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Abstract: In the emerging field of computational gastronomy, aligning culinary practices with
scientifically supported nutritional goals is increasingly important. This study explores how large
language models (LLMs) can be applied to optimize ingredient substitutions in recipes, specifically
to enhance the phytochemical content of meals. Phytochemicals are bioactive compounds found
in plants, which, based on preclinical studies, may offer potential health benefits. We fine-tuned
models, including OpenAI’s GPT-3.5-Turbo, DaVinci-002, and Meta’s TinyLlama-1.1B, using an
ingredient substitution dataset. These models were used to predict substitutions that enhance the
phytochemical content and to create a corresponding enriched recipe dataset. Our approach improved
the top ingredient prediction accuracy on substitution tasks, from the baseline 34.53 ± 0.10% to
38.03 ± 0.28% on the original substitution dataset and from 40.24 ± 0.36% to 54.46 ± 0.29% on a
refined version of the same dataset. These substitutions led to the creation of 1951 phytochemically
enriched ingredient pairings and 1639 unique recipes. While this approach demonstrates potential in
optimizing ingredient substitutions, caution must be taken when drawing conclusions about health
benefits, as the claims are based on preclinical evidence. This research represents a step forward
in using AI to promote healthier eating practices, providing potential pathways for integrating
computational methods with nutritional science.

Keywords: ingredient substitution; nutritional optimization; large language models

1. Introduction

In recent years, computational gastronomy has emerged as an interdisciplinary field
that applies computational techniques such as data mining and machine learning to the
study of food and cooking. The aim is to understand and model the complex interactions be-
tween ingredients, cooking methods, and the human perception of taste and nutrition. One
of the primary goals of this field is to develop methods for ingredient substitution, aimed at
improving the nutritional content, preserving the flavor integrity, and aligning meals with
specific dietary needs. A key focus has been the integration of phytochemically enriched
ingredients into diets, which has shown in silico potential to target biological networks of
chronic diseases like cancer [1], Alzheimer’s disease (AD) [2], and COVID-19 [3].

Phytochemicals, bioactive compounds found in plants, have gathered significant
attention due to their antioxidant, anti-inflammatory, and anti-carcinogenic properties.
Preclinical studies suggest that these compounds may play a role in disease prevention and
treatment. For instance, brassinolide, a phytochemical present in tea, has shown potential
to inhibit tumor growth and induce apoptosis in cancer cells [4]. In the context of AD,
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quercetin, found in extra virgin olive oil, has been linked to improved brain health by
exhibiting antioxidant and anti-inflammatory effects [5]. Moreover, genistein, a phytochem-
ical in blackcurrant, has been investigated for its immune-supporting properties, including
its potential to modulate inflammation and interfere with viral replication, making it
relevant in the study of COVID-19 [6].

Initial attempts at ingredient substitution utilized statistical methods, such as Term
Frequency–Inverse Document Frequency (TF-IDF), to identify potential substitutes based
on occurrence patterns within large recipe datasets. TF-IDF is a numerical statistic that
reflects how important a word (or ingredient) is to a document (or recipe) in a corpus.
It does this by considering both the frequency of the word in the document and the rar-
ity of the word across all documents. In the context of ingredient substitution, TF-IDF
helps highlight ingredients that are significant within certain recipes but not ubiquitous
across all recipes, thus identifying potential substitutes based on uniqueness and rele-
vance [7–9]. Later, co-occurrence-based methods refined this approach by constructing
ingredient networks that map relationships across recipes. In these networks, ingredients
are represented as nodes, and the edges between them indicate how frequently they appear
together. By analyzing these networks, researchers could suggest substitutes based on
ingredients’ mutual presence in culinary contexts, identifying clusters of ingredients that
are often used interchangeably [10–14]. The introduction of language model-based methods
marked a significant evolution, utilizing natural language processing techniques such as
word2vec [15], BERT [16], and R-BERT [17] to capture semantic relationships between
ingredients. Word2vec generates vector representations of words (or ingredients) based on
their contexts in the text, allowing the model to identify ingredients with similar contexts or
meanings. BERT (Bidirectional Encoder Representations from Transformers) goes further
by understanding the bidirectional context of words, providing a deeper semantic under-
standing. R-BERT specializes in relation extraction, identifying and classifying relationships
between entities—in this case, between ingredients. This approach proved effective in
improving ingredient substitution tasks through learned embeddings that capture complex
semantic relationships [18], although language models require substantial computational
resources and may not always capture the full culinary context, such as flavor profiles or
cooking techniques.

