10,11]. Moreover, the vast
scale of product-level sales forecasting in the retail sector underscores the need for greater
computational efficiency and speed [12,13], while manual adjustments of system-generated
forecasts become increasingly impractical. Consequently, it is becoming imperative for
forecasting processes to incorporate additional information, such as promotional activities,
to reduce errors and the need for manual adjustments [7,14]. While each participant in the
supply chain generally operates their FSS independently, collaborative schemes exist that
enable the sharing of sales information between suppliers and retailers. Such partnerships
are primarily established to reduce costs and manage inventory more effectively [15,16].
Several studies suggest that information sharing enhances forecast accuracy [17,18], which
can help mitigate the bullwhip effect. As defined by Lee et al. [19], the bullwhip effect
refers to the distortion of demand information along the supply chain, occurring when the
variation in retailer sales is less than the variation in retailer orders to suppliers. This effect
can lead to excessive raw material inventory; additional production, storage, and distri-
bution costs due to overcapacity; and a decline in customer service quality [20]. Retailers
typically rely on observed sales data to forecast future demand. However, when supply
shortages result in stockouts, the true demand is not fully captured, potentially leading to a
negative bias in future demand forecasts for the affected products [21]. Additionally, stock-
outs may drive customers toward substitute products, creating a positive bias in demand
forecasts for those substitutes [22]. Kim et al. [23] highlight that stockouts complicate the
demand estimation process for substitute products, demonstrating the intricacies involved
in accurate demand forecasting. To mitigate the risk of stockouts, retailers often maintain
safety stock [24]. The size of this stock is influenced by the level of demand uncertainty and
the associated forecast errors [25]. Balancing the cost of maintaining safety stock against
potential revenue losses due to stockouts remains a significant challenge for retailers. An-
other challenge in sales forecasting is predicting demand for new products, which lack
historical sales data. This challenge is compounded by potential cannibalization effects,
where the introduction of new products increases their sales at the expense of substitute
products [26]. The most common strategy for forecasting new product demand relies on
historical data from similar products. However, Kahn [27] emphasizes the importance of
distinguishing between forecasting for existing products and new products, with the latter
requiring qualitative analysis involving expert judgments and assumptions. In addition to
historical sales data, retailers are increasingly leveraging information about customers and
competitors’ products and pricing to make more informed decisions and innovate their
business models [28]. A deeper understanding of customer purchasing behaviors and pref-
erences can significantly improve the accuracy of demand forecasting [29]. Recent studies
have shown that incorporating new information sources, such as product reviews, online
searches, and social media activity, can enhance sales forecasting performance [30–33].

Among the various forecasting approaches, the autoregressive integrated moving
average (ARIMA) models developed by Box et al. [34] are widely utilized. These uni-
variate models rely solely on time-series data for forecasting. In addition to producing
forecasts, ARIMA models can generate prediction intervals, which are particularly valu-
able in the retail sector for determining appropriate safety stock levels. Deep Learning
methods offer a promising alternative due to their ability to process large volumes of
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data rapidly and create complex data representations [35]. Alon et al. [36] explored
the use of Artificial Neural Networks (ANNs) for sales forecasting in the retail sector
and demonstrated that these networks can capture nonlinear trends and seasonality pat-
terns, often outperforming traditional statistical methods like ARIMA, particularly in
volatile economic conditions. However, some studies suggest that without adequate
preprocessing to account for trends and seasonality in sales data, ARIMA models may
outperform Neural Networks (NNs) [37,38]. These findings align with the conclusions of
Nelson et al. [39], who observed that when seasonality is pre-adjusted, NNs produce more
accurate forecasts. Contrarily, Aras et al. [40] found no significant performance differences
between ANNs and ARIMA models in sales forecasting. Aburto and Weber [41] developed
a hybrid forecasting model that combines ARIMA with NNs, showing improvements
in forecast accuracy compared to using either model individually. Given the mixed re-
sults regarding the performance of traditional ANNs, more advanced forecasting methods
have recently gained attention. Vallés-Pérez et al. [42] demonstrated that Recurrent Neural
Networks (RNNs) can be effectively used to forecast sales at the store or product level
in the retail sector. Long Short-Term Memory (LSTM) networks, a subclass of RNNs in-
troduced by Hochreiter and Schmidhuber [43], are particularly well-suited for learning
long-term dependencies in time-series data, making them more effective for sales forecast-
ing compared to traditional RNNs, which struggle with long-term connections. Studies by
Abbasimehr et al. [44] and Ensafi et al. [45] have shown that multi-layered LSTM models
outperform machine Learning methods and traditional forecasting models in terms of accu-
racy. However, Falatouri et al. [46] found that while the seasonal ARIMA model performs
better for products with seasonal demand patterns, LSTM models are more effective for fore-
casting products with stable demand. The literature also includes hybrid models that com-
bine LSTM models with machine Learning techniques [47,48]. Wang et al. [49,50] observed
that although RNNs and LSTM models generally offer superior generalization and accuracy,
ARIMA models have the advantage of shorter execution time and lower processing costs.
Convolutional Neural Networks (CNNs), initially proposed by LeCun et al. [51] for image
classification, have also been adapted for time-series forecasting due to their pattern recog-
nition capabilities. Ma and Fildes [52] proposed a sales forecasting strategy based on CNNs,
which improves the accuracy of product-level sales forecasts compared to a wide range of
alternative methods. Additionally, hybrid approaches combining CNNs and LSTM mod-
els have been developed to capitalize on the strengths of both techniques [53–55]. In the
context of online retail, Bandara et al. [56–58] developed an LSTM-based sales forecasting
strategy that incorporates information about correlations between product demand pat-
terns. Applied to Walmart’s dataset, this approach outperformed traditional univariate
models. Pan and Zhou [59] utilized CNNs for online sales forecasting based on data from
Alibaba, including sales history and variables such as the number of searches and product
views. Their method yielded better results than ARIMA models. Similarly, Chen [60]
and He et al. [61] applied LSTM models to the same online retailer sales dataset, find-
ing that these models reduced forecasting errors compared to other methods. In recent
years, transformer models have emerged as a powerful approach for various tasks in
time-series forecasting, including sales forecasting. Transformers, originally developed for
natural language processing, leverage self-attention mechanisms to capture long-range
dependencies in data more effectively than traditional methods, including RNNs and
LSTM models [62]. Their architecture allows for parallel processing of input data, result-
ing in faster training times and improved performance on large datasets, making them
well-suited for complex forecasting tasks in retail environments. Studies such as those
by Wu et al. [63], Lim et al. [64], Zhou et al. [65,66], Nie et al. [67], and Tong et al. [68] have
demonstrated the effectiveness of transformer models in forecasting applications, showing
that they can outperform conventional methods by effectively modeling intricate relation-
ships within the data. Transformers can also easily incorporate additional input features,
such as promotional events and consumer sentiment data, enhancing their forecasting
capabilities [69]. However, one significant drawback of transformer models is their sub-
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stantial demand for computational resources, which can limit their accessibility for many
retailers. The architecture’s complexity requires significant memory and processing power,
particularly when training on large datasets or incorporating multiple features [70]. This
resource-intensive nature may deter smaller retailers from adopting transformer-based
approaches, making it crucial to balance the model’s benefits with the practical constraints
of computational infrastructure. Recent advancements in artificial intelligence have led to
the development of foundation models, which are large-scale models trained on massive
datasets [71–75]. These models have demonstrated impressive performance in various
tasks, including natural language processing, computer vision, and time-series forecast-
ing. While foundation models offer significant potential for improving the accuracy and
efficiency of time-series forecasting, their application in the retail domain is still in its
early stages. Further research is needed to explore the potential benefits and challenges of
leveraging foundation models for retail sales forecasting.

