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Abstract: Research and applications in artificial intelligence have recently shifted with the rise of
large pretrained models, which deliver state-of-the-art results across numerous tasks. However,
the substantial increase in parameters introduces a need for parameter-efficient training strategies.
Despite significant advancements, limited research has explored parameter-efficient fine-tuning
(PEFT) methods in the context of transformer-based models for instance segmentation. Addressing
this gap, this study investigates the effectiveness of PEFT methods, specifically adapters and Low-
Rank Adaptation (LoRA), applied to two models across four benchmark datasets. Integrating
sequentially arranged adapter modules and applying LoRA to deformable attention—explored
here for the first time—achieves competitive performance while fine-tuning only about 1–6% of
model parameters, a marked improvement over the 40–55% required in traditional fine-tuning.
Key findings indicate that using 2–3 adapters per transformer block offers an optimal balance of
performance and efficiency. Furthermore, LoRA, exhibits strong parameter efficiency when applied
to deformable attention, and in certain cases surpasses adapter configurations. These results show
that the impact of PEFT techniques varies based on dataset complexity and model architecture,
underscoring the importance of context-specific tuning. Overall, this work demonstrates the potential
of PEFT to enable scalable, customizable, and computationally efficient transfer learning for instance
segmentation tasks.
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1. Introduction

Large pretrained models have gained increasing attention due to their ability to
generalize across various tasks. Models such as the Segment Anything Model (SAM) [1]
demonstrate this versatility by handling new tasks with zero-shot predictions. While earlier
models such as those based on convolutional networks have proven effective in specific
domains, their ability to generalize to new tasks remains limited [2].

Traditional fine-tuning techniques involve adjusting the entire network or a subset of
it in order to transfer knowledge to downstream tasks. However, this process often requires
copying and updating the model’s weights for each task, resulting in high computational
and memory costs. In addition, such methods can lead to catastrophic forgetting, where
the model loses previously acquired knowledge when fine-tuned for new tasks. Despite
their strong starting point, large pretrained models struggle to maintain their ability to
predict out-of-distribution tasks. As the size of pretrained models continues to grow,
the computational cost of fine-tuning for task-specific purposes increases significantly.
Moreover, the risk of overfitting to target datasets further complicates the process.

To address these challenges, the emerging field of PEFT has introduced techniques that
significantly reduce the number of trainable parameters while maintaining or approaching
the performance levels of full fine-tuning. By modifying a small subset of parameters,
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PEFT not only reduces computational requirements but also mitigates the risks associated
with overfitting.

Existing PEFT methods offer significant computational advantages, but face limitations
that restrict their wider use in computer vision (CV) tasks. First, many techniques originally
developed for natural language processing (NLP) are not optimized for unique challenges
of vision tasks such as instance segmentation, which requires precise pixel-level predictions
and the ability to differentiate between object instances. Second, while these methods
have succeeded in simpler vision tasks, their effectiveness in more complex scenarios such
as instance segmentation and optimal use for models based on multiscale deformable
attention remains underexplored.

The motivation for this work stems from a notable gap in research regarding the
application of PEFT techniques to contemporary DEtection TRansformer (DETR) models,
particularly for instance segmentation tasks. Specifically, this study is motivated by two key
areas of interest:

1. The lack of prior literature addressing the integration of adapters and LoRA within
deformable attention modules.

2. Adapter modules usually yield limited scalability, as the bottleneck dimension is the
primary adjustable parameter. Instead, a linearly scalable module can adapt more
flexibly and efficiently to different model sizes and demands.

To address these problems, as well as the limited exploration of PEFT techniques
within the context of instance segmentation, this paper makes the following contributions:

1. The first use of LoRA in deformable attention: We introduce a LoRA approach for
multiscale deformable attention, achieving parameter efficiency by only updating
low-rank matrices in the attention layers.

2. Sequential adapter integration for scalable finetuning: This study presents the first
implementation of sequentially arranged adapter modules, particularly for two large
pretrained instance segmentation models.

This study aims to open up new avenues of research by efficiently adapting large
pretrained models to various vision applications. Additionally, the source code has been
published to provide a valuable resource upon which the research community can build.

2. Fine-Tuning Techniques for Large Pretrained Models in Computer Vision

PEFT has proven highly effective in NLP, where models such as BERT and GPT are
extensively fine-tuned for tasks such as sentiment analysis and machine translation [3].
As large pretrained Vision Transformer (ViT) models gain importance in CV, there is a
growing need for computationally efficient fine-tuning methods in this domain as well.
PEFT techniques such as adapters, LoRA, prefix tuning, and prompt tuning have shown
great promise in reducing the number of trainable parameters, enabling a wide range of
applications in NLP [4–8] without the high costs associated with traditional fine-tuning.
The main difference between these methods lies in their approach to parameter reduction
and its impact on the model structure.

2.1. Adapters

Adapters are one of the earliest approaches to PEFT. They consist of small trainable
networks (adapter layers) between the layers of a pretrained model. Adapters typically
work by adding a nonlinear transformation that helps the model to learn the task-specific
features without changing the parameters of the main model. This reduces the required
number of trainable parameters while mitigating the computational and memory costs
associated with extensive model updates. Although this approach minimizes adjustments
to the main model parameters, it can introduce additional complexity to the model archi-
tecture due to the inclusion of new layers. Moreover, these extra components added to
the model structure may increase inference time. Further details on the proposed adapter
location and architecture are described in Section 4.3.
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2.2. Low-Rank Adaptation (LoRA)

LoRA is a PEFT technique designed to optimize large pretrained models by integrating
trainable low-rank matrices into the attention layers. This method approximates weight up-
dates using these low-rank matrices, thereby reducing the number of parameters required
for fine-tuning. During this process, the core parameters of the model remain largely frozen,
which minimizes memory usage and computational cost while speeding up adaptation [9].
LoRA’s approach ensures that the architecture of the model remains efficient during in-
ference, which is particularly effective for NLP and vision tasks. By focusing on a lower-
dimensional space for parameter tuning, LoRA addresses the challenges of fine-tuning large
pretrained models which may contain hundreds of millions of parameters. This technique
aims to balance parameter efficiency and performance, making it a feasible solution for
managing large-scale models in diverse applications.

