
Citation: Shokouhinejad, H.;

Razavi-Far, R.; Higgins, G.; Ghorbani,

A.A. Node-Centric Pruning: A Novel

Graph Reduction Approach. Mach.

Learn. Knowl. Extr. 2024, 6, 2722–2737.

https://doi.org/10.3390/

make6040130

Academic Editor: Massimo Ferri

Received: 26 October 2024

Revised: 14 November 2024

Accepted: 20 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Node-Centric Pruning: A Novel Graph Reduction Approach
Hossein Shokouhinejad * , Roozbeh Razavi-Far , Griffin Higgins and Ali A. Ghorbani

Canadian Institute for Cybersecurity, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
roozbeh.razavi-far@unb.ca (R.R.-F.); griffin.higgins@unb.ca (G.H.); ghorbani@unb.ca (A.A.G.)
* Correspondence: hossein.shokouhinejad@unb.ca

Abstract: In the era of rapidly expanding graph-based applications, efficiently managing large-scale
graphs has become a critical challenge. This paper introduces an innovative graph reduction tech-
nique, Node-Centric Pruning (NCP), designed to simplify complex graphs while preserving their
essential structural properties, thereby enhancing the scalability and maintaining performance of
downstream Graph Neural Networks (GNNs). Our proposed approach strategically prunes less
significant nodes and refines the graph structure, ensuring that critical topological properties are
maintained. By carefully evaluating node significance based on advanced connectivity metrics, our
method preserves the topology and ensures high performance in downstream machine learning
tasks. Extensive experimentation demonstrates that our proposed method not only maintains the
integrity and functionality of the original graph but also significantly improves the computational
efficiency and preserves the classification performance of GNNs. These enhancements in computa-
tional efficiency and resource management make our technique particularly valuable for deploying
GNNs in real-world applications, where handling large, complex datasets effectively is crucial. This
advancement represents a significant step toward making GNNs more practical and effective for a
wide range of applications in both industry and academia.

Keywords: graphneural networks (GNNs); graph reduction; node-centric pruning (NCP); topology
preservation

1. Introduction

A graph is a fundamental data structure in mathematics and computer science, consist-
ing of nodes (vertices) connected by edges (links). Graphs are used to model relationships
and interactions in various fields such as computer science, biology, social sciences, and en-
gineering. In social networks, graphs help to analyze relationships and identify influential
nodes. In biology, they model interactions between biomolecules, aiding in understanding
diseases. In engineering, graphs can optimize network design and improve efficiency in
communication and transportation systems. Their importance lies in their ability to abstract
and simplify complex systems, making them essential for both theoretical research and
practical applications.

Graph reduction refers to the process of simplifying a graph, while preserving its
essential properties and structural characteristics. This technique is crucial for managing
the complexity of large-scale graphs, making them more tractable for analysis and compu-
tation. In practical applications, graph reduction is often necessary in order to improve the
efficiency, reduce computational resources, and enhance the scalability of solutions. For
instance, in network analysis, reduced graphs can facilitate faster detection of critical nodes
or bottlenecks, enabling timely and effective interventions. In the context of machine learn-
ing, graph reduction can help in preprocessing of data, where redundant or less significant
nodes and edges are eliminated, thus, streamlining the learning process and improving the
model performance. By employing reduction techniques, researchers and practitioners can
ensure that graph-based analyses remain feasible, accurate, and applicable to real-world

Mach. Learn. Knowl. Extr. 2024, 6, 2722–2737. https://doi.org/10.3390/make6040130 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6040130
https://doi.org/10.3390/make6040130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0009-0001-6342-2740
https://orcid.org/0000-0002-4330-3656
https://orcid.org/0000-0001-9189-6268
https://doi.org/10.3390/make6040130
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6040130?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2024, 6 2723

applications. There are mainly three graph reduction methods: graph coarsening, graph
condensation, and graph sparsification [1].

Graph coarsening reduces the graph by merging nodes and edges, forming a smaller
graph that approximates the original structure. This method often involves creating supern-
odes that represent clusters of nodes from the original graph, making it useful for multilevel
algorithms [2–7]. The authors in [5] investigate the problem of reducing the size of a graph,
while preserving its essential properties using a leveraging graph coarsening approach.
The study introduces a new perspective through restricted spectral approximation and
derives sufficient conditions for a smaller graph to approximate a larger one and proposes
nearly linear time algorithms for coarsening that improve the quality of the reduced graphs.
The paper [6] addresses GNN scalability by reducing graph size through coarsening. This
approach, which simplifies training and cuts memory costs, also acts as a form of regu-
larization, potentially enhancing model generalization. Furthermore, the authors in [7]
introduce an optimization-based framework for graph coarsening that takes into account
both the graph structure and node features. The proposed framework jointly learns a
coarsened graph matrix and feature matrix, while ensuring the coarsened graph maintains
a similarity to the original. This method guarantees that the coarsened graph is ϵ-similar to
the original graph, ensuring the preservation of key properties. While graph coarsening can
reduce the size of the original graph and potentially speed up computations, fine-tuning
the coarsening process to balance between computational efficiency and accuracy can
be difficult. It often requires domain-specific knowledge and extensive experimentation,
which can be computationally costly. Additionally, although a coarsened graph is smaller
and can result in faster subsequent computations, the graph coarsening process itself might
be too time-consuming for certain algorithms. In such cases, the overhead of coarsening
may surpass its advantages.