More recently, graph neural networks (GNNs) have been utilized to combine the rela-
tional information encoded in ingredient graphs with the specific context of given recipes,
leading to a deeper understanding of ingredient interactions [18]. GNNs are designed to
operate on graph structures, modeling the dependencies and relationships between nodes
(ingredients) and edges (their relationships). Large-scale graphs, such as FlavorGraph, have
been introduced to explore ingredient substitutions and food pairings [19]. FlavorGraph
connects ingredients based on shared flavor compounds and culinary usage, providing a
rich dataset for analyzing how ingredients relate on a molecular level. This graph-based
approach allows for the identification of substitutes that are not only contextually appro-
priate but also compatible in terms of flavor and chemistry. However, success in this area
relies heavily on the quality and curation of the underlying graph data; inaccuracies or
omissions can significantly affect the model’s performance. Building on this approach,
GISMo was introduced—a GNN-based model that incorporates both recipe-specific con-
texts and ingredient relationships from FlavorGraph. By constructing a benchmark dataset,
Recipe1MSubs, which includes ingredient substitution pairs extracted from user comments,
GISMo significantly outperforms previous methods in ranking plausible ingredient sub-
stitutions. Specifically, it achieved a performance improvement of at least 14% in the top
substitute ingredient prediction, as measured by the Hit@1 metric, over existing models [20].
In the context of ingredient substitution, Hit@1 evaluates whether the model’s first (most
confident) suggested substitute matches the actual substitute used in the recipe. This metric
is important because it reflects the model’s effectiveness in providing accurate substitution
suggestions on the first attempt, which is essential for real-world application.
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The latest stage in this evolving field is represented by LLMs, which promise to over-
come the limitations of previous approaches by leveraging their capacity for understanding
and generating human-like text [21,22]. The introduction of LLMs, such as GPT-3 devel-
oped by OpenAI [21], presents an approach to address the limitations of previous methods
for ingredient substitution. Furthermore, while language model-based methods and GNNs
represent significant advancements, they still face challenges in capturing the full culinary
context and ensuring gastronomically sensible substitutions [20]. LLMs, trained on ex-
tensive and diverse culinary datasets, can potentially offer more contextually aware and
accurate ingredient substitutions by leveraging their understanding of both the syntax and
semantics of culinary texts [23]. This capacity for high-level language comprehension and
manipulation allows for considering factors such as ingredient compatibility. Importantly,
LLMs can be fine-tuned for specific tasks such as ingredient substitution [22].

Recognizing the limitations of statistical, co-occurrence, language, and GNN-based
methods, our research proposes a unique approach by leveraging the capabilities of LLMs
for ingredient substitution. LLMs, such as GPT-3.5 [22], DaVinci [21], and Meta’s TinyL-
lama [24], have demonstrated state-of-the-art performance across a range of natural lan-
guage processing tasks, from text generation to semantic understanding [16,25]. By fine-
tuning these models on a dataset of recipes and ingredient substitutes, we aim to develop
an algorithm that not only understands the interplay of flavors and nutritional aspects
in cooking but also tailors suggestions to the preferences and requirements of each user.
In this paper, we benchmarked our ingredient substitution algorithm against the current
state of the art GISMo to demonstrate its superiority in generating contextually appropriate
ingredient substitutions. We used the Hit@1 accuracy metric to benchmark our models’
performance against state-of-the-art methods. After identifying phytochemically enriched
substitutes, we generated a new set of recipes aimed at targeting biological networks
associated with cancer, AD, and COVID-19 (Figure 1).
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focused on disease-specific prevention. Examples include substituting butter with olive oil, cucumber
with carrot, and lettuce with cabbage. (B) Ingredient substitution methods: it compares graph-based
approaches, which rely on ingredient co-occurrence and relational data, with LLM-based approaches,
which utilize advanced language models for more context-sensitive substitutions. (C) LLM-based
model fine-tuning: it details the fine-tuning of LLMs such as DaVinci, GPT-3.5, and TinyLlama for the
ingredient substitution task using the Recipe1MSubs dataset. It includes the benchmarking process
against the GISMo model to evaluate performance improvements. (D) Phytochemically enriched
recipe generation: it details the generation of recipes with enhanced phytochemical profiles tailoring
diseases’ biological networks with the best performer model.

The research hypothesis of the article is that LLMs can achieve higher accuracy in
ingredient substitution tasks compared to the current state-of-the-art GISMo model when
evaluated on a standardized dataset. The main contributions of this paper are (1) en-
hanced accuracy in ingredient substitution, (2) a novel dataset filtration process, and (3) the
generation of phytochemically enriched recipes. The rest of this paper is organized as
follows. In Section 2, we detail the materials and methods employed, including the datasets
used, the fine-tuning of LLMs, and the evaluation metrics for ingredient substitution ac-
curacy. Section 3 presents the results of our experiments, comparing the performance of
fine-tuned LLMs with the GISMo model and showing the generation of phytochemically
enriched recipes. Section 4 provides a discussion of our findings, highlighting the improve-
ments achieved, the implications for computational gastronomy, and the limitations of
our approach. Finally, Section 5 concludes the paper by summarizing our contributions
and suggesting directions for future research in integrating AI with nutritional science to
promote healthier eating practices.