2.2. Hierarchical Forecasting

Supply chain management encompasses the coordination of actions among various
participants, from producers to end consumers, with the primary objective of meeting
consumer demand [3]. In the retail sector, sales forecasting is critical at different levels
of aggregation, facilitating informed decision making throughout the supply chain [76].
Hierarchical forecasting has been extensively explored within this context, operating on
the premise that time series can be disaggregated across various dimensions relevant to
retailers, such as time intervals (temporal hierarchy) and product categories (cross-sectional
hierarchy). When considering temporal aggregation, higher-level aggregates typically
exhibit components like trend and cyclicality, while lower levels tend to display seasonal
patterns. Kourentzes et al. [77] introduced the Multiple Aggregation Prediction Algorithm,
a forecasting framework that employs temporal aggregation to model the distinct com-
ponents of time series. Athanasopoulos et al. [78] further demonstrated that forecasting
using temporal hierarchies provides superior results compared to traditional methods.
For cross-sectional hierarchies, retailers must determine the appropriate level of aggrega-
tion for sales forecasts, considering three primary axes: product (SKU, category, and area),
location (store, distribution center, region, and country), and time (day, week, month, and
year) [2]. The choice of aggregation level significantly influences forecast accuracy [79].
The aim is to generate a consistent set of forecasts that align with the hierarchical structure,
ensuring that the sum of forecasts at disaggregated levels equals the forecast at the corre-
sponding aggregated level. To achieve this, various strategies are employed to reconcile
base forecasts generated for different levels of the hierarchy. The three main reconciliation
strategies are the bottom-up method, which involves generating forecasts at the most disag-
gregated level and aggregating them to obtain higher-level forecasts; the top-down method,
which starts with forecasts at the most aggregated level and disaggregates them based on
appropriate proportions; and the middle-out method, an intermediate approach between
the two [80]. These methods utilize only a portion of the available information, as they
generate forecasts for a single aggregation level. The bottom-up method, for example,
does not account for correlations between time series, leading to suboptimal outcomes
at higher aggregation levels. Conversely, the top-down method loses valuable informa-
tion due to data aggregation, resulting in lower accuracy at lower levels of the hierarchy.
To address this issue, Athanasopoulos et al. [81] proposed a top-down method that uses
forecast-based proportions rather than historical proportions [82] to disaggregate forecasts
generated at the highest level. However, Hyndman et al. [83] noted that none of the
three basic reconciliation strategies adequately consider correlations between hierarchical
levels. In response, they proposed an approach that involves independently generating
forecasts for each hierarchical level, followed by a reconciliation process that aligns these
forecasts with the aggregation structure. The reconciliation method used in their study
was Ordinary Least Squares (OLS), and the results indicate that this approach outperforms
traditional reconciliation methods. Hyndman et al. [84] later suggested the use of Weighted
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Least Squares (WLS) to reconcile base forecasts, recommending algorithms to facilitate
reconciliation in cases involving large numbers of time series. Wickramasuriya et al. [85]
critiqued the practical feasibility of Hyndman et al. [83]’s approach, introducing the Min-
imum Trace (MinT) optimal reconciliation method as an alternative. Spiliotis et al. [86]
developed a reconciliation strategy based on machine learning methods, enabling nonlin-
ear combinations of base forecasts. This new approach consistently delivers better results
in terms of forecast accuracy and bias compared to the basic and linear reconciliation
strategies developed by Hyndman et al. [83,84] and Wickramasuriya et al. [85]. Pennings
and van Dalen [87] presented an integrated hierarchical forecasting strategy based on
the estimation of a multivariate state-space model with a Kalman filter. This approach
considers the complementary and substitution relationships between products in sales
forecasting, incorporating all available information and generating forecasts for all levels of
aggregation while respecting the hierarchical structure. This method effectively overcomes
the limitations of both bottom-up and top-down approaches. Villegas and Pedregal [1]
offered a hierarchical forecasting approach grounded in state-space models, emphasizing
that it ensures the consistency of forecasts across time. Despite the progress in hierarchical
forecasting, there remains uncertainty regarding whether forecasts should be obtained di-
rectly for each hierarchical level or generated through hierarchical forecasting methods [88].
This question is particularly relevant when the forecast includes regressors, such as promo-
tional activities, underscoring the need to explore which approach, when combined with
regressors, enhances forecasting accuracy. Additionally, questions persist about the most
suitable forecasting models for each hierarchical level and which reconciliation strategies
produce the best results.

2.3. Determinants in Retail Product Sales

Customer purchasing decisions are influenced by a range of factors, including price,
promotions, calendar events (such as holidays and festive seasons), weather conditions,
and seasonality. To manage inventory efficiently and ensure high levels of customer satis-
faction, retail sales forecasting processes must consider not only historical sales data but
also these key drivers of product demand. Although numerous studies on the subject have
been conducted, weather conditions remain underutilized in sales forecasting due to the
inherent uncertainty of weather forecasts. For example, Divakar et al. [89] developed a
sales forecasting model for beverages that incorporates variables such as prices, promo-
tions, average temperature, calendar events, and new product launches. The rationale for
including temperature forecasts lies in the increased demand for beverages as temperatures
rise. Similarly, Ramanathan and Muyldermans [90] examined the factors affecting soft
drink demand, including promotions, calendar events, and weather conditions, but found
that promotions were the only factor consistently influencing demand across all products.
In the context of online retail, Steinker et al. [91] demonstrated that integrating weather
information into the forecasting process significantly reduces forecast errors, particularly
for weekends and days with favorable weather. Additionally, Liu and Ichise [92] introduced
a deep learning method that effectively forecasts beverage sales for a supermarket chain
using weather data, outperforming traditional machine learning methods. Hirche et al. [93]
employed non-seasonal Autoregressive Integrated Moving Average with exogenous vari-
ables (ARIMAX) models, incorporating temperature data and calendar events to forecast
alcoholic beverage sales. Their findings indicate that the sensitivity of sales sensitivity
temperature varies by region and beverage category, while festive seasons impact sales
across all beverage categories. Verstraete et al. [94] proposed a methodology that accounts
for the uncertainty of short-term and long-term weather forecasts when predicting retail
product sales. However, Badorf and Hoberg [95] showed that the benefits of incorporating
weather forecasts into sales predictions diminish as the forecast horizon extends. Based
on data from a beverage company, Ramanathan and Muyldermans [96] found that promo-
tional information and seasonal factors significantly influence sales, while the impact of
calendar events is limited. Most models that incorporate sales determinants emphasize
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the importance of promotional information due to the high frequency of retail promotions
and their significant effect on customer behavior. For example, Özden Gür Ali et al. [97]
demonstrated that simple forecasting methods perform well in the absence of promotions,
but during promotional periods, more sophisticated methods that include additional pro-
motional data significantly improve forecast accuracy. Arunraj and Ahrens [98] presented
two linear regression models that integrate forecasts from a seasonal ARIMA model with
variables such as promotions, calendar events, monthly seasonality, and weather conditions.
These models outperformed the seasonal naïve method, the seasonal ARIMA model with-
out regressor integration, and multi-layer perceptron. In a similar vein, Arunraj et al. [99]
developed a seasonal ARIMAX model that includes promotions and calendar events for
daily sales forecasting in retail stores, showing improved forecast accuracy over the tra-
ditional seasonal ARIMA model. Abolghasemi et al. [6] investigated forecasting demand
series characterized by volatility due to promotional activities, proposing a hybrid strategy
that combines the ARIMA model for non-promotional periods with segmented regression
to predict demand spikes caused by promotions. This approach results in fewer forecast
errors when demand volatility is high, while the ARIMAX model performs better in cases
of low to moderate demand volatility. Abolghasemi et al. [7] further developed a demand
forecasting model that integrates the effects of systematic events, such as promotions,
to enhance forecast accuracy and reduce the need for manual adjustments. Huber and
Stuckenschmidt [100] applied machine learning methods to sales forecasting based on
external information related to calendar events, with results confirming the effectiveness of
these methods and the decreasing necessity of manual adjustments after forecasts are gen-
erated. Overall, multivariate forecasting models have generally outperformed traditional
models. However, integrating sales determinants into the forecasting process necessitates
the use of more advanced forecasting methods and variable selection strategies to manage
the complexity of numerous explanatory variables and data heterogeneity. For instance,
Guo et al. [101] developed a multivariate forecasting model based on neural networks
that incorporates a Harmony Search wrapper-based variable selection approach to iden-
tify the most relevant input variables for sales forecasting. The authors demonstrated
that this variable selection strategy effectively reduces the number of model parame-
ters, leading to greater forecast accuracy. Huang et al. [102] proposed a sales forecasting
model at the SKU level, beginning with the selection of competitive explanatory variables,
such as prices and promotions, and subsequently integrating this information into an
Autoregressive distributed lag model. This model outperformed the Simple Exponential
Smoothing (SES) method, even when SES forecasts were adjusted for past promotional
effects. Ma et al. [103] used a model similar to that proposed by Huang et al. [102] but also
accounted for promotional interactions between products from different categories, as well
as those within the same category. To select relevant explanatory variables, they employed a
more practical strategy based on least absolute shrinkage and selection operator regression.
Trapero et al. [104] developed a multiple regression model that incorporates promotional
variables and addresses challenges associated with this type of model, such as the high
number of variables and multicollinearity, through the use of Principal Component Anal-
ysis. The authors observed that their proposed model generated more accurate forecasts
than the naïve method, the SES method, and the multivariate last like promotion method
developed by Özden Gür Ali et al. [97].