2.2.1. Mathematical Framework and Efficiency of LoRA

Given a pretrained model with a weight matrix W ∈ Rd×k, the conventional fine-
tuning approach updates W to W + ∆W. Instead, LoRA represents the update ∆W as a
product of two smaller matrices A and B:

∆W = B × A (1)

where B ∈ Rd×r, A ∈ Rr×k, and r is the rank of the decomposition, typically r ≪ min(d, k).
LoRA achieves a minimum amount of trainable parameters and computational complexity
through this low-rank decomposition. The main benefits are:

• Parameter efficiency: Traditional fine-tuning requires updating d × k parameters in
∆W. LoRA reduces this to r × (d + k) parameters (the sum of elements in the A and
B) matrices, significantly reducing memory requirements.

• Training efficiency: While the original model computes W × input with d × k opera-
tions, LoRA adds only r × (d + k) operations for (B × A)× input. This means that
during training, the original pretrained weights W are frozen and only the low-rank
matrices A and B are trained. This approach preserves the pretrained knowledge
while adapting to new tasks.

• Inference optimization: During inference, LoRA computes the effective weights as follows:

WLoRA = W + B × A. (2)

This allows the original weights W to remain unchanged, with only the smaller
matrices A and B being updated and stored.

• Empirical effectiveness: Studies have shown that LoRA can achieve comparable
performance to full fine-tuning on various tasks, as detailed in Section 3.

2.2.2. LoRA in Transformer Models and Hyperparameters

LoRA is typically applied to the attention layers in transformer-based models. Specifically,
it modifies the query and value projection matrices in multihead attention mechanisms.

LoRA has two main hyperparameters: rank r, which controls the trade-off between
parameter efficiency and model capacity by adjusting the size of the decomposed weight
matrices, and a scaling factor α, which adjusts the magnitude of the LoRA update.

2.3. Prefix Tuning

Prefix tuning is another method that has been studied mainly in NLP. It involves
freezing the parameters of a language model while optimizing a small and continuous
task-specific vector, known as the prefix. Inspired by prompting, prefix tuning allows
subsequent tokens to attend to this prefix as if it were a “virtual token” [10]. However,
prefix tuning performs poorly in many NLP tasks due to its instability during training
and its reliance on flawed evaluation protocols [11]. As discussed in the original LoRA
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paper [9], increasing the number of special tokens in prefix tuning beyond a certain limit
often leads to diminishing returns or performance drops. In contrast, LoRA scales better
and consistently matches or exceeds baseline fine-tuning even for large models such as
GPT-3, making it a more reliable approach for NLP tasks.

2.4. Prompt Tuning

Prompt tuning is a PEFT technique that introduces trainable soft prompts into the input
sequence of a frozen pretrained language model [12]. This approach simplifies adaptation
by learning these soft prompts end-to-end, which can efficiently encapsulate task-specific
signals and carry them throughout the model.

While prompt tuning performs well in LLMs for NLP, it has limitations in CV ap-
plications. The main drawback is that it relies on text processing, which is not directly
applicable to visual data. Additionally, the performance of prompt tuning is constrained by
the input capacity of the model, which limits the amount of task-specific information it can
encode. As a result, this method is less effective for tasks that require detailed visual feature
extraction or fine-grained adaptation, where specialized architectures or other fine-tuning
methods may be more appropriate.

Due to the above characteristics, this study explores the application of adapters and
LoRA for instance segmentation tasks and focuses on their customization for large pre-
trained models. Our research evaluates the effectiveness of these parameter-efficient
techniques in enhancing the performance of instance segmentation applications.

3. Related Work
3.1. Adapters in Vision Tasks

The idea of using adapters and transformers together in a compact and scalable
architecture for NLP research was first introduced in [13]. Adapters were initially designed
for multitasking and continual learning using a single BERT model shared among task-
specific parameters. The Vision Transformer Adapter transferred this idea to CV, allowing a
plain ViT [14] to be adapted to multiple dense prediction tasks [15]. The authors found that
the plain variant reached its limits when transferred to tasks such as object detection or
instance segmentation, and designed a parallel architecture to extract, augment, and inject
task-specific information along the entire ViT.

Recent advances in this area include SAM, which has recently received increased
attention for providing accurate segmentation masks based on different types of user
prompts [1]. Previous attempts to fine-tune SAM have been investigated, as shown by
Abou Baker et al. [16]. To leverage the base knowledge of the model learned during
pretraining, this approach involved fine-tuning only the decoder, resulting in significant
improvements that outperformed the state-of-the-art (SOTA) on multiple waste datasets.
Further, Chen et al. [17] additionally implemented adapter modules to fine-tune SAM for
the detection of camouflaged objects, shadows, and polyps in underrepresented scenes.
The authors demonstrated the effectiveness of these modules, which outperformed the
segmentation capabilities of plain SAM on five different datasets.

In the medical image segmentation domain, Medical SAM Adapter (Med-SA) [18]
adds bottleneck adapters to both the encoder and decoder components. This method
achieves superior performance over SOTA medical image segmentation techniques while
updating only 2% of the model parameters during fine-tuning.

In multimodal large pretrained models, CLIP, originally a combination of visual and
text embeddings for visual classification tasks [19], was further enhanced with adapters
in the work of Gao et al. [20]. They added a bottleneck adapter after both the language
and vision backbone and combined the result with the initial embeddings through a skip
connection, realizing performance improvements on eleven different datasets.
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3.2. LoRA in Vision Tasks

Large pretrained models trained using self-distillation with no labels [21] and its
successor [22] have shown exceptional performance in many vision tasks; however, certain
limitations have constrained their application in medical and surgical contexts. Nonetheless,
significant progress has been made in several areas towards addressing these challenges
via LoRA techniques. For example, Zhang et al. [23] integrated LoRA layers to improve
diagnostic accuracy in capsule endoscopy. By freezing the parameters of the core model
and selectively applying LoRA to the query and value projection layers in the transformer
blocks, this method addresses the challenges posed by limited medical datasets and im-
proves the adaptability of image classification. Evaluations on the Kvasir-Capsule and
Kvasir-v2 datasets produced in impressive results, with the adapted model achieving
accuracy of 97.75% and 98.81%, respectively, outperforming several SOTA Convolutional
Neural Network (CNN) and ViT models. Additionally, LoRA-based adaptation reduced
training time and memory requirements compared to full fine-tuning while maintain-
ing strong visual representation capabilities. These results emphasize the efficiency of
LoRA in adapting large pretrained models for specialized medical tasks such as capsule
endoscopy diagnosis.