2. Materials and Methods
2.1. Recipe and Ingredient Substitution Datasets

Our research started with the study of the Recipe1MSubs dataset, provided by Meta,
containing 70,520 pairs of ingredient substitutes with the respective recipes [20], which
is a subset of the Recipe1M dataset [26]. The Recipe1MSubs dataset was separated into
49,044 data points designated for training, 10,729 for validation, and 10,747 for testing. Each
recipe within this dataset is organized in a structured format, beginning with the recipe
title, followed by the list of ingredients, with associated quantities, and finally, the cooking
instructions. The original GISMo model was trained on this dataset using a methodology
focused on ingredient context and co-occurrence as the benchmark for our study.

2.2. GISMo Benchmark

To establish a baseline for comparison with our new LLM-based models, we re-
implemented and re-ran the GISMo as described in the original study. We set the learning
rate to 5 × 10−5, weight decay to 0.0001, and used an embedding dimension of 300 to
represent ingredients in a continuous vector space. The model consists of two graph convo-
lutional layers, each with 300 hidden units, and applies a dropout rate of 0.25 to reduce
overfitting. Training was conducted over 400 epochs using regular negative sampling,
where for each positive substitution pair, negative examples were generated by randomly
selecting non-substitutable ingredients, and embeddings were initialized randomly. Aver-
age pooling was used for contextual embedding to aggregate information from neighboring
nodes, enhancing the model’s context sensitivity without altering the original dataset’s
composition. We re-ran GISMo not only to replicate the results of the original study but
also to establish a standard benchmark against which we could evaluate the performance of
our newer LLM-based models, ensuring that any improvements in ingredient substitution
accuracy were attributable to the capabilities of the LLMs rather than differences in the
experimental setup. Furthermore, we introduced enhancements to the GISMo model by
incorporating each ingredient’s food category as an additional node feature in the graph,
providing higher-level semantic knowledge to potentially improve substitution sugges-
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tions (as described in Section 2.3). Additionally, we applied a dataset filtration process
(as described in Section 2.4) to the original Recipe1MSubs dataset to remove incorrect or
unsuitable substitutions, training GISMo on this filtered dataset to assess whether cleaner
training data could enhance the model’s performance.

2.3. Incorporation in GISMo of a Food Category Feature

Using GPT-4-0613, the latest of OpenAI’s language models, we categorized ingre-
dients into predefined culinary groups. This process involved a Python script utilizing
the pandas library for dataset manipulation and the openai library for API interactions.
A function, categorize_ingredient, was used to query GPT-4-0613 with each ingredient,
requesting its classification into one of 23 categories ranging from common food groups
like Fruits and Vegetables to more specialized ones such as Confectioneries and Aquatic
foods (Appendix A). By setting the temperature parameter to 0, the script prioritized
reproducibility to ensure consistency in GPT-4-0613’s responses. This approach processed
a CSV file of ingredients, appending a category column with the GPT-4-0613-determined
categories to the dataset. The augmented dataset, saved as a new CSV file, served as a tool
for ingredient substitution models, enabling more contextually relevant substitutions.

2.4. Dataset Filtration Based on Substitution Validity

To enhance the ingredient substitution model’s accuracy, we used GPT-3.5-Turbo
with an asynchronous Python script to evaluate the validity of the proposed ingredient
substitutions. This process involved sending detailed prompts to GPT-3.5-Turbo, asking if
one ingredient could feasibly substitute another within a specific recipe, and classifying
responses into Correct, Potential, or Incorrect to determine their suitability. By processing
substitutions in multiple batches using the aiohttp library for asynchronous HTTP requests,
we efficiently assessed the 70,520 substitutions, thereby accelerating the evaluation process.
Substitutions categorized as Correct were considered suitable and retained, Potential
indicated possible suitability requiring further consideration, and Incorrect were considered
inappropriate, leading to their removal from the dataset. The final results, saved into a
JSON file, formed a filtered dataset for retraining the model, ensuring it was based on
accurate substitution data. Key settings included a prediction temperature of 0.5, a limit of
10 output tokens, and five runs to evaluate the prediction stability. In addition, there was
a batch size of 100 substitutions with respective recipes to avoid reaching the maximum
number of requests per second.