Graph condensation aims to synthesize a smaller yet highly representative graph,
enabling GNNs to achieve performance levels comparable to those attained when trained
on the larger original graph [8–20]. The paper [16] presents a graph condensation method
called CrafTing RationaL trajectory (CTRL). This method addresses the high cost and stor-
age concerns associated with training on large-scale graphs. The CTRL method improves
upon traditional graph condensation techniques by optimizing both the gradient direction
and magnitude, thereby minimizing accumulated errors and enhancing the performance of
the condensed graphs. In addition, Reference [17] introduced a method to address inefficien-
cies in existing graph condensation techniques, particularly when dealing with large-scale
graph datasets like web data. The authors identify two main inefficiencies: the concurrent
updating of a vast parameter set and pronounced parameter redundancy. To mitigate these
issues, they propose an Efficient and eXplainable Graph Condensation (EXGC) method.
EXGC employs the Mean-Field variational approximation to accelerate convergence and
integrates leading graph explanation techniques, such as GNNExplainer and Graph Stochas-
tic Attention (GSAT), to remove redundant parameters and enhance efficiency. The
paper [18] also proposes a graph condensation framework that addresses the computational
inefficiencies of existing methods. By reformulating graph condensation as a Kernel Ridge
Regression (KRR) task and introducing a Structure-based Neural Tangent Kernel (SNTK) to
capture graph topologies, the proposed method achieves efficient graph condensation. Fur-
thermore, the work [19] introduces a method called DisCo for graph condensation. DisCo
separates the condensation process for nodes and edges, addressing the scalability issues
of existing methods. This disentangled approach reduces GPU memory requirements and
enhances the ability to condense large-scale graphs. The paper [20] proposes a method
called Graph Condensation via Expanding Window Matching (GEOM). This method aims
to achieve lossless graph condensation by employing a curriculum learning strategy to
gather diverse supervision signals from the original graph. GEOM uses expanding window
matching to transfer rich information efficiently and introduces a new loss function to
extract knowledge from expert trajectories. While graph condensation offers a promising
method for managing large graphs, its effectiveness can be highly sensitive to various

Mach. Learn. Knowl. Extr. 2024, 6 2724

parameters and hyperparameters, posing challenges in identifying the optimal settings.
Even slight adjustments in parameters can lead to substantial variations in the resulting
condensed graph and the performance of GNN. Additionally, the condensation process is
often computationally intensive and complex. Creating an effective condensation algorithm
that retains crucial information, while minimizing computational demands, is a significant
challenge. Furthermore, condensation can diminish the model’s and the graph’s inter-
pretability, making it harder to discern underlying patterns and relationships. Important
nodes and edges may be merged or omitted, reducing the graph’s structural clarity.

Graph sparsification, on the other hand, involves reducing the number of edges or
nodes in the graph, typically by removing edges or nodes with the least significance or by
using algorithms that retain a sparsified version of the original graph that approximates
certain properties, such as spectral properties or connectivity [21–25]. Reference [21] intro-
duces a method for sparsification of weighted graphs. A t-spanner is a subgraph, where
distances between nodes are at most t times the original graph’s distances. The authors
present a simple polynomial-time algorithm to construct these sparse spanners, which
reduces both the number of edges and total edge weight, while preserving approximate
distances. The authors in [23,25] proposed sparsification techniques intended to preserve
the performance of downstream tasks when using GNNs for graph embeddings in the
reduced graph. The study [23] introduces a Unified GNN Sparsification (UGS) framework
that prunes both the graph adjacency matrix and the model weights simultaneously. By
extending the Lottery Ticket Hypothesis (LTH) to GNNs, the paper demonstrates that it is
possible to identify highly sparse and independently trainable sub-networks that match
the performance of the original dense models. Additionally, the authors in [25] introduced
the concept of separation rank to quantify these interactions and revealed that the ability
of GNNs to model interactions is primarily determined by the partition’s walk index,
which is a graph-theoretical characteristic defined by the number of walks originating from
the boundary of the partition. The paper also presents an edge sparsification algorithm
named Walk Index Sparsification (WIS), which aims to preserve the expressive power of
GNNs, while removing edges. In general, graph sparsification is often less computation-
ally expensive compared to graph coarsening or graph condensation. Nonetheless, UGS
and WIS are intricate algorithms, and their implementation for large graphs can become
computationally expensive and time-consuming.

In this paper, we introduce a novel two-step graph sparsification technique named
Node-Centric Pruning (NCP), specifically designed to maintain the performance of graph
classification. The first step of NCP focuses on pruning nodes with minimal connections,
effectively removing non-essential elements that do not significantly influence the overall
graph structure. In the second step, we employ a Jaccard similarity-based algorithm to
further refine the graph. This method meticulously preserves the core topology by selec-
tively maintaining nodes that contribute meaningfully to the graph’s structure. Both steps
of NCP are straightforward to implement, computationally efficient, and quick to execute,
making it a practical choice for real-world applications. Our experiments demonstrate that
NCP outperforms WIS, particularly in enhancing the accuracy and efficiency of GNNs in
graph classification tasks.

The main contributions of this study are as follows:

• We propose a novel, two-step graph sparsification technique that effectively balances
graph reduction with classification performance preservation for GNNs.

• The proposed method is computationally efficient and simple to implement, offering
a practical alternative to more complex methods like WIS, which can be resource-
intensive for large graphs.

• Experimental results demonstrate that our approach enhances both the accuracy and
efficiency of GNNs in graph classification tasks compared to WIS.

The remainder of this paper is organized as follows: Section 2 provides the necessary
preliminaries and notations, Section 3 details the proposed NCP algorithm, Section 4
presents experimental results comparing NCP with the state-of-the-art method, WIS, on

Mach. Learn. Knowl. Extr. 2024, 6 2725

standard datasets, and Section 5 concludes with a discussion on the implications of our
findings and potential areas for future research.

2. Preliminaries
2.1. Basic Notations

Let G = (V , E) represent a graph, where V = {v1, . . . , vn} denotes the set of nodes,
and E ⊆ {(vi, vj) | vi, vj ∈ V} represents the set of edges. The reduced graph is denoted by
G ′ = (V ′, E ′).

2.2. Jaccard Similarity

In the context of graph theory, the Jaccard similarity between two nodes vi and vj is a
measure of the similarity between their sets of neighbors. It is defined as the size of the
intersection of the neighbors of vi and vj divided by the size of their union.

Let N (vi) and N (vj) denote the sets of neighbors of nodes vi and vj, respectively. The
Jaccard similarity J (v1, v2) is given by

J (vi, vj) =
|N (vi) ∩N (vj)|
|N (vi) ∪N (vj)|

(1)

where:

• N (vi) ∩N (vj) represents the set of common neighbors of vi and vj;
• N (vi) ∪N (vj) represents the set of all unique neighbors of vi and vj.

The Jaccard similarity J (vi, vj) ranges from 0 to 1, where 0 indicates no shared neigh-
bors and 1 indicates identical sets of neighbors.

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful class of neural networks designed
to operate on graph-structured data. They exploit the inherent relationships and depen-
dencies within the graph to perform tasks such as node classification, link prediction, and
graph clustering [26]. The core mechanism of GNNs involves iteratively updating node
representations through a series of message-passing layers, where each layer aggregates
information from a node’s neighbors. This iterative process allows GNNs to capture both
local and global graph structures, depending on the number of layers, which is commonly
referred to as the network’s depth [27].