Similarly, Cui et al. [24] focused on depth estimation in robotic surgery, which is
critical for tasks such as 3D reconstruction, surgical navigation, and augmented reality
visualization. Their study introduced LoRA to produce a model called Surgical-DINO
specifically designed for depth estimation in endoscopic surgery. By integrating LoRA
layers and keeping the image encoder frozen, this approach allows for effective adaptation
to surgery-specific domain knowledge without extensive fine-tuning. The Surgical-DINO
model was evaluated on the MICCAI SCARED dataset and demonstrated superior per-
formance compared to SOTA models in endoscopic depth estimation. The study shows
that zero-shot prediction is insufficient for this particular case, and that LoRA adaptation is
crucial for achieving high performance. Additionally, the study refers to a gap in current
research, which mostly focuses on segmentation and detection tasks rather than pixel-wise
regression tasks such as depth estimation. This work demonstrates how adapting large
pretrained models with LoRA can significantly improve their applicability to specialized
medical tasks, providing a promising direction for future research.

Another study investigated the application of LoRA to unsupervised domain adapta-
tion for semantic segmentation tasks, addressing the challenges posed by large transformer
models and their high computational requirements [25]. The study used LoRA to transfer
models from synthetic datasets (GTA5) to real-world datasets (Cityscapes) and focused
on improving training stability and efficiency. The authors integrated LoRA into a Swin
transformer and TransDA framework, showing that LoRA effectively stabilized the self-
training process. This approach achieved performance comparable to the exponential
moving average (EMA) mechanism while reducing training time and memory usage by
11%. The authors demonstrated the potential of LoRA as a computationally efficient al-
ternative for domain adaptation and illustrated its effectiveness in improving semantic
segmentation performance with reduced resource requirements.

Generalized LoRA (GLoRA) [26] is an advanced method for PEFT that significantly
improves performance on the VTAB-1K benchmark. GLoRA extends LoRA by adding a
generalized prompt module to optimize both model weights and intermediate activations,
providing greater flexibility and efficiency for a variety of tasks. The study shows that
GLoRA outperforms existing methods in the VTAB-1K benchmark by up to 2.9%, achiev-
ing superior accuracy with fewer parameters and reduced computational requirements.
GLoRA maintained high generalization capabilities across 14 out of 19 datasets, proving its
effectiveness in bridging the gap between parameter efficiency and model performance.

To address the challenge of efficiently fine-tuning large models for image generation,
SuperLoRA is a novel framework that extends LoRA for fine-tuning large models [27].
SuperLoRA extends traditional LoRA by including techniques such as grouping, folding,
shuffling, projecting, and tensor factoring, which significantly improves flexibility and
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performance, especially in scenarios with extremely limited parameters. SuperLoRA was
evaluated through transfer learning tasks, including image classification and image genera-
tion, and demonstrated superior parameter efficiency compared to existing LoRA variants.
SuperLoRA achieved up to a ten-fold reduction in the number of parameters while main-
taining or improving performance, proving highly effective in low-parameter scenarios.

Building on this, a recent study applied LoRA to fine-tune a stable diffusion model
for generating synthetic images of defects (e.g., scratches, cracks, and pits) in the NEU-seg
dataset [28]. To overcome data scarcity and class imbalance, synthetic images were used to
augment the training data for segmentation models (DeepLabV3+ and FPN). This method
led to significant improvements in segmentation performance, with the mean Intersection-
over-Union (mIoU) increasing by about 6%. The key contribution was the use of LoRA
to efficiently adapt stable diffusion for high-quality synthetic image generation, which
improved the robustness of defect segmentation.

The related works discussed above show that adapters and LoRA techniques are
effective in a variety of domains, including NLP and certain CV tasks such as image
classification and semantic segmentation, as summarized in Table 1. However, their appli-
cation to more specialized and complex CV problems, particularly instance segmentation,
remains underexplored.

Table 1. Summary of related works and their classification into the topics of Adapters in CV and LoRA
in CV.

Publication Adapters in CV LoRA in CV

Vision Transformer Adapter for Dense
Predictions [15] ✓

SAM-Adapter: Adapting Segment Anything
in Underperformed Scenes [17] ✓

Medical SAM adapter: Adapting segment
anything model for medical image
segmentation [18]

✓

Clip-adapter: Better vision-language models
with feature adapters [20] ✓

Learning to Adapt Foundation Model
DINOv2 for Capsule Endoscopy
Diagnosis [23]

✓

Surgical-DINO: adapter learning of
foundation models for depth estimation in
endoscopic surgery [24]

✓

Low Rank Adaptation for Stable Domain
Adaptation of Vision Transformers [25] ✓

Latent Diffusion Models to Enhance the
Performance of Visual Defect Segmentation
Networks in Steel Surface Inspection [28]

✓

This work ✓ ✓

Instance segmentation presents a unique challenge because it requires not only the
identification of semantic classes at the pixel level but also the grouping of these pixels
into distinct object instances. This task involves separately predicting both the mask and
the category for each object instance, adding a layer of complexity beyond what existing
adaptation methods in CV have primarily supported.

To the best of our knowledge, this work pioneers the application of adapters and LoRA
to instance segmentation using large pretrained models. By addressing this underexplored
area, our research aims to extend the capabilities of adaptation methods to handle complex
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visual tasks and contribute to the advancement of efficient and adaptable CV models for
instance segmentation.

4. Models and Architecture
4.1. Large Pretrained Models

This study examines two specialized large pretrained models for instance/panoptic
segmentation: the Segment Everything Everywhere Model (SEEM) [29] and DETR with
Improved Denoising Anchor Boxes (Mask DINO) [30]. SEEM is a multimodal segmentation
model that accepts prompts such as clicks, boxes, polygons, scribbles, text, and referring
regions from another image to control the focus of the detection during inference. Inspired
by the architecture of CLIP [19], it also incorporates a text encoder to enable open-set
segmentation capabilities, and as such can perform so-called “zero-shot inference” on
unseen datasets. With approximately 340 million parameters, SEEM provides a robust
framework for various types of input data.

Interactive models are very helpful for image labeling, which remains a major chal-
lenge in CV. In the work of Huang et al. [31], a novel attention mechanism was proposed
that focuses primarily on scribbles to enhance the contrast between background and fore-
ground objects. This approach reduces the need for dense annotations, increases the
efficiency of automatic labeling, and achieves high-quality segmentation with minimal user
input. In a more recent work by Meta, SAM2 extends upon its predecessor by allowing the
segmentation of specific objects throughout videos with one or more interactive prompts
on the first frame. It is designed to provide a real-time experience while achieving similar
or better results than SAM [32].