2.5. Fine-Tuning Language Models for Substitution Predictions

We used GPT-3.5-Turbo-1106, DaVinci-002, and TinyLlama-1.1B to predict viable ingre-
dient substitutions, fine-tuning each with consistent specifications to ensure comparability.
Key settings included a prediction temperature of 0.5, a limit of 10 output tokens, and five
runs to evaluate the prediction stability, all conducted over a single epoch.

For the fine-tuning process for TinyLlama-1.1B models in our experimental configura-
tion, we refined our model’s fine-tuning process with selected hyperparameters encapsu-
lated within the TrainingArguments setup. This configuration specified an output directory,
a per-device train batch size of 8 (due to memory constraints) and applied gradient accumu-
lation over 4 steps to efficiently balance computational demand and memory constraints.
The model optimization was conducted using paged_adamw_32bit with a learning rate set
at 5 × 10−4, and a cosine learning rate scheduler was employed for optimal learning rate
adjustments throughout the training phase. A save strategy based on epochs was utilized,
coupled with logging and evaluation intervals set at 25 and 50 steps, respectively, aligning
with an evaluation strategy that triggers at specified steps to closely monitor the model’s
performance. The training was streamlined to complete within 1 epoch to ensure quick
adaptation while preventing overfitting, without setting a maximum step limit and avoid-
ing mixed precision training to maintain computational accuracy. The SFTTrainer was used
in the training process, directly interfacing with the training and validation datasets, and
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was configured with peft_config for tailored pre-fine-tuning adjustments. This allowed us
to set our specified hyperparameters and training configurations. Text preprocessing was
managed using a specified dataset_text_field and tokenizer, with packing disabled and a
maximum sequence length of 512 to standardize input data handling. This approach aimed
at enhancing the model’s learning efficiency, prioritizing a balance between optimizing the
computational resources and achieving high-quality model training.

Building upon the filtration methodology outlined above, we randomly chose one
of the filtered datasets and fine-tuned four final models considering only the Correct
substitutions to further refine the accuracy of predictions. TinyLlama-1.1B, DaVinci-
002, GPT-3.5-Turbo-1106, and GISMo models were fine-tuned incorporating these high-
quality substitutions.

Training samples were provided in prompt completion format for DaVinci-002 and
TinyLlama-1.1B and chat completion format for GPT-3.5-Turbo-1106. The number of epochs,
training steps, and batch sizes chosen are detailed in Appendix B.

2.6. Evaluation of Ingredient Substitution Accuracy

To validate the accuracy of the ingredient substitution predictions generated by LLMs,
we developed an algorithm to standardize and process ingredient names before comparing
them to a ground truth dataset derived from the Recipe1M dataset. We began by extracting
predictions from the model output, where each line contained an original ingredient,
its corresponding ground truth substitute, and the predicted substitution. To ensure
consistency across ingredient names, several preprocessing steps were applied, including
converting all text to lowercase, removing numeric values, and applying predefined rules
to replace or eliminate special characters. This normalization was intended to maintain
uniformity in ingredient representation. After preprocessing, a clustering mechanism was
used to group similar ingredients, accounting for variations in lexical forms such as singular
and plural versions or different types of the same ingredient (e.g., basmati rice and long
grain rice). Each ingredient was assigned a unique cluster identifier to ensure that similar
ingredients were treated as equivalent during comparison.

Once the LLM-predicted ingredient names were uniformized and categorized, the core
of the evaluation involved comparing the predicted substitutions against the ground truth
using the Hit@1 metric. This metric assessed the model’s precision by determining whether
the first predicted substitution matched the ground truth or fell within the same ingredient
cluster. For example, if the ground truth substitution was barley and the model predicted
basmati rice, both ingredients would be considered correct if they belong to the same grain
cluster. Hit@1 focuses on measuring the accuracy of the model’s top recommendation,
as this is the most critical in real-world applications where users often act on the first
suggestion. By prioritizing precision in the initial substitution, Hit@1 provides a measure of
the LLM’s ability to generate viable and contextually appropriate ingredient substitutions.