The depth of a GNN, denoted as D, which corresponds to the number of message-
passing layers, is a critical parameter as it dictates the extent of information propagation
across the graph. Let hl

i represent the node embeddings for node i at layer l. Each GNN
layer takes as input the node embeddings. The node representations for node i at each
layer l + 1 are updated using the following formula:

h(l+1)
i = f

hl
i , ∑

j∈N (i)
g(i, j)

 (2)

where f and g are learnable functions and N (i) are the neighbors of node i. The depth
of a GNN directly influences the receptive field of each node, effectively determining the
number of hops or neighbors from which information can be aggregated.

3. Method

Efficient graph reduction techniques are essential for enhancing the scalability and
learning performance of GNNs by simplifying complex network structures. Our proposed
NCP algorithm strategically reduces graph complexity while ensuring topology preser-
vation, meaning the retention of the graph’s essential structural characteristics and core
connectivity patterns. This preservation is achieved by applying advanced connectivity
metrics to assess each node’s significance within the network. Specifically, in NCP, these

Mach. Learn. Knowl. Extr. 2024, 6 2726

metrics involve analyzing walks of a specified length, L, originating from each node.
These walks measure reachability by counting the unique nodes accessible within this
range, which indicates each node’s connectivity and influence. Nodes with high reachabil-
ity counts demonstrate significant connectivity and play central roles in maintaining the
graph’s core pathways.

NCP further distinguishes between more and less significant nodes based on their
connectivity and role within the overall structure. Nodes deemed less significant contribute
minimally to the graph’s primary structure and are thus removed, while more significant
nodes—those with strong connections and higher structural relevance—are retained. By
systematically identifying and removing less critical nodes, NCP reduces the graph’s size
and complexity, ensuring that the pruned structure remains highly representative of the
original. This balanced reduction process creates a streamlined graph suited for efficient
GNN processing without sacrificing essential structural information.

The NCP algorithm is based on certain assumptions regarding the nature of the graph
data. Primarily, NCP is designed for graphs that contain distinguishable connectivity
patterns or structural hubs, where key nodes demonstrate significant reachability within
a defined neighborhood. Additionally, the algorithm assumes that the graph data are
large and complex enough for node pruning to yield computational benefits without
compromising essential structural features.

3.1. Node Categorization and Sparse Node Removal

The first step of the algorithm focuses on identifying nodes that are critical to the
graph’s structure, termed as Nexus Nodes. This is achieved by exhaustively analyzing
all possible walks of a fixed length, denoted by L, starting from each node in the graph.
Nodes that do not meet the criteria to be categorized as Nexus Nodes are further examined
to determine whether they should be retained as Connector Nodes or removed as Sparse
Nodes, based on their direct connections to Nexus Nodes. As shown in Figure 1b, after
identifying and categorizing nodes, Sparse Nodes that do not significantly contribute to
the graph’s structure are removed.

(a) Original Graph (b) Sparse Node Removing (c) Connector Node Pruning

Figure 1. Example of graph reduction using the NCP algorithm: (a) Original graph. (b) Removal of
Sparse Nodes with L = 2 and β = 8. (c) Pruning of Connector Nodes with θ = 0.15.

To categorize the nodes, the NCP calculates the connectivity level of each node v by
considering all possible walks originating from v. These walks are systematically generated
to include every possible path of length L. The collection of such walks is represented as
Walks(v,L), which can be mathematically defined as

Walks(v,L) = {w | |w| = L, w0 = v} (3)

where:

• w represents a specific walk within the graph.
• |w| = L indicates that the length of the walk w is exactly L steps.
• w0 = v specifies that the starting point of the walk w is the node v.

From these generated walks, the algorithm extracts the set of unique nodes encoun-
tered, referred to as NodeSet(v). This set encompasses all nodes that appear in any walk
originating from v and provides a measure of the node’s reachability within the graph:

Mach. Learn. Knowl. Extr. 2024, 6 2727

NodeSet(v) = {u | u ∈ w, w ∈Walks(v,L)} (4)

The cardinality of this set, NodeCount(v), represents the number of unique nodes
accessible from v through walks of length L. This count is used to determine whether v
qualifies as a Nexus Node:

NodeCount(v) = |NodeSet(v)| (5)

A node v is determined as a Nexus Node, denoted as vn, if NodeCount(v) meets
or exceeds a predefined threshold β. Nexus Nodes are characterized by their significant
connectivity within the graph, as evidenced by the large number of unique nodes they
connect to within the specified walk length.

Nodes that do not satisfy the Nexus Node criteria are further evaluated for their
connectivity to Nexus Nodes. Specifically, a node v that is not categorized as a Nexus Node
(v /∈ NexusNodes) is labeled as a Connector Node, denoted as vc, if it has a direct edge
connecting it to at least one Nexus Node. If no such direct connection exists, the node is
identified as a Sparse Node (vs).

Sparse Nodes, along with their associated edges, are removed from the graph, which
leads to a reduction in the graph’s overall size and complexity. The sets of remaining nodes
and edges after this removal are denoted by V̂ and Ê , respectively:

V̂ = V − {v | v = vs} (6)

Ê = E − {all edges connected to vs} (7)

This step effectively eliminates nodes that do not contribute significantly to the graph’s
structural integrity, thereby streamlining the graph for further analysis.

3.2. Connector Node Pruning Using Jaccard Similarity

After categorizing nodes and removing Sparse Nodes in the first step, the NCP
algorithm further refines the graph by evaluating the Connector Nodes. This evaluation is
based on their structural similarity to Nexus Nodes, using the previously defined Jaccard
similarity measure. Figure 1c demonstrates the pruning of Connector Nodes based on
Jaccard similarity.

For each Connector Node vc, the algorithm calculates the Jaccard similarity with each
of its directly connected Nexus Nodes vn. The goal is to determine the extent to which
a Connector Node shares its neighborhood with Nexus Nodes. The maximum Jaccard
similarity score for each Connector Node vc with its Nexus Node neighbors is computed as:

Jmax(vc) = max
vn∈NexusNodes

J (vc, vn) (8)

where J (vc, vn) is the Jaccard similarity between Connector Node vc and Nexus Node vn.
This score Jmax(vc) reflects the strongest structural relationship that the Connector Node
vc has with the Nexus Nodes.