Mask DINO includes two versions provided by the authors: one based on the ResNet
backbone (with 52.02 million parameters), and another based on the Swin-L backbone (with
222.76 million parameters). Mask DINO is a large pretrained model for object detection and
segmentation. It adopts the same architecture as the plain DINO model, but modifies the
transformer decoder slightly to enable output of instance-wise segmentation masks. This
is achieved by adding a parallel branch dedicated to mask prediction alongside DINO’s
bounding box prediction branch. Mask DINO outperforms existing instance segmentation
methods based on the ResNet50 [33] and Swin-L [34] backbones, achieving 54.5 average
precision (AP) on the COCO dataset.

The methodology proposed in this work was applied to both SEEM and Mask DINO,
as they are based on the segmentation meta-architecture proposed by the authors of Mask-
Former [35] and deformable DETR [36], simplifying the process of code adjustments during
implementation. Additionally, they offer a variety of backbone methods to choose from,
including various sizes of FocalNet [37] or ViT [14] for SEEM and the choice of ResNet50
[33] or Swin-L [34] for Mask DINO. Unlike SEEM, Mask DINO is not a multimodal model,
allowing the proposed techniques to be compared for both types of large pretrained models.
As a replacement for the regular multihead self-attention layer, we implemented both
models to support the use of multiscale deformable attention. However, only the authors
of Mask DINO made use of this replacement during the creation of the publicly available
weights, resulting in a minor architectural difference in the transformer blocks compared
to SEEM.

4.2. Architecture

Figure 1 provides a high-level overview of the previously mentioned meta-architecture.
The models consist of four components: The backbone, which produces multiple image
embeddings of different sizes; a pixel decoder to upsample the embeddings into high-
resolution feature maps gradually; a transformer decoder that generates N embeddings for
possible instance candidates; and a predictor to convert and filter these candidates to actual
class and mask predictions. The pixel decoder is built upon a three-level feature pyramid
network (FPN) [38] enhanced by a transformer encoder with six layers that captures the
global image features and efficiently extracts high-resolution per-pixel features.
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Each of the nine transformer decoder blocks consists of three layers: a cross-attention
module with layer normalization (LN), which receives the image features produced by the
pixel decoder; a self-attention module with LN; and a feed-forward network (FFN) with
LN, based on the method proposed by Cheng et al. [39]. Inside the predictor, the output
of the transformer decoder is combined with a learnable class embedding, resulting in the
class logits. In Mask DINO, a softmax function generates class probabilities. As an open-set
segmentation model, SEEM calculates the cosine similarity between these class logits and
the embeddings of the textual input to derive the probabilities. Mask predictions are
obtained by feeding the same decoder output through a simple MLP, called mask embedding,
and linearly combining these outputs with the high-resolution feature map of the pixel
decoder. In Figure 1, these operations take place in the Mask and Class Head, respectively.
Throughout this work, the composition of all the modules after the backbone is called the
segmentation head.

Pixel Decoder

Transformer
Decoder

Segmentation Head

N Mask Predictions

Mask
Head

N queries

Backbone

N Class Predictions

6x

Predictor
Cross-Attention

Self-Attention + FFN

Feature map of single scale

FPN Layer
(Convolution, Interpolation,

Addition)

Multi-scale features

Transformer

9x

1 1 1
Class
Head

1In Mask DINO, self- and cross-attention are swapped, deformable attention is used, and each transformer
decoder block receives all feature maps from the pixel decoder at once.

Figure 1. High-level view of the model architecture of Mask DINO and SEEM.

4.3. Adapters

The proposed adapter architecture is inspired by the NLP-based approach introduced
by Houlsby et al. [13]. In their approach, a linear layer is used to project down the output of
the intermediate transformer layer, an activation function is used to introduce nonlinearity
at the bottleneck, a linear layer is used to project up to the original input size, and a
residual connection is established to preserve important information about the input signal.
In the original paper, the adapters were placed after each feed-forward network of the
BERT transformer layers, resulting in two adapters per layer. Considering these aspects,
the proposed method introduces three main architectural decisions to transfer and extend
this idea to segmentation frameworks.

4.3.1. Adapter Location

Because the main purpose of the adapters is to “translate” the knowledge of the
pretrained transformer to a downstream task, the adapter modules have been placed
directly after all cross- and self-attention layers of each transformer block (highlighted in
red-colored blocks in Figure 2b,c below). This location ensures that the adapters receive the
original attention maps of the network as a prior and are trained to apply the nonlinear
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transformation. Consequently, the outputs can be seen as modified attention maps that
contain additional task-specific information for the downstream tasks.

🔥

Predictor

Pixel decoder

Transformer
decoder

Segmentation Head

9x

N queries

6x

Encoder

Self Attention

 Adapter 

Layer Norm

1In Mask DINO, self- and cross-attention are swapped, deformable attention is
used, and each transformer decoder block receives all feature maps from the pixel
decoder at once.

1 1 1

FFN

Layer Norm

Cross Attention

 Adapter 

Layer Norm

Includes adapter

a) Location of the adapters in the meta-architecture c) Cross-attention block with adapter

λ

κ

λ

κ

b) Self-attention + FFN block with adapter

Multi-scale
features

Figure 2. Location of adapters inside the meta-architecture (a) and detailed placement inside a
self-attention block (b) or cross-attention block (c). Added components are colored red.

4.3.2. Adapter Architecture

The internal adapter architecture closely follows the original implementation men-
tioned earlier [13], consisting of a linear downprojection, a ReLU activation function,
a linear upprojection, and a residual input ⊕ added to the adapter output, as shown in
Figure 3 (the blue block). The bottleneck dimension is defined and calculated as follows:

dimbottleneck = diminput ∗
1
k

(3)

where k is the downscale factor, which is a tunable hyperparameter shared by all adapter
modules. Increasing k reduces the dimension of the bottleneck, effectively leading to
a common tradeoff between compressing the data to capture high-level relations and
losing relevant information due to massive dimension reduction. Furthermore, because
the attention prior is highly informative and may require a deeper neural network than
just a single MLP to capture all relevant information, another hyperparameter I defines
the number of repetitions of the MLP within each adapter module. Fundamentally, all
repetitions receive the same residual input, meaning that they refer to the original signal
throughout the sequential alignment.