2.7. Phytochemically Enriched Recipe Generation

Finally, we integrated phytochemically enriched ingredients based on their ability to
target molecular networks responsible for disease development in cancer [1], AD [2], and
COVID-19 [3]. By applying the best-performing model from our comparative analysis, we
substituted all ingredients across our dataset with alternatives that elevated the content of
the targeted phytochemicals. The recipes were then evaluated and ranked based on their
cumulative phytochemical profile. Only salads were considered given the lower number of
cooking processes involved in their preparation and, consequently, the higher chances of
phytochemical preservation [27] (Figure 2).
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Figure 2. This figure is divided into two parts, (A,B), providing an overview of the methodology in
our study. (A) The fine-tuning and evaluation process for three LLMs—OpenAI’s GPT-3.5, DaVinci,
and Meta’s TinyLlama—benchmarked against the state-of-the-art GISMo model for ingredient substi-
tution. The figure starts with the Original GISMo Dataset, which undergoes initial processing through
GPT-3.5 to identify invalid substitutions, producing a Filtered GISMo Dataset used for training,
validation, and testing. Each LLM was fine-tuned with a single epoch, using prompt engineering
to structure responses for precise ingredient substitution. Prompts included recipe context such
as title, ingredients, and instructions, asking the model to propose a suitable substitute ingredient.
The fine-tuned models were then evaluated using the Hit@1 metric, where the top prediction was
checked against ground truth substitutions, with a temperature setting of 0.5 to balance creativity
and accuracy. The Hit@1 evaluation results are shown, with significant improvements in accuracy for
the fine-tuned GPT-3.5 model over the GISMo benchmark, demonstrating the effectiveness of LLM-
based methods in generating contextually appropriate substitutions. Fine-tuned models GPT-3.5,
DaVinci and TinyLlama are represented with the colors orange, red and yellow, respectively. (B) The
application of the best-performing model (fine-tuned GPT-3.5) for generating new recipes. Using the
Filtered GISMo Dataset for testing, the model identifies suitable ingredient substitutions to create
an Expanded GISMo Dataset featuring recipes with enhanced phytochemical content. This process
involves using the LLM to suggest ingredient substitutions that increase the phytochemical profile,
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targeting health benefits associated with bioactive compounds. The expanded dataset thus contains
recipes with optimized nutritional content, focusing on the potential health benefits of phytochemi-
cally enriched ingredients. The workflow includes model selection, recipe generation, and selection
based on phytochemical content, illustrating a pathway from dataset refinement to practical applica-
tion in creating health-focused recipes.

3. Results
3.1. Dataset Filtering and Preparation

The original Recipe1MSubs dataset comprises 70,520 ingredient substitutions, parti-
tioned into 49,044 for training, 10,729 for validation, and 10,747 for testing. To enhance the
quality of the dataset, we applied a filtration process using GPT-3.5-Turbo-1106 across five
separate runs. This process evaluated the validity of each substitution, classifying them as
Correct, Potential, or Incorrect based on their suitability within specific recipes.

The filtration resulted in five filtered datasets with the following average sample
sizes for training, validation, testing, and total: 31,819 ± 67, 7094 ± 25, 7085 ± 21, and
45,998 ± 85, respectively (see Appendix C for detailed statistics).

From these, we randomly selected one filtered dataset containing 44,615 ingredient
substitutions, divided into 31,063 for training, 6831 for validation, and 6721 for testing.
This refined dataset served as the basis for rerunning the GISMo model and fine-tuning
the LLMs.

3.2. Performance of GISMo Model

We first evaluated the GISMo model by running it five times on both the original and
filtered datasets. The performance was assessed using the Hit@1 accuracy metric, which
measures the proportion of times the top predicted substitute matches the ground truth. On
the original and filtered dataset, the Hit@1 accuracy was 34.53 ± 0.10% and 40.24 ± 0.36%,
respectively.

These results indicate that filtering the dataset improved the GISMo model’s perfor-
mance by approximately 6%. Additionally, we experimented with incorporating food
categories (Appendix A) as additional node features into the GISMo model. However, this
modification resulted in a similar Hit@1 accuracy of 34.62% (Appendix D), suggesting no
significant benefit from this approach.

3.3. Fine-Tuning Large Language Models

Subsequent experiments with fine-tuned LLMs on the original GISMo ingredient sub-
stitution dataset yielded Hit@1 values of 20.09 ± 0.31% for DaVinci-002, 20.93 ± 0.29% for
TinyLlama-1.1B, and 38.03 ± 0.28% for GPT-3.5-Turbo-1106. Using the filtered dataset in con-
junction with these fine-tuned models resulted in improved Hit@1 values of 29.43 ± 0.30%,
34.53 ± 0.32%, and 54.46 ± 0.29%, respectively (Appendix D). The models were evaluated
five times each, and the average Hit@1 accuracies are presented in Table 1.

Table 1. Performance of fine-tuned models on the Recipe1MSubs dataset. Hit@1 accuracies are
reported as mean ± standard deviation. The best performance for each dataset is highlighted in bold.