To decide whether to retain or prune a Connector Node, the algorithm compares
Jmax(vc) against a predefined threshold θ. If Jmax(vc) is less than θ, it indicates that
the Connector Node vc has insufficient similarity to the Nexus Nodes to be considered
structurally significant. Consequently, such nodes and their associated edges are pruned
from the graph:

V ′ = V̂ − {vc | Jmax(vc) < θ} (9)

E ′ = Ê − {all edges connected to pruned vc} (10)

Mach. Learn. Knowl. Extr. 2024, 6 2728

Here, V ′ and E ′ represent the sets after pruning based on the Jaccard similarity. This
step ensures that the remaining Connector Nodes are those that have significant connections
with the core structure of the graph, as represented by the Nexus Nodes. By retaining only
the most structurally relevant nodes, the reduced graph G ′ = (V ′, E ′) retains the essential
properties of the original graph, facilitating more efficient analysis and interpretation.
Algorithm 1 presents the pseudo-code for our proposed graph reduction technique.

Algorithm 1: NCP Algorithm.

Input: Graph G(V , E), Walk Length L, β, θ;
Step 1: Node Categorization and Sparse Node Removal
NexusNodes← ∅;
ConnectorNodes← ∅;
for each node v ∈ V do

Walks← generateAllWalks(v, L);
NodeSet← getUniqueNodes(Walks);
NodeCount← size(NodeSet);
if NodeCount ≥ β then

Add v to NexusNodes;
end

end
for each node v /∈ NexusNodes do

if v is directly connected to any Nexus Node then
Add v to ConnectorNodes;

else
Remove v from V ;
Remove edges connected to v from E ;

end
end
Step 2: Connector Node Pruning Using J
for each node vc ∈ ConnectorNodes do

max_similarity← 0;
for each node vn ∈ NexusNodes connected to vc do

similarity← J (vc, vn);
if similarity > max_similarity then

max_similarity← similarity;
end

end
if max_similarity < θ then

Remove vc from V ;
Remove edges connected to pruned vc from E ;

end
end
Output: Reduced Graph G ′ = (V ′, E ′);

Our node pruning algorithm aims to maintain the performance of GNNs by strate-
gically reducing the graph’s size, while retaining critical structural and feature-related
information. This reduction is achieved through the retention of “NexusNodes”, which are
identified based on walks of a specified length, L. These nodes are integral to the graph’s
connectivity and are likely to hold central roles in information flow, making them partic-
ularly valuable for learning tasks. By pruning less significant nodes, our algorithm not
only reduces computational demands on GNN—thereby decreasing training and inference
times—but also minimizes noise, potentially enhancing GNN’s ability to generalize from
training data.

Mach. Learn. Knowl. Extr. 2024, 6 2729

The second step of the NCP algorithm involves the process of pruning the Connector
Nodes using the Jaccard similarity, which ensures that only those Connector Nodes that
share a significant overlap in their neighborhoods with the Nexus Nodes are retained. This
step is critical for maintaining the integrity of the graph structure, while still eliminating
redundant connections that do not contribute meaningfully to the network’s information
processing capabilities. By applying a threshold-based similarity measure, this step helps
in further refining the graph to a structure that is highly representative of the original graph
yet significantly more efficient for processing by a GNN.

Moreover, the relationship between the walk length L in our pruning algorithm and the
depth D of a GNN is meticulously calibrated to ensure that the pruned graph is optimally
structured for the GNN’s receptive field. For clarity, let D represent the depth of a GNN,
which dictates how far the network aggregates information from its nodes. In the case of a
GNN with a depth D = 3, the layers of information aggregation are defined as follows:

• D = 1: Processes the node’s own features.
• D = 2: Aggregates information from the node’s immediate neighbors.
• D = 3: Aggregates information from the neighbors of the node’s immediate neighbors

(two-hop neighborhood).

Given this setup, to align the pruning process effectively with GNNs’ capabilities, the
walk length L in our algorithm is set to D − 1. This means for a GNN with a depth of 3, L
would be 2. This setting ensures that the structural and feature information retained in the
pruned graph matches the depth of information processing in the GNN up to its second
depth. By configuring L = D − 1, our algorithm enhances the efficiency and effectiveness
of a GNN, focusing the network’s learning on the most crucial features and connections
within the graph, which are essential for capturing meaningful patterns and interactions.

Figure 1 illustrates this process, showing (a) the original graph, (b) the removal of
Sparse Nodes with L = 2 and β = 8, and (c) the pruning of Connector Nodes with θ = 0.15.

3.3. Time and Space Complexity Analysis of the NCP Algorithm

To address the computational complexity of the proposed NCP algorithm, we analyze
both time and space requirements for each phase. Here, |V| denotes the number of nodes
in the graph, while |E | represents the number of edges in the graph.

In Step 1, all possible walks of a specified length L are generated for each node. For a
node with degree d, the number of potential unique walks of length L grows approximately
as dL, where each additional step in the walk introduces up to d branching choices. Gener-
ating these walks for each node in the graph yields a time complexity of O(|V| · dL). After
generating these walks, we count the unique nodes encountered, which further requires
examining each of the dL walks to identify distinct nodes. Thus, the complexity of counting
unique nodes also remains O(|V| · dL) in time. For categorizing nodes into Nexus Nodes
and Connector Nodes, a simple check is applied to each node, contributing an additional
O(|V|) complexity in time. Therefore, the overall time complexity for Step 1 is O(|V| · dL).

In Step 2, each Connector Node is evaluated by computing the Jaccard similarity
between its neighborhood and that of connected Nexus Nodes. Each similarity calculation
takes O(d) time, and each Connector Node has up to d neighbors, leading to a time
complexity of O(|V| · d2) for this step. The final check to determine if the maximum
similarity meets the threshold θ incurs negligible additional time complexity. Thus, the
overall time complexity for Step 2 is O(|V| · d2).

Combining the complexities of the two steps, the overall time complexity of the NCP
algorithm is O(|V| · dL + |V| · d2).