3. Forecasting Models
3.1. Hierarchical Forecasting

To illustrate a hierarchical structure, consider the example shown in Figure 1. At the
top of the hierarchy (level 0) is the most aggregated series, labeled as Total. The Total series
is then disaggregated into two series, A and B, which constitute level 1. Each of these
series is further disaggregated into three series at the bottom level of the hierarchy (level 2).
The value observed at time t for series i is represented as yi,t, where t = 1, . . . , T. For each
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time period (t), n represents the total number of series, while m denotes the number of
bottom-level series. In the example provided in Figure 1, n = 9 and m = 6.

AA AB AC BA BB BC

A B

Total

Figure 1. A three-level hierarchical structure.

In this case, at each time (t), the observations add up according to the following
aggregation constraints:

yTotal,t = yAA,t + yAB,t + yAC,t + yBA,t + yBB,t + yBC,t,
yA,t = yAA,t + yAB,t + yAC,t, yB,t = yBA,t + yBB,t + yBC,t.

(1)

Let yt denote the vector containing the t-th observations of all series in the hierarchy,
and let bt represent the vector containing only the t-th observations of the bottom-level se-
ries. S is defined as the summing matrix of order n×m, which reflects how the bottom-level
series aggregate to the higher levels. Thus, the aggregation constraints can be expressed
using matrix notation as follows [105]:

yt = Sbt. (2)

For the scenario depicted in Figure 1, Equation (2) can be expressed as follows:

yTotal,t
yA,t
yB,t

yAA,t
yAB,t
yAC,t
yBA,t
yBB,t
yBC,t


=



1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


×



yAA,t
yAB,t
yAC,t
yBA,t
yBB,t
yBC,t

. (3)

The goal is to produce coherent forecasts for each series within the hierarchy, ensuring
that these forecasts align with the hierarchical structure and satisfy the aggregation constraints.

Let ŷt+h|t represent a vector containing the h-step-ahead forecasts (where h = 1, 2, . . .)
for all series in the hierarchy, generated based on observations up to and including time t.
While any forecasting model can be used to independently generate these base forecasts,
this approach is unlikely to ensure that the aggregation constraints are satisfied. To achieve
coherence among the forecasts, a reconciliation method must be applied:

ỹt+h|t = SPŷt+h|t, (4)

where P is an m × n matrix that maps the base forecasts (ŷt + h|t) into reconciled forecasts
at the bottom level. These forecasts are then aggregated using the summing matrix (S)
to produce coherent forecasts (ỹt + h|t). Matrix P depends on the chosen reconciliation
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method. For the bottom-up method, P =
[
0m×(n−m)|Im

]
, where 0m×(n−m) is the null matrix

of order m × (n − m) and Im is the identity matrix of order m. For the hierarchical structure
illustrated in Figure 1, matrix P is expressed as follows:

P =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

. (5)

For the top-down method, P =
[
p|0m×(n−1)

]
, where p is a vector of dimension m that

contains the proportions used to disaggregate the top-level forecast into forecasts at the
bottom level. For the hierarchical structure depicted in Figure 1, matrix P is expressed
as follows:

P =



p1 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0 0
p6 0 0 0 0 0 0 0 0

. (6)

Traditional methods for calculating disaggregation proportions, as presented by Gross
and Sohl [82], rely on historical data. In the first approach, each proportion (pi) is computed
as the average of the historical ratios of the bottom-level series (yi,t) to that of the top-level
series (yTotal,t) over the period of t = 1, . . . , T:

pi =
1
T

T

∑
t=1

yi,t

yTotal,t
, i = 1, . . . , m. (7)

In the second approach, each proportion (pi) is calculated as the ratio of the average
historical values of the bottom-level series (yi,t) to the average historical values of the
top-level series (yTotal,t) over the same period:

pi =
1
T ∑T

t=1 yi,t
1
T ∑T

t=1 yTotal,t
, i = 1, . . . , m. (8)

These top-down approaches are valued for their simplicity, but they are static and
do not account for potential variations in proportions over time. Consequently, they may
produce less accurate forecasts at lower levels of the hierarchy compared to the bottom-up
method. To address this limitation, Athanasopoulos et al. [81] introduced an enhanced
top-down approach that employs forecast-based proportions:

pi =
k−1

∏
l=0

ŷ(l)i,t+h|t

Ŝ(l+1)
i,t+h|t

, i = 1, . . . , m, (9)

where k represents the number of levels in the hierarchy. In this formulation, ŷ(l)i,t+h|t denotes
the h-step-ahead base forecast for the series corresponding to the node l levels above node
i and Ŝ(l+1)

i,t+h|t is the sum of the h-step-ahead base forecasts for the series associated with the
nodes l + 1 levels above node i.

Hyndman et al. [83] proposed an optimal reconciliation method based on a regres-
sion model:

ŷt+h|t = Sβt+h|t + εh, (10)
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where βt+h|t represents the vector of unknown means for the most disaggregated series
and εh is the reconciliation error with a mean of zero and a covariance matrix (Σh). When Σh
is known, the Generalized Least Squares (GLS) estimator of βt+h|t can be used to generate
the following reconciled forecasts:

ỹt+h|t = Sβ̂t+h|t = SPŷt+h|t = S(S′Σ−1
h S)−1S′Σ−1

h ŷt+h|t. (11)

Hyndman et al. [83] demonstrated that if the base forecasts (ŷt+h|t) are unbiased,
the reconciled forecasts ỹt+h|t will also be unbiased, provided the condition (SPS = S)
holds. This condition is met by both the optimal reconciliation approach and the bottom-up
method. However, no top-down method satisfies this condition, which implies that top-
down methods inherently produce biased reconciled forecasts. Wickramasuriya et al. [85]
further showed that the reconciliation approach proposed by Hyndman et al. [83] is gen-
erally impractical because Σh is typically unknown and cannot be accurately determined.
According to these authors, the covariance matrix of the h-step-ahead reconciled forecast
errors is given by

Var[yt+h − ỹt+h|t] = SPWhP′S′, (12)

where Wh = Var[yt+h − ŷt+h|t] is the variance–covariance matrix of the h-step-ahead base
forecast errors. We seek to identify the P matrix that minimizes the error variances of the
reconciled forecasts, which are represented by the diagonal elements of Var[yt+h − ŷt+h|t].
The optimal reconciliation approach, known as the MinT (minimum trace) method, was
proposed by Wickramasuriya et al. [85]. This approach determines that matrix P, which
minimizes the trace of Var[yt+h − ŷt+h|t] while satisfying the condition of SPS = S, is
expressed as follows:

P = (S′W−1
h S)−1S′W−1

h . (13)

Therefore, the reconciled forecasts generated by the MinT approach are expressed
as follows:

ỹt+h|t = S(S′W−1
h S)−1S′W−1

h ŷt+h|t. (14)

This optimal reconciliation approach still requires the estimation of Wh. Wickrama-
suriya et al. [85] proposed several alternatives for this purpose:

1. Wh = kh In, ∀h, where kh > 0. In this case, the estimator for βt+h|t corresponds to
the OLS estimator. Although this is the simplest estimation method, matrix P does
not rely on the data, meaning it does not account for differences in scale between
hierarchical levels or the relationships among the series. This specification is referred
to as OLS.

2. Wh = khdiag(Ŵ1), ∀h, where kh > 0 and Ŵ1 = 1
T ΣT

t=1ete′t is the sample covariance
estimator of the one-step-ahead base forecast errors. This approach scales the base
forecasts using the variance of the residuals (et). This MinT estimator is referred to as
WLS (var).

3. Wh = khΛ, ∀h, where kh > 0, Λ = diag(S1), with 1 being a unit vector of dimension
m. This specification assumes that the variance of the base forecast errors at the bottom
level is kh and that these errors are uncorrelated across different nodes. The estimator
relies solely on the aggregation constraints of the hierarchy rather than on the data,
making it particularly useful when residuals are not available. This method is known
as structural scaling and is denoted as WLS (struct).

4. Wh = khŴ1, ∀h, where kh > 0 represents the sample covariance estimator for h = 1.
This estimator is straightforward to compute, but it may be unsuitable when the
number of bottom-level series (m) exceeds the number of time periods (T). This
specification is referred to as MinT (sample).