R
eLU

Linear dow
n

Linear up

Residual input

R
eLU

Linear dow
n

Linear up

I

Attention Output

Adapter Block 1 Adapter Block I

Figure 3. An adapter block consists of a simple feed-forward network and a residual connection (blue
block). This block is sequentially repeated I times inside a single adapter (red frame). Each of the
I blocks receives the same residual input.

4.3.3. Residual Connection

In contrast to the original implementation, where the residual input serves as a skip
connection to add up the information before the adapter module, we observed that com-
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bining the attention output with the key vector of the attention input yields slightly better
overall performance. This is discussed further in Section 5.2. This improvement occurs
even though the models are designed to include this signal inherently and add it to the
output of the adapter in both cases (as shown in Figure 2b,c above the adapter blocks).
The interpretation of this behavior is that emphasizing the attention’s key vector after
the adapter modules forces the adapters to focus more on learning how to fine-tune the
pretrained attention layers, rather than on learning the relationships between the input
features from scratch. Using the attention prior only as a residual input is referred to
as the κ configuration. In contrast, residual use of the attention output is referred to as
the λ configuration. The combination of both, shown in Figure 2b,c, is referred to as the
κ + λ configuration.

4.4. LoRA Layers

Similar to the adapter modules, LoRA was applied to each of the six transformer
encoder layers within the pixel decoder and to all nine blocks of the transformer decoder,
as illustrated in Figure 4.

🔥

Predictor

Pixel decoder

Transformer
decoder

Segmentation Head

9x

N queries

6x

Encoder

Attention

Layer Norm

1In Mask DINO, self- and cross-attention are swapped, deformable attention is
used, and each transformer decoder block receives all feature maps from the pixel
decoder at once.

1 1 1

FFN

Layer Norm

Attention

Layer Norm

Includes LoRA

a) Location of LoRA in the meta-architecture c) Cross-attention block with LoRAb) Self-attention + FFN block with LoRA

Multi-scale
features

KQ V

LoRA LoRA LoRA LoRA

V K Q

Figure 4. Location of LoRA inside the meta-architecture (a) and detailed placement inside a self-
attention block (b) or cross-attention block (c). Added components are colored red.

According to the original LoRA implementation [9], the input sequence is processed
in parallel by the base weights W0 and the LoRA weights BA, scaled by a factor α

r . Then,
the results are added, leading to the following expression:

h = xWT
0 +

α

r
x(BA)T . (4)

However, this calculation involves applying two matrix multiplications to the input se-
quence, one with the base weights and another with the LoRA weights. Thus, the LoRA
weights must also be kept separate during inference, potentially increasing the inference
speed compared to the plain model. To keep the latency as low as possible, we decided to
use the “LoRA-Torch” Python library [40]. This efficiently bypasses the issue by first adding
the scaled LoRA weights to the base weights, then applying a single matrix multiplication
to the input sequence, leading to the following equation:

h = x(W0 +
α

r
BA)T . (5)

For each task adaptation, the weight matrix B is initialized as a zero matrix, allowing the
model to begin with the pretrained weights. As training progresses, task-specific weights
are added incrementally, ensuring that the model can learn new tasks while preserving
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the knowledge encoded in the pretrained parameters. During training, recomposition of
A and B is performed before each forward pass, then reversed by subtracting the scaled
LoRA weights. This process isolates the contribution of LoRA-specific weights from the
base weights, allowing the loss to be correctly back-propagated. For inference, the trained
weights can be precomputed and then added to the model’s weights to generate a fine-
tuned version of the model, minimizing the computational latency during inference.

Because the authors of Mask DINO replaced the regular self-attention in the pixel
decoder and the cross-attention layers in the transformer decoder with the deformable
attention mechanism, in this work we propose a paradigm to apply LoRA to both variants
while maintaining its functionality. This distinction and the previously mentioned weight
addition are illustrated in Figure 5 and described below.

b) Deformable Self-Attention with LoRA
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Figure 5. Application of LoRA to regular and deformable attention mechanism.

4.4.1. Regular Self- and Cross-Attention

In the regular self- or cross-attention mechanism, Q, K, and V are calculated by a
matrix multiplication between the input sequence and corresponding weight matrices WQ,
WK, and WV . After the actual attention operation, the output is multiplied by a fourth
set of weights WO to apply a final linear transformation. This operation is expressed
mathematically in Equation (6); for simplicity, the equation represents the self-attention
operation with only a single head:

Q = xWT
Q, K = xWT

K , V = xWT
V ,

Output = Attention(Q, K, V)WT
O .

(6)

Based on findings from the original LoRA paper [9], this operation is applied only to the
weight matrices of the query (WQ) and value (WV) projections, leaving the key (WK) and
output (WO) projections untouched. To achieve this, Equation (6) is extended as follows:

Q = x(WQ +
α

r
BQ AQ)

T

K = xWT
K

V = x(WV +
α

r
BV AV)

T

Output = Attention(Q, K, V)WT
O ,

(7)

where the decomposed LoRA matrices (AQ, BQ, AV , BV) are trained during fine-tuning. In
Figure 5a, the trainable matrices are visualized in red. After recomposition, they are added
(⊕) to the base weights, and the remainder follows the conventional attention mechanism.
For cross-attention, LoRA was applied to the same weight matrices as in self-attention, with
the only difference being that in this case the key and value matrices are derived from a
different input sequence than the query matrix, allowing the model to attend to an external
source of information.
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4.4.2. Deformable Self- and Cross-Attention

The regular attention mechanism involves calculating attention scores between all
elements of the query and key sequences, resulting in quadratic complexity with respect
to the sequence length. This issue becomes particularly concerning for images, where
computational complexity scales quadratically for both height and width.

To mitigate this issue, Zhu et al. [36] proposed the deformable attention mechanism,
which restricts each element so that it only attends to a fixed number of points in the
sequence. This approach makes it computationally feasible to execute self-attention opera-
tions on large sequences, for instance a a flattened concatenation of image patches obtained
from multiple scales of the backbone architecture.

To accomplish this, K static reference points (p̂) are predefined as an evenly distributed
grid within the spatial dimensions of the input image. Based on the query sequence,
the model predicts offsets ∆p and attention weights Â for each reference point. These
offsets are added to the reference points to generate sampling locations p.

After the offsets are applied, a softmax function is used to normalize the attention
weights A. The corresponding points are sampled from the value sequence and weighted
according to these normalized attention scores. To produce the final output, a linear
transformation using another weight matrix WO is applied to the result.