The space complexity of the NCP algorithm is determined by the storage requirements
for the graph, the generated walks, and any additional structures used in the algorithm.
Storing the original graph requires O(|V|+ |E |) space. In Step 1, all generated walks of
lengthLmust be stored for each node, leading to an additional O(|V| · dL) space complexity,
as there can be up to dL walks from each node. Counting unique nodes in these walks
requires no additional space beyond what is needed to store the walks themselves. Storing

Mach. Learn. Knowl. Extr. 2024, 6 2730

node categories (Nexus Nodes, Connector Nodes) requires only O(|V|) space. In Step 2,
similarity values between nodes are computed and discarded as needed, so no extra space
is required beyond O(|V|) to temporarily store these values during processing. Thus, the
overall space complexity for Step 1 is O(|V| · dL) and for Step 2 is O(|V|).

Combining these factors, the overall space complexity of the NCP algorithm is O(|V| ·
dL + |V|+ |E |).

3.4. Extension of NCP to Weighted and Directed Graphs

The NCP algorithm, as presented, is designed for undirected, unweighted graphs.
However, extending NCP to weighted or directed graphs could provide valuable insights
in cases where edge weights reflect varying connection strengths or directionality indicates
information flow. Below, we outline potential adaptations for both graph types.

In weighted graphs, where edge weights signify the strength or significance of connec-
tions, additional criteria for Nexus Node identification could incorporate weight thresholds
or aggregate connection strengths. For instance, in the walk generation phase, weighted
connections could be prioritized, allowing the algorithm to favor nodes with stronger overall
connectivity. This adaptation might require modifying the Nexus threshold (β) to consider
cumulative edge weights instead of solely relying on the number of connections, potentially
refining Nexus Node identification in graphs where connection strengths vary significantly.

In directed graphs, where edges indicate information flow, additional modifications are
necessary for effective pruning. To adapt the Nexus Node identification approach for directed
graphs, we propose the following changes. First, we generate two distinct sets of walks for
each node: Incoming Walks, which capture paths leading into a node and represent how
influence or information flows toward that node, and Outgoing Walks, which capture paths
leading out from a node, indicating how influence or information propagates outward. After
generating the incoming and outgoing walks for each node, we calculate the unique nodes
reached within each set and define two separate thresholds: βin for incoming connectivity
and βout for outgoing connectivity. A node qualifies as a Nexus Node if it meets either the
incoming or outgoing threshold, allowing the algorithm to identify nodes that are either
influential sources or significant recipients within the graph’s directional flow.

For pruning Connector Nodes in directed graphs, we calculate Jaccard similarity
between each Connector Node and its connected Nexus Nodes separately for incoming
and outgoing edges. Connector Nodes with low similarity in both incoming and outgoing
connections relative to Nexus Nodes are pruned, ensuring that only those Connector Nodes
with meaningful directed connections remain in the pruned graph.

These adaptations allow NCP to account for the additional structural nuances present
in both weighted and directed graphs. In future work, we aim to test these modifications
across a range of weighted and directed graph datasets to evaluate their effectiveness and
impact on classification tasks.

3.5. Parameter Sensitivity and Robustness of NCP

The performance and quality of the NCP algorithm can vary based on its key parame-
ters: walk length (L), Nexus threshold (β), and similarity threshold (θ). These parameters
impact the level of reduction and preservation of essential graph structures, and tuning
them for specific graph types can be beneficial:

• Walk Length (L): Increasing the walk length enables NCP to capture more extensive con-
nections, which is particularly useful in dense graphs with higher clustering coefficients.
In contrast, for sparser graphs, shorter walks may be more appropriate to avoid excessive
inclusion of distant nodes that may not contribute significantly to core structure.

• Nexus Threshold (β): The Nexus threshold controls which nodes are classified as
Nexus Nodes, depending on their connectivity. Graphs with high-degree nodes (e.g.,
social networks with hubs) may benefit from a higher β to avoid designating too many
Nexus Nodes, while low-density graphs may require a lower β to ensure that essential
connections are retained.

Mach. Learn. Knowl. Extr. 2024, 6 2731

• Similarity Threshold (θ): The similarity threshold influences Connector Node pruning,
and its effect can vary by graph type. In graphs with uneven node degree distributions
(e.g., citation networks), a lower θ may help retain essential connections, while a
higher θ could be suitable for more uniform graphs like biological networks, where
local structure is critical.

In future work, we intend to conduct a thorough sensitivity analysis on different
types of graphs (e.g., social networks, biological networks, citation networks) to evaluate
the robustness of NCP across varying structural characteristics such as density, node
degree distribution, and clustering coefficient. This analysis will help to establish general
guidelines for parameter selection based on graph characteristics.

3.6. Limitations and Disadvantages of the NCP Method

While the NCP method offers notable efficiency and performance benefits, it also has
certain limitations:

• Dependence on Threshold Parameters: The effectiveness of NCP depends on threshold
parameters β (for node categorization) and θ (for Jaccard similarity-based pruning).
These parameters need careful tuning to balance graph reduction and classification per-
formance. Choosing suboptimal values for these thresholds can lead to over-pruning,
where critical information may be lost, or under-pruning, where the graph remains too
dense for efficient processing. As optimal threshold values can vary across datasets,
selecting appropriate values may require parameter tuning or experimentation on a
per-dataset basis.

• Applicability Limited to Certain Graph Types: NCP is particularly suited for graphs
with a clear structure, including distinguishable hubs and connectors. However, in
sparse or highly irregular graphs, the categorization criteria and pruning approach
may not fully capture the nuances of the graph’s structure, potentially limiting the
method’s effectiveness. This could result in suboptimal classification performance
on such datasets, where the method may struggle to distinguish between critical and
non-essential nodes effectively.

• Impact of NCP on Interpretability of GNN Models: The reduction achieved by NCP
could potentially alter information pathways within the graph, affecting how infor-
mation flows through the GNN layers. This may lead to the exclusion of nodes that,
although less connected, play an important role in specific interpretations of the model.
To mitigate this risk, we propose the following strategies:

1. Before applying NCP, nodes identified as important for interpretability (e.g.,
nodes with high centrality in explanations or those frequently involved in known
pathways) can be retained by setting a lower pruning threshold for these nodes
or including an additional criterion based on interpretability relevance.

2. After applying NCP, the pruned graph can be analyzed for interpretability im-
pact by running a comparative analysis on explanation metrics (e.g., feature
importance scores or attention weights) before and after pruning. If critical nodes
or edges were removed, NCP thresholds can be adjusted iteratively to retain
interpretability without significantly increasing graph complexity.