5. Wh = khŴ
∗
1,D, ∀h, where kh > 0 represents a shrinkage estimator. Here,

Ŵ
∗
1,D = λDŴ1,D + (1− λD)Ŵ1 is designed to shrink the off-diagonal elements of Ŵ1

toward zero while leaving the diagonal entries unchanged. In this formulation, Ŵ1,D
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is a diagonal matrix containing the diagonal elements of Ŵ1 and λD is the shrink-
age intensity parameter. Assuming constant variances, Schäfer and Strimmer [106]
proposed the following formula for the shrinkage intensity parameter:

λ̂D =
Σi ̸=jV̂ar(r̂ij)

Σi ̸=j r̂2
ij

, (15)

where r̂ij represents the ijth element of R̂1, the sample correlation matrix of the one-
step-ahead base forecast errors. This approach is referred to as MinT (shrink).

3.2. ARIMA Models

The seasonal ARIMA model, denoted as ARIMA(p, d, q)× (P, D, Q)m, is expressed as
follows [107]:

ϕp(B)ΦP(Bm)(1 − B)d(1 − Bm)Dηt = c + θq(B)ΘQ(Bm)εt, (16)

ϕp(B) = 1 − ϕ1B − · · · − ϕpBp, ΦP(Bm) = 1 − Φ1Bm − · · · − ΦPBPm,

θq(B) = 1 + θ1B + · · ·+ θqBq, ΘQ(Bm) = 1 + Θ1Bm + · · ·+ ΘQBQm.

In this equation, ηt represents the time series being modeled, while m denotes the
seasonal period. The terms D and d correspond to the degrees of seasonal and ordi-
nary differencing, respectively. B is the backward shift operator, and ϕp(B) and θq(B)
are the regular autoregressive and moving average polynomials of orders p and q, re-
spectively. Similarly, ΦP(Bm) and ΘQ(Bm) represent the seasonal autoregressive and
moving-average polynomials of orders P and Q, respectively. The constant (c) is defined as
c = µ(1 − ϕ1 − · · · − ϕp)(1 − Φ1 − · · · − ΦP), where µ is the mean of (1 − B)d(1 − Bm)Dηt
and εt denotes a white-noise series that is uncorrelated over time, with zero mean and
constant variance. To ensure the stationarity and invertibility of the model, the roots
of polynomials ϕp(B), ΦP(Bm), θq(B), and ΘQ(Bm) must all lie outside of the unit cir-
cle. Non-stationary time series can be made stationary by applying transformations such
as logarithms to stabilize the variance and by using proper degrees of differencing to
stabilize the mean. Once the values of p, q, P, and Q are specified, the model parameters—
c, ϕ1 . . . , ϕp, θ1, . . . , θq, Φ1. . . . , ΦP, Θ1, . . . , ΘQ—can be estimated by maximizing the log-
likelihood function. To select the optimal values for p, q, P, and Q, the Akaike Information
Criterion (AIC) is typically used. The AIC balances model fit with complexity by penalizing
the number of parameters, helping to prevent overfitting.

While pure forecasting models such as ARIMA leverage historical values of the time
series to generate forecasts, they do not account for external factors that might influence
the dependent variable. In contexts like retail sales forecasting, where promotional activi-
ties, marketing campaigns, calendar events, and school holidays can significantly impact
demand, it is crucial to consider these external effects. Conversely, regression models can
integrate exogenous variables but are not designed to capture the time-series dynamics on
their own. To address this limitation, ARIMA models can be extended to include explana-
tory variables by adopting a regression framework with ARIMA errors. This approach is
expressed as follows [108]:

yt = δ0 +
K

∑
k=1

δkxk,t + ηt, (17)

ϕp(B)ΦP(Bm)(1 − B)d(1 − Bm)Dηt = θq(B)ΘQ(Bm)εt,
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where yt represents the target time series; x1,t, . . . , xK,t are the explanatory variables; and
δ0, δ1, . . ., and δK denote the coefficients of the regression model. The error term (ηt) is
modeled using an ARIMA process.

To estimate all parameters in this framework, including those of both the regression
and ARIMA components, one can maximize the log-likelihood function, as with a standard
ARIMA model. However, it is crucial to ensure that both the dependent variable (yt)
and the explanatory variables (x1,t, . . . , xK,t) are stationary to obtain consistent estimates.
Consistency requires that the same differencing procedure be applied uniformly to all series
involved to preserve the relationship between the dependent and independent variables.

ARIMA models are particularly effective at capturing linear relationships in time-
series data and are well-suited for scenarios where trends and seasonality need to be
explicitly modeled. Their ability to incorporate external factors, such as promotional
activities, makes them valuable for adjusting forecasts based on variables that influence
sales. This is especially important in retail, where accurate forecasting must account for
fluctuations driven by promotions, pricing, and other market dynamics. By leveraging
ARIMA, we mitigate the risk of under- or over-estimating sales in response to these factors,
thereby improving the precision of our base forecasts.

3.3. Multi-Layer Perceptrons for Time Series Forecasting

Deep learning algorithms are a subset of machine learning and mimic the structure
of the human brain. They employ multi-layer neural networks to process data through
successive transformations, ultimately achieving optimal representations [109]. Learning
occurs through the adjustment of these neural networks. The most fundamental deep
neural networks are known as multi-layer perceptrons (MLPs). These networks consist of
several layers of neurons (or nodes), where each neuron in one layer is fully connected to all
neurons in the layer below and those in the layer above. At its core, a multi-layer perceptron
includes three layers: an input layer that handles the raw data, a hidden layer where the
learning primarily occurs, and an output layer that produces the predictions. Designing an
MLP involves determining the number of layers and nodes, which is often more art than
science. Typically, the number of nodes in each hidden layer is related to the number of
input variables. The complexity of an MLP—reflected by the number of hidden layers and
nodes—affects its ability to learn complex features from the data. The configuration of the
output layer depends on the nature of the task; for forecasting tasks that typically involve
predicting continuous values, the output layer consists of one or more nodes that provide
the final prediction.

Consider a matrix (X ∈ Rn×d) representing a minibatch of n time series, each with d
features. For a one-hidden-layer MLP with h hidden units, let H ∈ Rn×h denote the outputs
of the hidden layer, which are the hidden representations. The weights for the hidden layer
are W (1) ∈ Rd×h, and the biases are b(1) ∈ R1×h, while the weights of the output layer
are W (2) ∈ Rh×q and biases are b(2) ∈ R1×q. The outputs of the MLP (O ∈ Rn×q) can be
calculated as follows [110]:

H = XW (1) + b(1), (18)

O = HW (2) + b(2). (19)

To fully leverage multi-layer architectures, a nonlinear activation function (σ) must be
applied to each hidden unit following the affine transformation [111]. These differentiable
functions introduce nonlinearity to the network, enabling it to model more complex rela-
tionships. Among the most common activation functions is ReLU (Rectified Linear Unit):

ReLU(x) = max(x, 0), (20)
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which retains only positive values and sets negative values to zero. ReLU is favored for its
well-behaved derivatives, which either vanish or pass through the argument, improving
optimization and mitigating the vanishing gradient problem. Another activation function
is the sigmoid function:

sigmoid(x) =
1

1 + e−x . (21)

The sigmoid function maps input values to the interval of (0, 1), making it useful for
tasks involving probabilities. However, it has largely been replaced by ReLU in many
applications due to vanishing gradients for extreme values. The tanh (hyperbolic tangent)
activation squashes input values to lie between −1 and 1:

tanh(x) =
1 − e−2x

1 + e−2x , (22)

The output of the activation function (σ(·)) is referred to as the activation. By intro-
ducing activation functions, an MLP cannot be reduced to a simple linear model:

H = σ(XW (1) + b(1)), (23)

O = HW (2) + b(2). (24)

Each row in X represents a single time series from the minibatch and the nonlinearity
(σ) applied to each row individually. To create more complex MLPs, additional hidden
layers can be stacked as follows:

H(1) = σ1(XW (1) + b(1)), (25)

H(2) = σ2(H(1)W (2) + b(2)), (26)

which leads to increasingly expressive models. Given a dataset, the goal is to determine
the weights (W) and bias (b) that minimize the prediction error. For a given set of features
(X) and known labels (y), the objective is to find parameters (W and b) that produce the
most accurate predictions for new time series. To optimize the model, we need (1) a loss
function to measure model performance and (2) an update procedure to improve the model.
Loss functions quantify the difference between actual and predicted values. For forecasting
tasks, the Mean Squared Error (MSE) is a commonly used loss function:

L =
1
q

q

∑
i=1

(
y(i) − ŷ(i)