Recipe1MSubs Dataset Fine-Tuned Model Hit@1 (%)

Filtered

GPT-3.5-Turbo-1106 54.46 ± 0.29
GISMo 40.24 ± 0.36
TinyLlama-1.1B 34.53 ± 0.32
DaVinci-002 29.43 ± 0.30

Unfiltered

GPT-3.5-Turbo-1106 38.03 ± 0.28
GISMo 34.55 ± 0.11
TinyLlama-1.1B 20.93 ± 0.29
DaVinci-002 20.09 ± 0.31



Mach. Learn. Knowl. Extr. 2024, 6 2746

3.4. Generation of Phytochemically Enriched Recipes

Leveraging the higher performance of the fine-tuned GPT-3.5-Turbo-1106 model on
the filtered dataset, we generated phytochemically enriched ingredient substitutions. This
aimed to enhance recipes with ingredients containing bioactive compounds associated with
potential health benefits. We obtained 1951 phytochemically enriched substitutions across
1639 unique recipes generated, featuring at least one phytochemically rich ingredient. As
examples, we highlight Watercress Salad (predicted in silico to have potential relevance for
COVID-19 mitigation), Kale and Quinoa Salad (associated in silico with AD and COVID-19)
and Thai-Style Beef Salad (optimized to target cancer, AD, and COVID-19). Detailed
descriptions and analyses of these recipes are provided in Appendix E.

4. Discussion

Our study validated the research hypothesis that LLMs can achieve higher accuracy in
ingredient substitution tasks compared to the current state-of-the-art GISMo model when
evaluated on a standardized dataset. The fine-tuned GPT-3.5-Turbo-1106 model achieved a
Hit@1 accuracy of 54.46% on the filtered Recipe1MSubs dataset, significantly outperforming
GISMo’s 40.24%. This substantial improvement demonstrates that LLMs have a higher
capacity to understand and generate contextually appropriate ingredient substitutions.
Building upon this validation, we discuss in more detail the aspects that contributed to the
improved performance of the LLMs over GISMo. The following subsections discuss the
incorporation of food category features, the impact of dataset filtration based on substitution
validity, the fine-tuning process of the LLMs, the generation of phytochemically enriched
recipes, and the ethical and economic considerations of our approach.

4.1. Incorporation in GISMo of a Food Category Feature

An initial strategy we explored was the enhancement of the GISMo model through the
incorporation of an additional node feature—food categories for each ingredient, classified
into one of the 23 categories utilized in FooDB, based on classifications retrieved via the GPT-
4. However, contrary to our expectations, this modification did not yield any improvements
in the model’s performance. This outcome may be attributed to several factors. Firstly,
including this additional categorical information might have led to overfitting the model
to the training data, compromising its ability to generalize to unseen data in the test
set (available in our repository). Additionally, another potential reason could be that
part of the value of ingredient categorization might have been indirectly achieved by the
model’s consideration of ingredient co-occurrence in recipes alongside the presence of flavor
molecules. These inherent features within the training data might already provide a basis for
the model to make substitution predictions without the need for explicit categorical labels.

4.2. Dataset Filtration Based on Substitution Validity

With the goal of optimizing ingredient substitution, our study introduced an improve-
ment by integrating the capabilities of GPT-3.5 with the GISMo model. While GISMo
independently showcased a threefold enhancement in performance compared to prior
methods [28], our approach to refine the GISMo model through the preliminary filtration
of the original dataset via GPT-3.5’s API further increased this improvement. This filtration
process involved the exclusion of Potential and Incorrect substitutions from the dataset,
thereby ensuring a higher quality of data for model training and application.

The filtration step encompassed five different datasets, and although one was ran-
domly selected to rerun GISMo, the improved results are generalizable across all, due to
their almost perfect ingredient substitute similarity across the training, validation, and
testing datasets. To demonstrate the consistency of our filtration process, here are examples
of substitutions that were consistently classified across the five runs: (A) correct substitu-
tions: orange juice to pineapple juice, carrot to red pepper, black bean to chickpea, basil
to dried oregano, onion to shallot; (B) potential substitutions: lemon to orange, apple to
peach, apple to apricot, water to wine, blueberry to strawberry; (C) incorrect substitutions:
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seedless watermelon to lime, fresh cilantro to ground coriander, horseradish to honey,
carrot to seasoning salt, clove to garlic.

4.3. LLM Fine-Tuning for Ingredient Substitution

Using Recipe1MSubs dataset, our experiments explored the benefits of fine-tuning
DaVinci, TinyLlama, and GPT-3.5. The first two models did not demonstrate any perfor-
mance enhancements over the initial method. In contrast, the fine-tuned model leveraging
the GPT-3.5 showed a 4% improvement in performance over the GISMo model. Building
upon this Recipe1MSubs filtered dataset, we ventured to fine-tune the same three models.
Again, the GPT-3.5 model was the only one that showed an increase in performance (20%)
when compared with current state of the art.