3. In applications where specific node and edge relationships must be preserved,
domain-specific constraints can be incorporated into the pruning process to retain
key nodes and edges. For example, in biological networks, nodes representing
essential genes or pathways can be exempted from pruning.

In future work, we plan to further investigate how NCP can be adapted to maintain
interpretability by retaining nodes and edges essential for producing explanations,
especially for applications where model transparency is critical. These adaptations will
help balance the goals of graph reduction and interpretability, ensuring that essential
interpretative structures are preserved.

Mach. Learn. Knowl. Extr. 2024, 6 2732

4. Experiments

NCP’s ability to reduce graph complexity while preserving essential structural in-
formation can be especially valuable in various real-world applications where large and
complex graphs challenge the efficiency and interpretability of GNNs. For example, in
social network analysis, NCP can streamline extensive social graphs, retaining influential
nodes and key connections, which can improve the detection of communities and enhance
models analyzing influence propagation. In biological networks, such as protein interac-
tion or gene regulatory networks, NCP can focus GNNs on the most critical interactions,
facilitating the identification of significant regulatory pathways or protein interactions. In
traffic and transportation networks, NCP can reduce the complexity of urban traffic graphs,
making it easier for GNNs to predict and optimize traffic patterns by retaining essential
intersections and pathways. Additionally, in graph-based malware detection, where graphs
represent API calls or code flows, NCP can simplify these structures by retaining core mali-
cious behavior patterns, allowing GNNs to more effectively identify and generalize patterns
of malicious activity across different samples. These use cases demonstrate NCP’s potential
to enhance GNNs’ effectiveness in analyzing large, real-world datasets by providing a
computationally efficient and interpretable graph reduction approach.

In this section, we evaluate the performance of our proposed graph reduction algo-
rithm and compare it with the WIS method, which focuses solely on edge pruning. We
carried out experiments on two datasets—the CFG dataset (comprising 50 benign and
50 malicious samples selected from the PE Malware Machine Learning Dataset [28] and
DikeDataset [29], with control flow graphs dynamically captured using the angr library)
and the PROTEINS dataset [30,31] to evaluate the effectiveness of the algorithms in graph
classification tasks using Graph Convolutional Networks (GCNs) with D = 3. For these
experiments, the walk length (L) is set to 2.

Table 1 provides an overview of the datasets used in our experiments, including the
number of samples, average nodes and edges per graph, and the breakdown of sample
types. The CFG dataset contains graphs with a larger average size, allowing us to assess the
scalability of NCP in handling complex structures, while the PROTEINS dataset provides
a more compact graph representation suitable for testing classification performance on
relatively smaller graphs.

Table 1. Characteristics of Datasets Used in Experiments.

Dataset Number of
Samples

Average Nodes
per Graph

Average Edges per
Graph Sample Types Number of

Samples per Type

PROTEINS 1113 39.05 72.81 Enzyme/Non-
enzyme

450 Enzyme,
663 Non-enzyme

CFG 100 11,223.01 18,945.09 Benign/Malicious 50 Benign,
50 Malicious

We selected the PROTEINS dataset for our experiments because it is a widely rec-
ognized benchmark dataset that contains sufficiently large graphs, making it ideal for
evaluating the performance of graph reduction techniques. Additionally, the CFG dataset
was chosen due to the limited availability of datasets containing large graphs suitable for
runtime evaluation. The CFG dataset’s intricate and variable structure provides a unique
challenge, making it well suited for assessing the computational efficiency and scalability
of our proposed graph reduction algorithm.

To ensure that our experiments were conducted under robust and controlled condi-
tions, they were performed on a high-performance computing platform. The experiments
utilized an Intel Xeon Platinum 8253 CPU with 32 cores at 3.000 GHz and an NVIDIA
Quadro RTX 6000/8000 GPU, which are particularly suited for handling the extensive
computational demands of graph neural network processing. The system was equipped
with 128 GB of memory, facilitating efficient management of large datasets and complex

Mach. Learn. Knowl. Extr. 2024, 6 2733

computations. The software stack was primarily based on Python, with critical dependen-
cies on PyTorch Geometric specifically for implementing and training the GCN used in our
experiments. NetworkX v2.8.8 was used for graph manipulation and analysis.

4.1. Experiment on the PROTEINS Dataset

The PROTEINS dataset is a widely used benchmark for graph classification tasks. In
this dataset, each graph represents a protein, which is categorized into one of two classes:
enzyme and non-enzyme. To assess the classification we use accuracy as our primary
performance metric. The formula for accuracy is:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(11)

For this dataset, we assigned the parameter θ a value of 0.2 across all tests, as extensive
experimentation showed that variations in this parameter did not significantly impact the
results. This lack of sensitivity to θ is attributed to the specific topology of the graphs in
these datasets, which suggests that their structural characteristics do not heavily influence
the effectiveness of θ in pruning decisions.

The NCP algorithm exhibits promising results for this dataset, particularly as the
parameter β increases, which indicates a stricter criterion for node importance. Although
the accuracy slightly declines as β increases from 3 to 6, this suggests a trade-off between
the intensity of pruning and classification performance. Our algorithm maintains consistent
performance and completes the task in a relatively short time, demonstrating its efficiency
in pruning, while preserving essential graph features.

The WIS method, which prunes edges at varying percentages ranging from 20% to
100%, demonstrates a distinct trend: higher pruning rates lead to reduced accuracy. This
consistent decline aligns with the removal of edges, potentially eliminating critical struc-
tural information necessary for GCN’s performance. The time taken increases significantly
with higher pruning percentages, suggesting that while WIS can drastically reduce graph
size, it does so at the expense of both performance and efficiency.

Figure 2 shows the distribution of accuracy values for both NCP and WIS: NCP
demonstrates stable and high accuracy across various parameter settings compared to WIS,
which exhibits more variability in accuracy as its parameters change. The baseline accuracy
(without pruning) is consistently at 0.71, serving as a reference point for evaluation. These
boxes also represent the average accuracy of graph classification over 10 runs with random
seeds for each algorithm.

NCP WIS Baseline

0.6

0.62

0.64

0.66

0.68

0.7

A
cc

u
ra

cy

Figure 2. Distribution of obtained accuracy through NCP, WIS, and baseline.