)2
, (27)

where y(i) denotes the true label and ŷ(i) represents the predicted value. During training,
the objective is to minimize the loss function by adjusting the model parameters. Stochastic
Gradient Descent (SGD) is the primary technique for optimization, involving iterative ad-
justments of model parameters to reduce the loss function. Instead of processing the entire
dataset at once, SGD uses minibatches of data. The size of each minibatch is determined
by factors such as memory capacity, computational resources, and dataset size. In each
iteration, a minibatch is randomly sampled, and the gradient of the loss with respect to
model parameters is computed. This gradient is scaled by a learning rate and subtracted
from the current parameter values. After completing a specified number of iterations or
meeting a stopping criterion, the estimated parameters ((Ŵ , b̂)) are obtained. Due to the
stochastic nature of minibatch sampling, these parameters might not be exact minimizers.
Batch normalization helps address internal covariate shift by normalizing layer inputs to
maintain consistent statistics (mean and variance), thereby enhancing training efficiency.
Ensuring that MLPs generalize well to new, unseen data is crucial. Underfitting, where
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the model fails to capture the underlying patterns in the data, can often be mitigated by
increasing model complexity. Overfitting, where the model performs well on training
data but poorly on new data, typically requires regularization techniques such as L1 or L2
regularization, early stopping, or dropout to manage high variance and improve gener-
alization. In the MLP, external information at different times is treated as input features
alongside the target variable (sales). The MLP architecture can handle multiple input
variables simultaneously. Each input, whether it is the target variable (historical sales) or
an external variable (e.g., promotional status, price, calendar events), is fed into the input
layer of the neural network. The network processes these data through the hidden layers
using weights and activation functions, allowing it to learn complex nonlinear relationships
between sales and the external factors.

MLP neural networks offer a powerful tool for modeling complex, nonlinear relation-
ships in the data. Retail environments often involve intricate interactions between factors
such as consumer behavior, promotional campaigns, and seasonal effects. MLPs are partic-
ularly adept at uncovering these hidden patterns and relationships, which are difficult to
capture using traditional statistical methods like ARIMA. This makes MLPs highly valuable
in addressing the problem of forecasting under uncertainty, particularly when multiple
variables interact in unpredictable ways. By employing both ARIMA and MLP models, this
study directly tackles the challenges of sales forecasting through a combination of linear
time-series analysis and nonlinear pattern recognition. This dual approach ensures that the
forecasting problem is addressed from multiple angles, improving the overall accuracy and
robustness of the forecasts across different hierarchical levels.

4. Empirical Study

In this empirical study, we aim to evaluate the performance of ARIMA and MLP
models in the context of hierarchical sales forecasting for the retail sector. The main goal is
to investigate how the integration of promotional activities into these models can enhance
forecast accuracy across multiple hierarchical levels (SKU, region, and store). The study
focuses on the ability of both traditional and deep learning methods to handle the complex-
ities of retail sales data, especially in the presence of promotions, seasonal effects, and other
external factors. By comparing ARIMA and MLP models and applying reconciliation strate-
gies such as bottom-up, top-down, and optimal reconciliation, we seek to determine the
most effective approach for ensuring coherent forecasts across different levels of aggrega-
tion. This research is motivated by the need for accurate and consistent forecasts at multiple
organizational levels (e.g., SKU, store, and distribution center), which are crucial for opti-
mizing supply chain management and decision making. Hierarchical forecasting addresses
this need by capturing relationships between aggregated and disaggregated data, ensuring
that forecasts are aligned across levels. Our experimental setup uses real-world data from a
Portuguese retailer, Jerónimo Martins, and evaluates the models’ ability to forecast sales
while incorporating key external factors such as prices, promotions, and calendar events.

4.1. Case Study Data

Jerónimo Martins Group is a Portugal-based international company with extensive
retail experience. Primarily focused on food distribution, the Group dominates Portugal’s
supermarket segment through its Pingo Doce chain. This case study aims to enhance sales
forecast accuracy in the retail sector by integrating promotional activity into hierarchical
forecasting methods. To this end, Jerónimo Martins provided daily sales and product price
data from 10 Pingo Doce stores, spanning from 3 January 2012 to 27 April 2015 (1211 days).
We analyzed 38 SKUs across five product categories: non-specialized perishables, grocery,
beverages, specialized perishables, and detergents/cleaning products. These SKUs exhib-
ited diverse sales patterns and price sensitivities, providing a robust dataset for evaluating
forecasting methods. A three-level hierarchical structure was created for each SKU (see
Figure 2). The top level (level 0) represents total sales, divided into sales for regions A
and B at the second level (level 1). The bottom level (level 2) details sales for the 10 stores,
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with 2 in region A and 8 in region B. The number of levels was determined based on
the operational structure of the retailer. We used three levels—total, regional, and store
levels—because these levels align with the retailer’s organizational hierarchy. At the top
level, total sales represent the overall demand. The regional level captures the sales at
the data warehouse level, which supports logistics and distribution decisions. Finally,
the store level provides granular insights into local demand, which are critical for inventory
management and promotions at individual locations. This three-level structure reflects
the natural flow of products and decision making within the retail organization, making it
an appropriate choice for our hierarchical forecasting model. Each hierarchical structure
contains 13 time series. With 38 SKUs and a data period of 1211 days, this study analyzed
494 series, comprising a total of 598,234 observations. Table 1 outlines the series distribution
across hierarchical levels.

Region
A

Store
A1

Region
B

Total

Store
A2

Store
B1

Store
B2

Store
B3

Store
B4

Store
B5

Store
B6

Store
B7

Store
B8

Figure 2. Hierarchical structure of Pingo Doce sales data by SKU, illustrating three levels: total,
regional (A, B), and store-level sales.

Table 1. Distribution of time series across hierarchical levels.

Hierarchical Level Number of Series per SKU Total Number of Series

Level 0 1 38
Level 1 2 76
Level 2 10 380
Total 13 494

Figure 3 illustrates data aggregation by presenting the daily sales series of a represen-
tative SKU across the three hierarchical levels from 2012 to 2015. The top level displays total
sales, the middle level shows sales by region, and the bottom level provides sales by store.
The sales data exhibit a strong seasonal pattern at all levels, with peaks occurring at certain
times of the year due to factors such as holidays or seasonal product demand. Specifically,
the sharp peaks around December are attributed to Christmas, when consumer demand
typically surges. Additionally, the retailer implemented a 50% discount promotion on
1 May (Labor Day), leading to a noticeable spike in sales across all stores during that period.
A hierarchical structure is clearly depicted, with the top level showing the overall trend,
the middle level showing regional differences, and the bottom level providing detailed
store-level information. Sales data at the store level (Level 2) exhibit the highest variability,
indicating significant differences in performance among individual stores. As we move
up the hierarchy, the data become smoother, reflecting aggregated sales. In Figure 3, each
line at Level 1 represents the sales performance of a specific region, showcasing the dif-
ferences in regional demand patterns. These regional-level sales trends highlight distinct
fluctuations, with certain regions displaying stronger peaks during holiday seasons or
promotional periods. At Level 2, each line corresponds to the sales of an individual store
within the respective region. The variability in sales performance is most pronounced at
this level, indicating significant differences between stores in terms of customer traffic, local
demand, and store-specific factors. This detailed granularity at Level 2 helps to illustrate
how localized dynamics contribute to overall regional and national sales trends.
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Figure 3. Hierarchical daily sales data for a representative SKU from 2012 to 2015, illustrating total,
regional, and store-level sales with seasonal patterns. Different colors represent distinct aggregation
levels and the individual time series within each level.

4.2. Experimental Setup

Base forecasts for all time series within the hierarchical structures were generated
using both ARIMA models and multi-layer perceptrons (MLPs). ARIMA models were
estimated and forecasted using the ARIMA() and forecast() functions from the fable and
fabletools R packages [112]. MLPs were built using Python’s Keras and TensorFlow libraries.

The multi-layer perceptron (MLP) architecture consisted of an input layer, multiple
hidden layers, and an output layer. Models were trained for 100 epochs using a 28-day
sliding window. The rectified linear unit (ReLU) activation function was employed in
the hidden layers, while the Huber loss function was utilized to balance sensitivity to
outliers and robustness to noise. Hyperparameter tuning, including the number of hidden
layers, number of nodes per layer, batch size, and learning rate, was conducted through
grid search. The optimal configuration was determined to be a single hidden layer with
80 nodes, a batch size of 2, and a stochastic gradient descent (SGD) optimizer with a
learning rate of 0.001. To mitigate overfitting, early stopping and L2 regularization were
implemented. Early stopping monitored the validation loss and halted training when no
further improvement was observed. L2 regularization added a penalty term to the loss
function, discouraging excessively large weights. A regularization parameter of 0.001 was
found to be effective in balancing model complexity and generalization.