In the original implementation [36], the offsets are calculated by multiplying the
query sequence and a weight matrix Wo f f set. Similarly, the attention weights are obtained
with a separate weight matrix Wattn, and the value projection remains the same as in the
regular attention mechanism (WV). Equation (8) mathematically expresses the deformable
self-attention operation, simplified to include only a single head.

∆p = xWT
o f f set, Â = xWT

attn, V = xWT
V

p = p̂ + ∆p

A = so f tmax(Â)

Output = De f ormableAttention(V, p, A)WT
O

(8)

Deformable attention uses a fixed number of static reference points with corresponding
offsets. Instead of traditional query and key projections, the LoRA adaptation adjusts these
offsets and attention weights through low-rank matrices during fine-tuning.

Theoretically, the shifted reference points, sometimes called sampling points, can
be seen as queries, while the weights Wattn themselves can be seen as keys. Building
upon this mental concept, LoRA is applied to the weights Wo f f set and WV , resulting in the
decomposed matrices Ao f f set, Bo f f set, AV and BV .
Mathematically, this LoRA adaptation of a deformable self-attention layer can be expressed
as shown below.

∆p = x(Wo f f set +
α

r
Bo f f set Ao f f set)

T

Â = xWT
attn

V = x(WV +
α

r
BV AV)

T

p = p̂ + ∆p

A = so f tmax(Â)

Output = De f ormableAttention(V, p, A)WT
O

(9)

The deformable self-attention mechanism is visualized in Figure 5b, where the trainable
decomposed LoRA weights are again colored in red. In this variant, the input sequence is
used to compute the offsets, attention weights, and value projection.

Complementing this, the cross-attention variant receives the value from a different
sequence to facilitate the interaction between two sources. As in the self-attention variant,
LoRA is applied to the offset and value projection weights. In the context of task adaptation,
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this updates the model’s understanding of which points to look at by adjusting the offsets of
the static reference points and how to interpret the inputs by adjusting the value projection.

5. Datasets and Methodology
5.1. Datasets

For a comprehensive evaluation across datasets of varying complexity, 4 datasets were
selected to serve as downstream tasks:

• The Northumberland Dolphin Dataset 2020 (NDD20) consists of 2201 images of each
of two different dolphin species, including both above- and below-water images, for a
total of 4402 images, along with 6102 annotations [41]. As the second species is only
present in the underwater images, no distinction between species was made during
preparation and the two types of images were concatenated and shuffled to create
a training–testing split. The images and annotations are of high quality, making the
resulting dataset relatively less complex compared to the others.

• The ZeroWaste dataset is a unique and challenging benchmark dataset that poses
numerous challenges, including significant clutter, highly deformable and translucent
objects, and a fine-grained difference between the object classes. It consists of real
images taken from a conveyor belt in a materials recovery facility (MRF). The fully
annotated partition, ZeroWaste-f, is unbalanced and consists of 4503 images with four
possible classes: Cardboard, Soft Plastic, Rigid Plastic, and Metal. The SOTA for the
AP is equal to 24.2 [42]; in the context of this work, the ZeroWaste dataset can be
considered a medium-complexity task.

• The Waste Inspection X-ray (WIXray) dataset is a benchmark smart waste inspec-
tion dataset that introduces the real and novel problem of instance segmentation
in X-ray images. It consists of 5038 X-ray images (total of 30, 881 annotated waste
items) with a constant resolution of 450 × 450, and includes four general types and
twelve categories of small objects: Recyclable (PlasticBottle, Can, Carton, GlassBottle,
Stick, and Tableware), Residual (HeatingPad, Desiccant, and MealBox), Foodwaste
(FoodWaste), and Hazardous (Battery and Bulb). The SOTA for the AP is equal to
46.85 [43]; due to the combination of rather small-sized images, occlusion, and over-
lapping instances due to the nature of X-ray scans, the dataset can be considered a
high-complexity task in this research.

• The Cityscapes dataset [44] focuses on semantic understanding of urban street scenes,
and consists of 5000 finely annotated and 20, 000 coarsely annotated images. It covers
30 classes such as Road, Sidewalk, Vehicle, and Building captured across 50 cities
over several months during daytime and in good to medium weather conditions.
This well-known benchmark dataset includes labels on the pixel, instance, and panop-
tic segmentation levels. In this study, we focus only on instance segmentation with
fine-grained labels, for which this dataset consists of 5000 images (2975 for train-
ing, 500 for validation, and 1525 for testing) containing annotations for eight classes.
The current SOTA for the AP is equal to 49.3, which was achieved by training the
OpenSeeD model end-to-end [45].

The four levels of complexity also result from the contextual divergence from the
datasets used for pretraining the large pretrained models. It can be hypothesized that
downstream tasks that are fundamentally different from pretrained (common) knowledge
require greater computational adjustments by the implemented adapter modules.

5.2. Experimental Setup

SEEM and Mask DINO were used as base models. The training procedure used
an NVIDIA Quadro RTX 8000 with a batch size of 4 in all cases. The experiments were
performed with different epochs for each dataset. Specifically, NDD20 was trained with
15 epochs, Zerowaste with 10 epochs, and both WIXray and Cityscapes with 20 epochs.
The performance of the models was evaluated based on the weights that produced the
best results. The original optimizer (AdamW for both models) and loss function were
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kept throughout the study; after the sweep of different learning rate settings, the final
base learning rates were 0.001 for adapter runs and 0.0001 for traditional runs. Notably,
the Cityscapes dataset was trained with a more complex backbone (Swin-L) in the case of
Mask DINO to allow for a fair comparison with the latest SOTA results.

To highlight the parameter efficiency, this approach was compared to several tra-
ditional fine-tuning settings without the use of LoRA or adapter modules. Because full
fine-tuning requires updating 100% of the parameters, which is computationally expensive,
we performed ablation studies on traditional training of the following specific parts of
the models: fine-tuning the full segmentation head (encoder + decoder), fine-tuning only
the decoder, and fine-tuning only the class + mask embeddings.

The different adapter settings included {1, 2, 3, 4} adapters per block (I = 1, 2, 3, 4)).
The residual connection setting mentioned in Section 4.3.3 requires further discussion.
Two additional experiments were performed on the NDD20 dataset (see Table 2a below).
The setting κ refers to using only the attention key as the residual adapter input; in contrast,
the setting λ refers to using the attention mechanism’s output, while κ + λ refers to adding
both before feeding them into the adapter as a residual connection. The resulting AP values
are documented in Table 2a, where bold numbers represent the highest AP scores for each
dataset and model.