Figure 3 illustrates the overall average number of nodes and edges pruned as the
parameter β varies for the PROTEINS experiment using the NCP algorithm. Moreover,
Table 2 compares the average runtime of the NCP and WIS algorithms, measured in
seconds. The NCP algorithm shows the shortest runtime, with an average of 16.32 s,

Mach. Learn. Knowl. Extr. 2024, 6 2734

demonstrating its computational efficiency. In contrast, the WIS algorithm has the longer
runtime (25.59 s). The variability in runtime, indicated by the standard deviation, is smaller
for the NCP algorithm, suggesting more consistent measures across different runs, while
the WIS algorithm exhibits higher variability.

3 3.5 4 4.5 5 5.5 6
0

500

1000

1500

2000

2500

3000

3500

M
ag

ni
tu

de
Pruned Nodes
Pruned Edges

Figure 3. Pruned nodes and edges by NCP through varying β for the PROTEINS experiment.

Table 2. Average runtime of NCP and WIS over PROTEINS experiment.

Algorithm NCP WIS Baseline

Time (Sec) 16.32 ± 0.09 25.59 ± 5 17.66

4.2. Experiment on the CFG Dataset

Our experiment on the CFG dataset evaluates the efficacy of the NCP algorithm in
managing the complexity of control flow graphs from both benign and malicious software
samples. The CFG dataset presents a unique challenge due to its intricate and variable
structure. Figure 4 illustrates a benign sample from the CFG dataset after processing with
the NCP algorithm. The removed nodes are also displayed to indicate their respective
categories. In this visualization, the green nodes represent Nexus Nodes, the blue nodes
are the retained Connector Nodes, the yellow nodes indicate pruned Connector Nodes,
and the red nodes correspond to Sparse Nodes.

Figure 4. A benign graph sample from the CFG dataset processed using the NCP algorithm. Node
categories are color-coded as follows: green for Nexus Nodes, blue for retained Connector Nodes,
yellow for pruned Connector Nodes, and red for Sparse Nodes.

Mach. Learn. Knowl. Extr. 2024, 6 2735

In this experiment, we particularly focus on analyzing how different settings of the
θ parameter influence classification accuracy when applying NCP, with β values ranging
from 3 to 10. The results, as illustrated in Figure 5, show that as θ varies from 0.05 to
0.5, the best accuracy peaks at θ = 0.4 with an accuracy of 0.89. This demonstrates an
optimal balance between node reduction and the preservation of critical graph structure,
highlighting the effectiveness of the NCP algorithm in managing graph complexity for
graph classification.

0.83
0.84

0.73

0.78

0.89

0.84

0.05 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

0.9

0.95

B
es

t
A

cc
u

ra
cy

Figure 5. Best obtained accuracy across varying θ for the CFG dataset using the NCP algorithm, with
β values ranging from 3 to 10.

Table 3 provides a comparison of runtime and accuracy between the NCP method
(achieving its best result through hyperparameter tuning) and the WIS method in the CFG
experiment. It demonstrates that the NCP algorithm not only achieves higher accuracy but
also significantly reduces computation time compared to the WIS method, which shows
a substantial increase in computation time even with only 20% of edges pruned. This
efficiency is crucial for real-world applications, where time and computational resources
are often limited.

Table 3. Runtime and performance analysis of NCP and WIS.

Algorithm NCP WIS Baseline

Accuracy 0.89 0.70 0.85

Time (Sec) 75.16 64,842.94 81.12

Overall, the NCP algorithm offers a robust solution for graph reduction for the CFG ex-
periment by effectively balancing the trade-offs between node pruning and accuracy reten-
tion. Its adaptability across different configurations makes it a valuable tool in graph-based
machine learning tasks, especially for datasets with complex and heterogeneous structures.

5. Conclusions

In this paper, we introduced the NCP algorithm, an effective graph reduction technique
aimed at optimizing GNNs by simplifying graph structures, while retaining essential
topological properties. Our method strategically prunes less significant nodes, enhancing
the manageability and computational efficiency of GNNs, which is particularly beneficial
for large-scale graph applications. The experiments conducted on both the PROTEINS and
CFG datasets demonstrate that NCP outperforms WIS in terms of accuracy, runtime, and
preservation of graph integrity. This makes NCP a valuable tool for applications requiring
efficient graph processing.

Looking ahead, we plan to extend our work to include edge prediction tasks, which
are vital for network analysis, bioinformatics, and social network analysis. Adapting our
pruning techniques to optimize edge prediction will potentially broaden the applicability

Mach. Learn. Knowl. Extr. 2024, 6 2736

of GNNs to handle even larger graphs efficiently. Further research will also explore the
integration of NCP with various GNN architectures to enhance model generalization and
performance across diverse applications, aiming to forge more robust and adaptable GNN
models for complex tasks.

Author Contributions: Conceptualization, R.R.-F.; methodology, H.S. and R.R.-F.; software, G.H.;
validation, G.H.; formal analysis, H.S.; investigation, H.S.; resources, G.H.; data curation, G.H.;
writing—original draft preparation, H.S.; writing—review and editing, R.R.-F. and A.A.G.; visualiza-
tion, H.S.; supervision, R.R.-F. and A.A.G.; project administration, A.A.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The study did not involve the creation of new datasets. All datasets
used in this research are publicly available and have been referenced in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Gao, X.; Yu, J.; Jiang, W.; Chen, T.; Zhang, W.; Yin, H. Graph Condensation: A Survey. arXiv 2024, arXiv:2401.11720.
2. Tian, Y.; Hankins, R.A.; Patel, J.M. Efficient aggregation for graph summarization. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 567–580.
3. Amiri, S.E.; Adhikari, B.; Bharadwaj, A.; Prakash, B.A. NetGist: Learning to Generate Task-Based Network Summaries. In

Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 857–862.
4. Loukas, A.; Vandergheynst, P. Spectrally approximating large graphs with smaller graphs. arXiv 2018, arXiv:1802.07510.
5. Loukas, A. Graph reduction with spectral and cut guarantees. arXiv 2018, arXiv:1808.10650.
6. Huang, Z.; Zhang, S.; Xi, C.; Liu, T.; Zhou, M. Scaling Up Graph Neural Networks via Graph Coarsening. arXiv 2021,

arXiv:2106.05150.
7. Kumar, M.; Sharma, A.; Saxena, S.; Kumar, S. Featured Graph Coarsening with Similarity Guarantees. In Proceedings of the