Initially, only historical sales data were used as input for forecasting. To enhance the
model’s robustness and interpretability, a set of nine additional regressors was carefully
selected and incorporated into both ARIMA and MLP models. These regressors include the
SKU price; six binary variables representing the days of the week; and two binary variables
indicating major holidays, namely Christmas and Easter. The inclusion of price serves as a
proxy for promotions, as price reductions typically signal promotional activity, offering
insight into how discounts affect sales patterns. The weekday variables capture weekly
seasonality, helping the model account for fluctuations in demand across different days.
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The holiday indicators are critical for modeling sales spikes during periods of heightened
consumer activity.

To ensure forecast coherence within the hierarchical structure, base forecasts were
reconciled using both bottom-up and top-down methods [81]. These methods rely on
proportions calculated from forecasts. Additionally, optimal reconciliation strategies em-
ploying ordinary least squares (OLS) and weighted least squares (WLS) estimators were
applied. The htsrec() and tdrec() functions from the R package FoReco were used to imple-
ment these reconciliation techniques.

To evaluate the performance of a forecasting model, it is common practice to split
the dataset into two parts: a training set and a testing set. The training set is used to
estimate the model’s parameters, while the testing set is used to assess the accuracy of
the forecasts generated by the model. In this study, the ARIMA models were estimated
based on 1085 days of data from 3 January 2012 to 22 December 2014. The subsequent
period, from 23 December 2014 to 27 April 2015 (126 days), served as the testing set.
Conversely, the MLPs utilized only the initial 847 days for training, with the following
238 days designated as a validation set to optimize model parameters. The testing set for
the MLPs remained identical to that of the ARIMA models.

Forecasts were generated using a rolling-window approach, as depicted in Figure 4.
The training set is indicated by dark-red bars, and the testing set by light-red bars. The train-
ing set was iteratively expanded by one day at each step, successively shifting the forecast
origin. This process yielded seven-day-ahead forecasts.
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Figure 4. Rolling-window approach for forecasting with 120 rolling steps. The training set is
represented by dark-red bars and the testing set by light-red bars. At each step, the training set is
incrementally extended by one day, producing forecasts for a 7-day horizon.

Given a training set (y1, y2, . . . , yT) and a testing set (yT+1, yT+2, . . .), for a given time
period (T + h, where h denotes the forecast horizon), the forecast error eT+h is the difference
between the observed value (yT+h) and the predicted value (ŷT+h|T):

eT+h = yT+h − ŷT+h|T . (28)

To compare forecast errors across different data scales at various hierarchical levels,
model performance was evaluated using scaled error metrics: the Mean Absolute Scaled
Error (MASE) proposed by Hyndman and Koehler [113] and the Root Mean Squared Scaled
Error (RMSSE). In the MASE, errors are scaled by the Mean Absolute Error (MAE) of the
seasonal naïve method computed on the training set:

SAEj =
|ej|

1
T−m ∑T

t=m+1|yt − yt−m|
, (29)

where m denotes the seasonal period, set to m = 7 to capture the inherent weekly seasonality
of the data. Similarly, in the RMSSE, errors are scaled by the Mean Squared Error (MSE) of
the seasonal naïve method computed on the training set:

SSEj =
e2

j
1

T−m ∑T
t=m+1(yt − yt−m)

2 . (30)
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The MASE and RMSSE forecast accuracy metrics were calculated as the mean and
square root of the mean of all SAEj and SSEj values, respectively:

MASE = mean
(
SAEj

)
, (31)

RMSSE =
√

mean
(
SSEj

)
. (32)

4.3. Results

The evaluation of the forecasting models is presented progressively, focusing first on
the most significant outcomes, then expanding to more detailed comparisons across models,
forecasting horizons, and hierarchical levels. Figure 5 demonstrates the training progress
for MLP models with and without the inclusion of regressors. Both Huber loss and mean
absolute error (MAE) progressively decline over the course of training in both the training
and validation datasets, with a more pronounced reduction during the initial stages. This
trend is characteristic of neural networks, where early learning typically captures significant
patterns before fine tuning later in the training process. Notably, the MLP model with
regressors converged more rapidly, triggering early stopping after 29 epochs, whereas the
standard MLP persisted to the maximum number of epochs. This behavior aligns with
expectations, as the early-stopping criterion prevents overfitting, especially in the presence
of added regressors, which can accelerate convergence. As is typical, the training set
achieved lower loss and error metrics compared to the validation set, given that the model
was directly optimized using the training data while remaining blind to the validation set.

Figure 5. Huber loss (blue) and mean absolute error (MAE, red) during MLP training for a typical
SKU, comparing the standard MLP (left) and an MLP with regressors (right).

Figure 6 offers a comparative visual analysis of sales forecasts for a representative SKU
over the test period from 23 December 2014 to 27 April 2015. This figure juxtaposes actual
sales data with forecasted values produced by ARIMA, ARIMAX, MLP, and MLP models
incorporating regressors. Despite the inherent difficulty of forecasting highly volatile sales
patterns, models augmented with regressors exhibit a closer approximation to the true data
compared to their non-regressor counterparts. This suggests that external factors captured
by regressors contribute meaningfully to the model’s ability to mitigate error in the face of
variability, although no model perfectly captures the extremes of sales fluctuations.

The comparative forecast accuracy of the four models—ARIMA, ARIMAX, MLP,
and MLP with regressors—is presented in Tables 2–5. These tables evaluate performance
across various hierarchical levels and forecast horizons, spanning one to seven days (h = 1
to h = 7), as well as the overall average. For each forecast horizon and hierarchical level,
the most accurate model is highlighted in bold. Clear trends emerge: ARIMAX consistently
outperforms ARIMA across all horizons and hierarchical levels, highlighting the beneficial
impact of incorporating regressors into model performance.
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Notably, while ARIMA-based models typically struggle with longer-term forecasts,
MLP models demonstrate superior performance beyond the one-day forecast horizon. This
finding is particularly significant for retail applications, where medium-term forecasts are
critical for effective inventory management. The advantage of MLPs is further amplified
when base forecasts are reconciled across hierarchical levels, with the reconciliation process
effectively enhancing forecast accuracy for longer-term horizons.

Figure 6. Actual and forecasted sales for a representative SKU, comparing ARIMA, ARIMAX, MLP,
and MLP with regressors models (red: actual; blue: forecast).

Interestingly, the inclusion of regressors does not universally improve MLP perfor-
mance, in stark contrast to their impact on ARIMA models. The ARIMAX model’s advan-
tage likely stems from its ability to incorporate real-time regressor data during forecast
generation, whereas MLP models, constrained by their architecture, utilize only historical
regressor data. This limitation may account for the diminished effectiveness of regressors
in the MLP framework. Exploring more sophisticated neural architectures, which allow for
dynamic incorporation of external data, could potentially bridge this gap, although at the
cost of increased computational demand—a tradeoff less desirable in retail environments
where speed and efficiency are paramount, given the vast number of SKUs to forecast.

In terms of reconciliation strategies, the WLS (struct) estimator consistently provides
superior results, although it is occasionally outperformed by the bottom-up method, partic-
ularly at lower levels of the forecasting hierarchy. This result suggests that while sophisti-
cated reconciliation methods offer benefits, simpler approaches may still yield competitive
accuracy in specific contexts, especially when more granular forecasting is required.
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Table 2. MASE and RMSSE of forecasts generated by ARIMA models.

ARIMA

MASE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 0.9811 1.0442 1.0650 1.0773 1.0950 1.1047 1.1041 1.0673
Bottom-up 1.0090 1.0438 1.0398 1.0327 1.0336 1.0292 1.0228 1.0301
Top-down 0.9811 1.0442 1.0650 1.0773 1.0950 1.1047 1.1041 1.0673
OLS 0.9671 1.0260 1.0463 1.0531 1.0670 1.0743 1.0735 1.0439
WLS (struct) 0.9609 1.0131 1.0256 1.0288 1.0376 1.0407 1.0382 1.0207

Level 1: Region

Base 0.8975 0.9381 0.9496 0.9502 0.9570 0.9592 0.9590 0.9444
Bottom-up 0.9157 0.9439 0.9427 0.9388 0.9409 0.9377 0.9337 0.9362
Top-down 0.9118 0.9595 0.9733 0.9814 0.9921 0.9987 0.9979 0.9735
OLS 0.8976 0.9455 0.9605 0.9660 0.9761 0.9811 0.9812 0.9583
WLS (struct) 0.8875 0.9274 0.9367 0.9399 0.9471 0.9490 0.9479 0.9336