Table 2. Ablation study of the four datasets with different fine-tuning settings and numbers of
parameters for each setting. The adapter and LoRA configurations also include the trainable class and
mask embeddings. (a) Ablation study for all four datasets. (b) Ablation study of trained parameters.
Italic rows represent table headings.

(a) Ablation study for all four datasets; CE and ME refer to class and mask embedding, respectively.
∗ uses the Swin-L backbone, bold numbers represent the highest score within a column

AP scores
NDD20 ZeroWaste WIXray Cityscapes Average

SEEM Mask DINO SEEM Mask DINO SEEM Mask DINO SEEM Mask DINO∗

Full Head 79.2 78.98 25.97 24.94 39.88 44.17 32.19 39.11 45.55

Only Decoder 71.49 66.28 14.65 14.26 30.89 28.72 31.27 36.83 36.8

Only CE & ME 67.79 56.06 5.17 6.99 16.89 6.62 29.59 34.16 27.91

1 Adapter (κ) 76.26 62.53 - - - - - - -

1 Adapter (λ) 76.79 75.55 - - - - - - -

1 Adapter (κ + λ) 77.19 76.54 22.6 22.66 34 36.96 31.58 37.23 42.34

2 Adapters (κ + λ) 77.72 77.58 24.2 24.7 34.45 39.6 31.7 37.71 43.461

3 Adapters (κ + λ) 77.67 77.06 22.9 24.64 35.28 40.5 32.08 38.27 43.55

4 Adapters (κ + λ) 78.15 76.71 24.6 25.02 35.27 41.32 32.04 37.77 43.86

LoRA (r=2) 77.29 74.72 22.6 20.35 32.97 29.4 31.22 38.67 40.9

LoRA (r=4) 77.06 75.47 23.1 21.7 34.95 33.48 31.26 39.85 42.11

LoRA (r=8) 76.89 76.32 23.9 22.59 35.06 36.5 31.77 40.24 42.91

LoRA (r=16) 76.52 76.56 24.5 22.34 34.01 38 31.3 40.39 40.95

(b) Ablation study for the average number of trained parameters and their corresponding fraction of the resulting model.

# Parameters SEEM (Focal-L) Mask DINO (Resnet-50) Mask DINO (Swin-L)

Full Head 134.61M (39.55%) 28.56M (54.91%) 27.56M (12.37%)

Only Decoder 102.42M (30.09%) 14.51M (27.89%) 14.73M (6.61%)

Only CE & ME 1.05M (0.31%) 0.33M (0.63%) 0.33M (0.15%)

1 Adapter (κ + λ) 4.21M (1.23%) 1.12M (2.13%) 1.12M (0.50%)

2 Adapters (κ + λ) 7.37M (2.13%) 1.92M (3.58%) 1.92M (0.86%)

3 Adapters (κ + λ) 10.53M (3.01%) 2.71M (4.99%) 2.71M (1.21%)

4 Adapters (κ + λ) 13.7M (3.88%) 3.51M (6.35%) 3.51M (1.55%)

LoRA (r=2) 1.15M (0.34%) 0.38M (0.73%) 0.38M (0.17%)

LoRA (r=4) 1.25M (0.37%) 0.43M (0.83%) 0.43M (0.19%)

LoRA (r=8) 1.44M (0.42%) 0.53M (1.01%) 0.54M (0.24%)

LoRA (r=16) 1.84M (0.54%) 0.73M (1.39%) 0.74M (0.33%)
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A parameter sweep was conducted to identify the optimal scaling factor for the LoRA
configurations. The configurations included r = {2, 4, 8, 16}, while always using α = r
to attain a constant scaling factor of 1. This scaling was found to perform the best out of
different α values during a separate ablation study on the WIXray dataset, which can be
found in Appendix A.

SEEM integrates a dedicated language model that processes class names by injecting
them into predefined prompts to generate the corresponding embeddings. The adapters
and LoRA modules could potentially be introduced at this stage; however, as the primary
function of the pretrained language model is to generate embeddings from textual input
regardless of the dataset, we decided not to incorporate adapters or LoRA modules into
the model at this stage, leaving this extension open for future work.

In Table 2, CE represents the class embedding and ME represents the mask embedding.
Unless otherwise noted, the residual κ + λ setting is used for the rest of the paper.

6. Discussion

This section presents a comparative analysis of adapter-based methods and LoRA,
evaluating their performance and efficiency across different configurations and tasks.
Quantitative and qualitative results are provided along with a comparison of inference
speed to assess their respective advantages and limitations.

6.1. Quantitative Results
6.1.1. Analysis of Adapter Performance

This section provides an analysis of the performance of different adapter configura-
tions compared to full-head tuning on different datasets and with different settings.

For the AP, it was observed that full-head tuning generally provides slightly better
results than adding adapters for both SEEM and Mask DINO in most configurations.
However, there was an exception in the case of Mask DINO for the Zerowaste dataset,
where the setting with four adapters outperformed both the full-head setting and even
the SOTA. A more comprehensive comparison is visualized and discussed later using
Figures 6 and 7.

In addition, we found that tuning only the decoder or only the class and mask embed-
dings led to a significant decrease in AP, emphasizing that removing tunable parameters in
the final layers is inferior to adding adapters with similar or fewer parameters.

Furthermore, while the performance of SEEM and Mask DINO varied across the
datasets, on average it followed the trend of increasing performance as more adapters
are added. Although the Mask DINO architecture with ResNet-50 backbone is more
than six times smaller than SEEM, it achieved comparable or better performance across
our experiments. This suggests that the deformable attention-based detection branch,
the contrastive denoising in the underlying DINO method, and the absence of a language
encoder help the model to localize objects more efficiently before creating the segmentation
masks. Mask DINO was also found to perform better in predicting small objects. Thus,
higher AP of Mask DINO regarding the WIXray dataset was observed for the approach
with full-head fine-tuning, as shown in Table 2a.