International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 17953–17975.
8. Jin, W.; Zhao, L.; Zhang, S.; Liu, Y.; Tang, J.; Shah, N. Graph Condensation for Graph Neural Networks. arXiv 2022,

arXiv:2110.07580.
9. Gao, J.; Wu, J. Multiple sparse graphs condensation. Knowl.-Based Syst. 2023, 278, 110904. [CrossRef]
10. Yang, B.; Wang, K.; Sun, Q.; Ji, C.; Fu, X.; Tang, H.; You, Y.; Li, J. Does Graph Distillation See Like Vision Dataset Counterpart?

arXiv 2023, arXiv:2310.09192.
11. Feng, Q.; Jiang, Z.; Li, R.; Wang, Y.; Zou, N.; Bian, J.; Hu, X. Fair Graph Distillation. Adv. Neural Inf. Process. Syst. 2023, 36,

80644–80660.
12. Mao, R.; Fan, W.; Li, Q. GCARe: Mitigating Subgroup Unfairness in Graph Condensation Through Adversarial Regularization.

Appl. Sci. 2023, 13, 9166. [CrossRef]
13. Li, X.; Wang, K.; Deng, H.; Liang, Y.; Wu, D. Attend Who is Weak: Enhancing Graph Condensation via Cross-Free Adversarial

Training. arXiv 2023, arXiv:2311.15772.
14. Gao, X.; Chen, T.; Zang, Y.; Zhang, W.; Nguyen, Q.V.H.; Zheng, K.; Yin, H. Graph Condensation for Inductive Node Representation

Learning. arXiv 2023, arXiv:2307.15967.
15. Liu, Y.; Qiu, R.; Tang, Y.; Yin, H.; Huang, Z. PUMA: Efficient Continual Graph Learning with Graph Condensation. arXiv 2023,

arXiv:2312.14439.
16. Zhang, T.; Zhang, Y.; Wang, K.; Yang, B.; Zhang, K.; Shao, W.; Liu, P.; Zhou, J.T.; You, Y. Two Trades is not Baffled: Condensing

Graph via Crafting Rational Gradient Matching. arXiv 2024, arXiv:2402.04924.
17. Fang, J.; Li, X.; Sui, Y.; Gao, Y.; Zhang, G.; Wang, K.; Wang, X.; He, X. EXGC: Bridging Efficiency and Explainability in Graph

Condensation. arXiv 2024, arXiv:2402.05962.
18. Wang, L.; Fan, W.; Li, J.; Ma, Y.; Li, Q. Fast Graph Condensation with Structure-based Neural Tangent Kernel. arXiv 2024,

arXiv:2310.11046.
19. Xiao, Z.; Liu, S.; Wang, Y.; Zheng, T.; Song, M. Disentangled Condensation for Large-scale Graphs. arXiv 2024, arXiv:2401.12231.
20. Zhang, Y.; Zhang, T.; Wang, K.; Guo, Z.; Liang, Y.; Bresson, X.; Jin, W.; You, Y. Navigating Complexity: Toward Lossless Graph

Condensation via Expanding Window Matching. arXiv 2024, arXiv:2402.05011.
21. Althöfer, I.; Das, G.; Dobkin, D.; Joseph, D.; Soares, J. On sparse spanners of weighted graphs. Discret. Comput. Geom. 1993, 9,

81–100. [CrossRef]
22. Batson, J.D.; Spielman, D.A.; Srivastava, N. Twice-Ramanujan Sparsifiers. arXiv 2009, arXiv:0808.0163.

http://doi.org/10.1016/j.knosys.2023.110904
http://dx.doi.org/10.3390/app13169166
http://dx.doi.org/10.1007/BF02189308

Mach. Learn. Knowl. Extr. 2024, 6 2737

23. Chen, T.; Sui, Y.; Chen, X.; Zhang, A.; Wang, Z. A Unified Lottery Ticket Hypothesis for Graph Neural Networks. arXiv 2021,
arXiv:2102.06790.

24. Wickman, R.; Zhang, X.; Li, W. A Generic Graph Sparsification Framework using Deep Reinforcement Learning. arXiv 2023,
arXiv:2112.01565.

25. Razin, N.; Verbin, T.; Cohen, N. On the Ability of Graph Neural Networks to Model Interactions Between Vertices. arXiv 2023,
arXiv:2211.16494.

26. Daneshfar, F.; Soleymanbaigi, S.; Yamini, P.; Amini, M.S. A survey on semi-supervised graph clustering. Eng. Appl. Artif. Intell.
2024, 133, 108215. [CrossRef]

27. Wu, T.; You, X.; Xian, X.; Pu, X.; Qiao, S.; Wang, C. Towards deep understanding of graph convolutional networks for relation
extraction. Data Knowl. Eng. 2024, 149, 102265. [CrossRef]

28. Practical Security Analytics-Pe-Malware-Machine-Learning-Dataset. Available online: https://practicalsecurityanalytics.com/
pe-malware-machine-learning-dataset/ (accessed on 26 October 2024).

29. GitHub-Iosifache/DikeDataset: DikeDataset. Available online: https://github.com/iosifache/DikeDataset (accessed on 26
October 2024).

30. Borgwardt, K.M.; Ong, C.S.; Schoenauer, S.; Vishwanathan, S.V.N.; Smola, A.J.; Kriegel, H.-P. Protein function prediction via
graph kernels. Bioinformatics 2005, 21 (Suppl. S1), i47–i56. [CrossRef]

31. Dobson, P.D.; Doig, A.J. Distinguishing enzyme structures from non-enzymes without alignments. J. Mol. Biol. 2003, 330, 771–783.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.engappai.2024.108215
http://dx.doi.org/10.1016/j.datak.2023.102265
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://github.com/iosifache/DikeDataset
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://dx.doi.org/10.1016/S0022-2836(03)00628-4

	Introduction
	Preliminaries
	Basic Notations
	Jaccard Similarity
	Graph Neural Networks

	Method
	Node Categorization and Sparse Node Removal
	Connector Node Pruning Using Jaccard Similarity
	Time and Space Complexity Analysis of the NCP Algorithm
	Extension of NCP to Weighted and Directed Graphs
	Parameter Sensitivity and Robustness of NCP
	Limitations and Disadvantages of the NCP Method

	Experiments
	Experiment on the PROTEINS Dataset
	Experiment on the CFG Dataset

	Conclusions
	References