Level 2: Store

Base 0.7974 0.8113 0.8106 0.8109 0.8120 0.8107 0.8083 0.8088
Bottom-up 0.7974 0.8113 0.8106 0.8109 0.8120 0.8107 0.8083 0.8088
Top-down 0.8136 0.8412 0.8523 0.8627 0.8724 0.8796 0.8810 0.8575
OLS 0.8115 0.8402 0.8523 0.8611 0.8697 0.8762 0.8775 0.8555
WLS (struct) 0.7981 0.8221 0.8307 0.8369 0.8433 0.8470 0.8473 0.8322

RMSSE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.6757 1.7551 1.7809 1.7963 1.8277 1.8445 1.8332 1.7876
Bottom-up 1.7602 1.7792 1.7691 1.7734 1.7792 1.7709 1.7613 1.7705
Top-down 1.6757 1.7551 1.7809 1.7963 1.8277 1.8445 1.8332 1.7876
OLS 1.6607 1.7311 1.7557 1.7629 1.7869 1.8006 1.7921 1.7557
WLS (struct) 1.6637 1.7140 1.7264 1.7329 1.7505 1.7567 1.7481 1.7275

Level 1: Region

Base 1.4903 1.5373 1.5538 1.5519 1.5621 1.5670 1.5639 1.5466
Bottom-up 1.5476 1.5609 1.5555 1.5617 1.5673 1.5619 1.5547 1.5585
Top-down 1.5004 1.5575 1.5737 1.5865 1.6105 1.6230 1.6152 1.5810
OLS 1.4836 1.5377 1.5567 1.5645 1.5854 1.5944 1.5885 1.5587
WLS (struct) 1.4825 1.5185 1.5273 1.5351 1.5496 1.5538 1.5480 1.5307

Level 2: Store

Base 1.2645 1.2757 1.2723 1.2764 1.2796 1.2785 1.2736 1.2744
Bottom-up 1.2645 1.2757 1.2723 1.2764 1.2796 1.2785 1.2736 1.2744
Top-down 1.2591 1.2999 1.3147 1.3285 1.3455 1.3578 1.3541 1.3228
OLS 1.2494 1.2897 1.3071 1.3173 1.3310 1.3415 1.3387 1.3107
WLS (struct) 1.2381 1.2672 1.2771 1.2860 1.2963 1.3030 1.2998 1.2811
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Table 3. MASE and RMSSE of forecasts generated by ARIMAX models.

ARIMAX

MASE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 0.7795 0.7863 0.7875 0.7799 0.7795 0.7756 0.7720 0.7800
Bottom-up 0.8141 0.8221 0.8221 0.8157 0.8161 0.8163 0.8151 0.8173
Top-down 0.7795 0.7863 0.7875 0.7799 0.7795 0.7756 0.7720 0.7800
OLS 0.7671 0.7744 0.7763 0.7693 0.7692 0.7659 0.7625 0.7692
WLS (struct) 0.7587 0.7671 0.7697 0.7636 0.7643 0.7630 0.7609 0.7639

Level 1: Region

Base 0.7406 0.7463 0.7457 0.7423 0.7433 0.7408 0.7377 0.7424
Bottom-up 0.7625 0.7679 0.7682 0.7643 0.7664 0.7666 0.7657 0.7659
Top-down 0.7532 0.7585 0.7579 0.7544 0.7545 0.7510 0.7483 0.7540
OLS 0.7422 0.7482 0.7473 0.7439 0.7445 0.7417 0.7395 0.7439
WLS (struct) 0.7329 0.7386 0.7391 0.7361 0.7372 0.7361 0.7340 0.7363

Level 2: Store

Base 0.7268 0.7301 0.7291 0.7301 0.7318 0.7309 0.7295 0.7298
Bottom-up 0.7268 0.7301 0.7291 0.7301 0.7318 0.7309 0.7295 0.7298
Top-down 0.7479 0.7513 0.7506 0.7511 0.7523 0.7505 0.7489 0.7504
OLS 0.7471 0.7502 0.7487 0.7492 0.7505 0.7490 0.7470 0.7488
WLS (struct) 0.7330 0.7362 0.7352 0.7360 0.7376 0.7363 0.7344 0.7355

RMSSE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.3318 1.3396 1.3441 1.3459 1.3519 1.3415 1.3320 1.3410
Bottom-up 1.4153 1.4075 1.4088 1.4093 1.4165 1.4141 1.4077 1.4113
Top-down 1.3318 1.3396 1.3441 1.3459 1.3519 1.3415 1.3320 1.3410
OLS 1.3207 1.3258 1.3298 1.3309 1.3375 1.3288 1.3187 1.3274
WLS (struct) 1.3196 1.3205 1.3239 1.3249 1.3323 1.3260 1.3169 1.3234

Level 1: Region

Base 1.2312 1.2279 1.2288 1.2304 1.2387 1.2344 1.2273 1.2312
Bottom-up 1.2811 1.2714 1.2710 1.2741 1.2814 1.2794 1.2755 1.2763
Top-down 1.2395 1.2404 1.2430 1.2468 1.2544 1.2473 1.2418 1.2447
OLS 1.2244 1.2244 1.2258 1.2293 1.2368 1.2305 1.2247 1.2280
WLS (struct) 1.2208 1.2171 1.2182 1.2217 1.2297 1.2253 1.2196 1.2218

Level 2: Store

Base 1.1414 1.1400 1.1375 1.1417 1.1455 1.1442 1.1411 1.1416
Bottom-up 1.1414 1.1400 1.1375 1.1417 1.1455 1.1442 1.1411 1.1416
Top-down 1.1440 1.1476 1.1488 1.1515 1.1563 1.1529 1.1496 1.1501
OLS 1.1329 1.1355 1.1328 1.1371 1.1412 1.1382 1.1341 1.1360
WLS (struct) 1.1212 1.1226 1.1200 1.1245 1.1287 1.1264 1.1224 1.1237
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Table 4. MASE and RMSSE of forecasts generated by MLPs.

MLP

MASE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.0199 1.0363 1.0260 1.0077 1.0131 1.0192 1.0110 1.0190
Bottom-up 1.0046 1.0109 1.0003 0.9931 0.9966 0.9980 0.9900 0.9991
Top-down 1.0199 1.0363 1.0260 1.0077 1.0131 1.0192 1.0110 1.0190
OLS 0.9999 1.0132 1.0071 0.9915 0.9948 1.0007 0.9931 1.0001
WLS (struct) 0.9898 1.0005 0.9938 0.9816 0.9846 0.9881 0.9815 0.9886

Level 1: Region

Base 0.9263 0.9349 0.9340 0.9223 0.9263 0.9287 0.9225 0.9279
Bottom-up 0.9210 0.9249 0.9176 0.9150 0.9171 0.9180 0.9139 0.9182
Top-down 0.9383 0.9508 0.9457 0.9328 0.9392 0.9413 0.9371 0.9407
OLS 0.9299 0.9402 0.9360 0.9242 0.9301 0.9329 0.9275 0.9315
WLS (struct) 0.9130 0.9217 0.9177 0.9092 0.9127 0.9143 0.9100 0.9141

Level 2: Store

Base 0.8101 0.8118 0.8085 0.8090 0.8109 0.8112 0.8086 0.8100
Bottom-up 0.8101 0.8118 0.8085 0.8090 0.8109 0.8112 0.8086 0.8100
Top-down 0.8306 0.8355 0.8325 0.8286 0.8319 0.8339 0.8284 0.8316
OLS 0.8311 0.8340 0.8321 0.8276 0.8313 0.8338 0.8280 0.8311
WLS (struct) 0.8195 0.8221 0.8200 0.8174 0.8200 0.8217 0.8171 0.8197

RMSSE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.7521 1.7263 1.7094 1.7024 1.7084 1.7157 1.7050 1.7170
Bottom-up 1.7832 1.7510 1.7314 1.7253 1.7332 1.7333 1.7282 1.7408
Top-down 1.7521 1.7263 1.7094 1.7024 1.7084 1.7157 1.7050 1.7170
OLS 1.7423 1.7089 1.6953 1.6879 1.6927 1.7014 1.6896 1.7026
WLS (struct) 1.7466 1.7114 1.6970 1.6892 1.6945 1.7015 1.6918 1.7046

Level 1: Region

Base 1.5545 1.5221 1.5145 1.5096 1.5141 1.5203 1.5109 1.5209
Bottom-up 1.5723 1.5443 1.5293 1.5290 1.5350 1.5346 1.5315 1.5394
Top-down 1.5549 1.5348 1.5239 1.5201 1.5275 1.5289 1.5238 1.5306
OLS 1.5514 1.5279 1.5160 1.5131 1.5204 1.5218 1.5155 1.5237
WLS (struct) 1.5466 1.5185 1.5070 1.5047 1.5099 1.5131 1.5072 1.5153

Level 2: Store

Base 1.2776 1.2669 1.2582 1.2605 1.2642 1.2638 1.2608 1.2646
Bottom-up 1.2776 1.2669 1.2582 1.2605 1.2642 1.2638 1.2608 1.2646
Top-down 1.2753 1.2682 1.2597 1.2620 1.2666 1.2673 1.2613 1.2658
OLS 1.2749 1.2645 1.2564 1.2578 1.2622 1.2640 1.2574 1.2625
WLS (struct) 1.2703 1.2589 1.2509 1.2528 1.2564 1.2580 1.2525 1.2571
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Table 5. MASE and RMSSE of forecasts generated by MLPs with regressors.