The findings of this study underscore the importance of data quality and model
compatibility in the development of ingredient substitution algorithms. The superior
performance achieved through the combination of GPT-3.5’s advanced language processing
capabilities and the GISMo model’s framework highlights the potential of leveraging state-
of-the-art AI technologies to refine and enhance existing computational models.

4.4. Phytochemically Enriched Recipe Generation

We specifically selected examples of recipes with ingredients phytochemically en-
riched targeting COVID-19; COVID-19 and AD; and COVID-19, AD, and cancer molecular
networks. Those were Watercress Salad, Kale and Quinoa Salad, and Thai-Style Beef Salad,
respectively (Appendix E). We exclusively considered salads in this analysis due to their
minimal food processing steps. This choice was made because fewer processing steps gen-
erally help preserve the phytochemicals with the health benefits discussed. Salads undergo
minimal thermal processing, which helps maintain the integrity of essential nutrients and
active compounds compared to more extensively cooked dishes [27].

4.5. Ethical and Economical Considerations

Our research advances computational gastronomy with significant economic and ethi-
cal implications, as highlighted in studies on LLMs in food science [29–31]. Economically,
LLMs enable cost reduction and innovation through ingredient substitution and recipe
optimization, promoting personalized nutrition services and creating new revenue streams
for the food industry and healthcare sectors. Additionally, AI-driven personalized recom-
mendation systems, including multimedia food logging and geolocation-based food maps,
enhance customer satisfaction and loyalty [30]. Ethically, the deployment of LLMs raises
concerns about data biases, misinformation, and privacy, necessitating careful data curation
and transparency to ensure fairness and to prevent misleading consumers. Integrating
QR code technologies into food labeling further promotes ethical practices by providing
transparent detailed product information, thereby enhancing food safety and consumer
trust [29]. Balancing these economic benefits with ethical considerations is essential to
responsibly harness AI’s potential in food science.

4.6. Limitations

One inherent limitation is the diversity of the training datasets used to fine-tune the
LLMs. Although these datasets are extensive, they may not fully capture the vast diversity
of global cuisines and dietary preferences, potentially impacting the model’s ability to
generalize across different culinary traditions and suggest culturally and regionally ap-
propriate substitutions. Additionally, the methodology primarily focuses on textual data,
which might not capture the full spectrum of culinary contexts, including taste profiles,
textures, and the interplay of flavors. LLMs, while proficient in parsing and generating
text, have limited capacity to understand and replicate the sensory experiences of cooking
and eating.
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Additionally, the fine-tuning process, especially when using a limited set of high-
quality substitutions, poses a risk of overfitting, where models may become overly special-
ized to the training data and less capable of generalizing to unseen recipes or ingredients.

Furthermore, the reliance on the Hit@1 metric, while providing a clear measure of the
model’s ability to suggest the correct first substitution, does not capture the overall utility
and flexibility of the model in providing a range of suitable alternatives.

Finally, the computational resources required for fine-tuning and deploying LLMs
may also limit the accessibility of these advanced tools to researchers and practitioners
with limited resources.

5. Conclusions

By integrating state-of-the-art LLMs such as OpenAI’s GPT-3.5 and DaVinci and
Meta’s TinyLlama, we (1) enhanced the accuracy of ingredient substitution tasks, outper-
forming the current state-of-the-art GISMo model with an increase in the Hit@1 metric;
(2) introduced a novel dataset filtration process using GPT-3.5-Turbo to eliminate less valid
ingredient substitutions, leading to higher-quality training data and improved performance
of the fine-tuned LLMs; and (3) utilized the best-performing fine-tuned LLM to generate
phytochemically enriched ingredient pairings and create unique recipes targeting at least
one of the following disease networks—cancer, AD, and COVID-19. As we continue to re-
fine the models and expand our datasets, we anticipate that incorporating domain-specific
knowledge, such as clinical and biochemical data, will be crucial for further enhancing
the accuracy and relevance of ingredient substitutions. Future research should focus on
rigorous validation of these substitutions through clinical trials and controlled dietary
studies to assess their efficacy in improving health outcomes. These developments hold
promise for revolutionizing personalized nutrition and optimizing dietary practices in a
scientifically robust and clinically validated manner.
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Appendix A

All ingredients in the Recipe1MSubs dataset were classified into one of the following
23 food categories as identified in the FooDB database [32]. The categories are:

1. Herbs and Spices
2. Fats and Oils
3. Unclassified
4. Baby Foods
5. Snack Foods
6. Dishes
7. Baking Goods
8. Confectioneries
9. Eggs
10. Milk and Milk Products
11. Animal Foods
12. Aquatic Foods
13. Beverages
14. Cocoa and Cocoa Products
15. Soy
16. Coffee and Coffee Products
17. Gourds
18. Teas
19. Pulses
20. Cereals and Cereal Products
21. Nuts
22. Fruits
23. Vegetables

Appendix B

Training configurations for DaVinci-002, GPT-3.5-Turbo-1106, and TinyLlama-1.1B, as
well as their filtered dataset variants, are detailed below. This table includes the number of
epochs, training steps, and batch sizes used for each model.