MLP with Regressors

MASE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.2115 1.1893 1.1752 1.1636 1.1617 1.1567 1.1527 1.1729
Bottom-up 1.0954 1.0709 1.0555 1.0439 1.0418 1.0377 1.0337 1.0541
Top-down 1.2115 1.1893 1.1752 1.1636 1.1617 1.1567 1.1527 1.1729
OLS 1.1962 1.1738 1.1596 1.1483 1.1467 1.1424 1.1390 1.1580
WLS (struct) 1.1580 1.1349 1.1203 1.1089 1.1072 1.1029 1.0994 1.1188

Level 1: Region

Base 1.0562 1.0382 1.0278 1.0202 1.0196 1.0167 1.0139 1.0275
Bottom-up 0.9910 0.9714 0.9603 0.9524 0.9511 0.9480 0.9447 0.9598
Top-down 1.0665 1.0484 1.0380 1.0298 1.0282 1.0241 1.0203 1.0365
OLS 1.0578 1.0397 1.0292 1.0212 1.0198 1.0157 1.0122 1.0279
WLS (struct) 1.0288 1.0102 0.9995 0.9915 0.9904 0.9873 0.9842 0.9988

Level 2: Store

Base 0.8559 0.8454 0.8389 0.8365 0.8365 0.8347 0.8324 0.8401
Bottom-up 0.8559 0.8454 0.8389 0.8365 0.8365 0.8347 0.8324 0.8401
Top-down 0.8927 0.8827 0.8767 0.8740 0.8738 0.8718 0.8694 0.8773
OLS 0.8933 0.8834 0.8774 0.8748 0.8748 0.8727 0.8703 0.8781
WLS (struct) 0.8776 0.8675 0.8613 0.8588 0.8588 0.8570 0.8548 0.8623

RMSSE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 1–7

Level 0: Total

Base 1.9013 1.8255 1.7965 1.7830 1.7824 1.7774 1.7739 1.8057
Bottom-up 1.8506 1.7698 1.7369 1.7247 1.7246 1.7218 1.7194 1.7497
Top-down 1.9013 1.8255 1.7965 1.7830 1.7824 1.7774 1.7739 1.8057
OLS 1.8896 1.8140 1.7851 1.7724 1.7727 1.7696 1.7672 1.7958
WLS (struct) 1.8705 1.7934 1.7633 1.7509 1.7513 1.7487 1.7465 1.7750

Level 1: Region

Base 1.6630 1.6004 1.5786 1.5713 1.5726 1.5702 1.5679 1.5891
Bottom-up 1.6326 1.5651 1.5404 1.5327 1.5332 1.5304 1.5279 1.5517
Top-down 1.6670 1.6028 1.5804 1.5715 1.5711 1.5659 1.5621 1.5887
OLS 1.6599 1.5969 1.5745 1.5661 1.5660 1.5611 1.5577 1.5832
WLS (struct) 1.6431 1.5779 1.5548 1.5469 1.5476 1.5447 1.5423 1.5653

Level 2: Store

Base 1.3141 1.2834 1.2698 1.2684 1.2693 1.2677 1.2651 1.2768
Bottom-up 1.3141 1.2834 1.2698 1.2684 1.2693 1.2677 1.2651 1.2768
Top-down 1.3296 1.3005 1.2882 1.2862 1.2867 1.2842 1.2811 1.2938
OLS 1.3268 1.2981 1.2858 1.2840 1.2847 1.2823 1.2794 1.2916
WLS (struct) 1.3180 1.2884 1.2757 1.2741 1.2750 1.2732 1.2706 1.2821

5. Conclusions

The inherent uncertainty in consumer demand requires that retailers employ robust
sales forecasting methods to manage stock efficiently and maintain high-quality customer
service. While traditional forecasting primarily relies on historical data, our findings
emphasize the value of integrating additional influencing factors, such as promotional
activities, to improve accuracy. However, incorporating these variables increases forecast
complexity and calls for more advanced methodologies.

In the retail environment, sales forecasts must accommodate a diverse range of prod-
ucts organized hierarchically, allowing for forecasts at various levels of aggregation. Our
study highlights the effectiveness of hierarchical forecasting in this context while also
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noting the lack of consensus on the optimal forecasting model for each level or the most
effective strategy for reconciling forecasts.

The primary aim of this research was to improve forecasting accuracy within the retail
sector by integrating additional information into a hierarchical forecasting framework,
thereby enhancing decision-making efficiency, particularly for larger retailers. Using
data from the Jerónimo Martins Group encompassing sales and pricing at Pingo Doce
stores from 3 January 2012 to 27 April 2015, we generated base forecasts across various
hierarchical levels employing ARIMA models alongside multi-layer perceptrons (MLPs).
Our approach began with sales data alone and progressively included additional variables
such as pricing and calendar events. The selection of MLP was motivated by recent
research that highlights deep learning’s ability to model complex, nonlinear relationships,
thereby providing potential advantages over traditional forecasting models. One of the
key strengths of MLPs is their relative simplicity and ease of training, which make them
accessible to a wider range of practitioners. In contrast to more complex architectures, MLPs
demand fewer computational resources and require less intensive hyperparameter tuning.
This streamlined approach allows for rapid prototyping and experimentation, establishing
MLPs as a compelling option for initial exploration in numerous deep learning applications.

In order to reconcile base forecasts, our study implemented both bottom-up and top-
down methods, in addition to optimal reconciliation strategies utilizing ordinary least
squares (OLS) and weighted least squares (WLS) estimators. We assessed the performance
of the forecasting models using mean absolute scaled error (MASE) and root mean squared
scaled error (RMSSE) as accuracy metrics.

Our results indicate that for forecast horizons extending beyond one day, MLPs yield
more accurate forecasts than ARIMA models. Additionally, we found that incorporating
promotional activities into ARIMA models enhances forecast accuracy, although this benefit
did not extend to the MLP model. This discrepancy may arise from differences in methods
of integrating regressors into each forecasting approach.

While this study utilized a single dataset from a major Portuguese retailer, which may
limit the generalizability of our findings, the hierarchical forecasting framework and the
integration of promotional data provide a transferable methodology that can be applied to
diverse retail contexts.

Our goal was to explore methods that balance accuracy with practical considerations,
particularly for retailers managing large portfolios of products, where computational effi-
ciency is critical. The multi-layer perceptron (MLP) model, which we used, is the simplest
neural network architecture within the broader class of deep learning models. It is much
easier to train, requires fewer computational resources, and has fewer hyperparameters to
tune compared to more complex deep learning models such as LSTM or CNN models. This
simplicity makes MLPs a practical and efficient solution for retailers, as they reduce training
time and computing power demands while still capturing nonlinear relationships in data.
For retailers with thousands of SKUs and limited computational resources, MLPs offers a
highly accessible and scalable forecasting model, ensuring that forecasts can be produced
quickly and without requiring extensive infrastructure. This approach fits the context of
retail forecasting, where the focus is often on operational efficiency and delivering reliable
results in a timely manner. Therefore, we prioritized computational simplicity and ease
of deployment, which are key factors in real-world retail applications. As future work,
we suggest exploring more complex deep learning models such as LSTM or CNN models
to compare their forecasting accuracy and computational efficiency with those of MLPs,
especially in contexts where additional computational resources are available and task
complexity justifies their use. To further improve the model’s robustness, future work
could explore more advanced feature engineering techniques. For example, decomposing
the promotional effect into different types of promotions (e.g., percentage discounts and
multi-buy offers) could provide greater granularity and improve interpretability regarding
the specific impact of each promotion. Additionally, incorporating external factors such as
competitor pricing, store-specific events, and broader economic indicators could be valu-
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able in capturing other nuances affecting sales performance. This approach would provide
a more holistic understanding of the factors influencing demand, potentially improving
both forecast accuracy and decision making. By addressing these avenues, we can continue
to refine forecasting methodologies and improve decision-making processes for retailers
operating in increasingly complex market environments.
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