Model Epochs Steps Batch Size

DaVinci-002 1 1533 32
DaVinci-002 (Filtered) 1 1554 20
GPT-3.5-Turbo-1106 1 1533 32

GPT-3.5-Turbo-1106 (Filtered) 1 1554 20
TinyLlama-1.1B-1.1B * 1 1532 8

TinyLlama-1.1B-1.1B (filtered) * 1 970 8
(*) Models highlighted had their training parameters manually optimized to enhance performance.

Appendix C

Performance evaluation of the GISMo model, after being trained, validated, and tested
on five datasets generated by filtering the original dataset through the GPT-3.5-Turbo-1106.
The table below details the Hit@1 accuracy metric, and the number of recipes used in each
phase—training, validation, and testing—across all runs.

Filtering
Run Hit@1 (%) Training Validation Testing Total

Run 1 40.28 31,733 7082 7080 45,895

Run 2 40.82 31,795 7097 7056 45,948

Run 3 40.21 31,797 7083 7096 45,976
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Filtering
Run Hit@1 (%) Training Validation Testing Total

Run 4 39.98 31,908 7073 7113 46,094

Run 5 39.90 31,860 7136 7081 46,077

Final 40.24 ± 0.36 31,819 ± 67 7094 ± 25 7085 ± 21 45,998 ± 85

Appendix D

Comparative analysis of three models—DaVinci-002, GPT-3.5-Turbo-1106, and TinyLlama-
1.1B—evaluating their performance on the Recipe1MSubs dataset using the Hit@1 accuracy
metric across multiple runs. The analysis includes descriptions of the datasets used.

Dataset Descriptions:

• Original Dataset: 70,520 ingredient substitutions, with 49,044 for training, 10,729 for
validation, and 10,747 for testing.

• Filtered Dataset: 44,615 ingredient substitutions, with 31,063 for training, 6831 for
validation, and 6721 for testing.

The table below shows the Hit@1 accuracy for each model across five runs, along with
the final average and standard deviation. The models are ordered in the table from best to
worst performance based on their Hit@1 accuracy.

Recipe1MSubs
Dataset Fine-Tuned Model Run 1 Run 2 Run 3 Run 4 Run 5 Final Hit@1 (%)

Filtered

GPT-3.5-Turbo-1106 54.05 54.77 54.69 54.40 54.37 54.46 ± 0.29

GISMo 40.28 40.82 40.21 39.98 39.90 40.24 ± 0.36

TinyLlama-1.1B 35.07 34.22 34.46 34.53 34.37 34.53 ± 0.32

DaVinci-002 28.97 29.59 29.61 29.27 29.70 29.43 ± 0.30

Unfiltered

GPT-3.5-Turbo-1106 38.08 38.25 37.96 38.28 37.59 38.03 ± 0.28

GISMo 34.55 34.42 34.68 34.54 34.45 34.53 ± 0.10

TinyLlama-1.1B 20.44 20.78 20.35 20.18 20.16 20.38 ± 0.25

DaVinci-002 20.39 19.73 19.77 20.29 20.26 20.09 ± 0.31

The best performer fine-tuned models with the original and filtered datasets are in bold.

Appendix E

Three examples of recipes showcasing substitutions that account for the dish’s flavor
profile but also its nutritional value using phytochemically enriched ingredients:

• Thai Style Beef Salad: This recipe includes substitutions such as replacing mung
bean sprouts with cabbage to increase the recipe’s content of glucosinolates, known
for their cancer-preventive properties. The use of olive oil instead of sesame oil
increases the content of healthy fats and antioxidants, supporting cognitive health and
cardiovascular health.

• Super Corn Salad: substitutions in this recipe include using olive oil instead of veg-
etable oil to provide healthier monounsaturated fats and antioxidants. Carrots replace
pepper to increase the beta-carotene content, beneficial for immune function, and dill
is used instead of tarragon, providing a different set of phytonutrients beneficial for
inflammation reduction.

• Pineapple-Cabbage Salad: In this recipe, radishes are substituted with carrots to
increase the beta-carotene content, and peas are replaced with more carrots to further
enhance the dish’s vitamin A content, which is crucial for immune system function
and vision.
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