Table 2b shows a significant reduction in parameters when using adapter configura-
tions compared to the full-head and decoder-only settings. This reduction demonstrates
the benefit of using adapters to achieve parameter efficiency rather than modifying a subset
of the underlying model. The percentages were calculated as follows:

percentagetrained =
100 × numtrainable

numoriginal + numadapters
. (10)

For the Cityscapes benchmark, the best AP score after 20 epochs was achieved by Mask
DINO, with a score of 38.27 under the three-adapter setting and 39.11 when fine-tuning
the full segmentation head. Compared to the current SOTA for this benchmark dataset
(49.3 AP for the“OpenSeeD” multimodal model [45]), the results indicate the potential of
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adapter fine-tuning, as the training was performed with only a small number of additional
parameters (1.21%) rather than training the model end-to-end. The previous SOTA AP was
equal to 46.7, achieved by training a 372M-parameter model (“OneFormer” [46]) end-to-end
for 90K optimization steps and a batch size of 16, making up a total of 484 epochs. To better
compare the effectiveness of using adapters, the training of Mask DINO was extended
with four adapters for an additional 30 epochs while keeping all the hyperparameters
constant. The best AP score we obtained was 41.44, while the model was still not observed
to converge or overfit. Although the method still leaves a performance gap with SOTA
for Cityscapes, it can be acknowledged that adapters could close this gap with further
fine-tuning and optimization, providing an efficient framework for transferring pretrained
knowledge to downstream tasks.

In our results, the adapter settings achieved competitive results with only 1.23–3.88%
(SEEM) and 0.5–6.35% (Mask DINO) of the total model parameters. In contrast, fine-tuning
the entire segmentation head resulted in a high percentage of trainable parameters, 39.55%
for SEEM and 54.91% for Mask DINO.

To directly compare the methods with the full-head configuration, the average AP was
calculated for each method across all four datasets, then the relative difference between
each of the resulting mean AP scores and the mean full-head AP was calculated as follows:

δm =
APm − APf ullhead

APf ullhead
(11)

where APm is the mean AP for method m and APf ullhead is the mean AP for the full-head
method; in other words, the delta value δ measures how far a method is from the best-
performing setting (full-head tuning) on a uniform scale. The results are shown on the
y-axis in Figure 6 for the SEEM model and Figure 7 for the Mask DINO model. Additionally,
the figures show the number of trainable parameters on the x-axis.

Figure 6. Delta δ comparison of SEEM results

Intuitively, a higher number of adapters leads to better the performance, and this
proves common for all four datasets; therefore, finding the tradeoff between model pre-
cision and number of parameters remains a challenge. The AP performance when using
adapters is close to that achieved by fine-tuning the full segmentation head. Although the
traditional method yields slightly better results than the setting with two adapters, it
requires significantly more parameters, 18 times more for SEEM and 15 times more for
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Mask DINO (ResNet-50). Furthermore, adding three or four adapters has little impact on
performance while doubling the number of additional parameters. However, fine-tuning
the decoder only shows a significant decrease in the average delta δ, and is accompanied
by a considerable increase in the number of parameters for both models. Fine-tuning only
the embedding weights does not capture enough information about the downstream task,
and results in an even larger reduction in the average delta (δ. This is exactly the situation
where adapters and LoRA excel, as they are also placed in earlier layers, and as such can
reduce error accumulation throughout the network.

Figure 7. Delta δ comparison of Mask DINO results (does not include the Cityscapes results, as they
were obtained with the larger Swin-L backbone).

To summarize, the previous results indicate that two to three adapters per transformer
block provides fair and efficient transfer to instance segmentation tasks, offering the best
tradeoff between performance and the number of trained parameters among the tested
settings. In addition, it is worth mentioning that none of our experiments showed a
converging trend, leaving potential for further improvement.

6.1.2. Analysis of LoRA Performance

This analysis aims to compare the performance of LoRA to that of full-head tuning and
multiple adapter configurations based on the data provided in Table 2 and Figures 6 and 7.
The analysis focuses on both performance metrics and parameter efficiency.

On the NDD20 dataset, adapters show superior performance compared to LoRA due
to their higher number of parameters, which allows for more complex representation of
water-specific visual characteristics. Moreover, the results in Table 2a show that increasing
the rank of LoRA for SEEM results in a decline in performance, suggesting that these
particular weight updates have a low intrinsic rank and that higher-rank adaptations may
negatively impact the model’s ability to generalize. Although LoRA outperforms the
single-adapter configuration on this dataset, it does not achieve the results observed for
both models with multiple-adapter configurations. For example, in SEEM, LoRA uses only
1.44M parameters, compared to 4.21M for the single-adapter setup, allowing it to nearly
match the performance of configurations that use almost three times as many parameters.
A similar analysis for Mask DINO shows that LoRA uses 0.53M parameters, while the
single-adapter configuration uses 1.12M. These results suggest that while LoRA is highly
efficient, the additional parameters in adapters may capture more precise settings matched
to the NDD20 task.
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On the ZeroWaste dataset, the SEEM model with multiple-adapter configurations
consistently outperforms the model with LoRA, demonstrating superior ability to handle
the specific challenges of this dataset such as deformable objects with high variability,
fine-grained distinctions between overlapping waste categories, and complex backgrounds
with frequent occlusion. The increased parameter capacity of the adapters proves crucial
for learning robust representations of these highly variable waste objects. Even the single-
adapter configuration shows competitive performance, outperforming LoRA in most
cases despite LoRA’s parameter efficiency. This suggests that the ZeroWaste task benefits
significantly from the ability of adapters to introduce task-specific layers. Similarly, for the
Mask DINO model, all adapter configurations consistently outperform LoRA, suggesting
that this architecture is particularly well suited to the adapter approach for the tasks
presented in the ZeroWaste dataset. The superior performance of adapters in both models
demonstrates their effectiveness in capturing the complex features and relationships unique
to waste classification tasks.

The WIXray dataset produces mixed results, emphasizing the varying effectiveness of
fine-tuning methods based on model architecture. In the SEEM model, LoRA outperforms
the single-adapter configuration and competes with multiple-adapter setups despite using
fewer parameters, indicating that LoRA’s global updates can be effective for certain aspects
of the WIXray task. However, in the Mask DINO model LoRA consistently underperforms
compared to all adapter configurations, similar to its performance on the ZeroWaste dataset.
This suggests that Mask DINO may be less compatible with LoRA’s update mechanism.
The challenges of the WIXray dataset, such as shifts from natural images to X-ray scans,
complicate the segmentation task. While LoRA shows some effectiveness in SEEM, adapters
generally show better performance, especially in Mask DINO. This is due to their ability
to introduce specialized processing essential for extracting material-specific features from
small overlapping objects in X-ray images. This context demonstrates the advantages
of adapters, especially in architectures such as Mask DINO, while also illustrating the
importance of the interaction between fine-tuning methods and model architectures in
determining overall effectiveness for X-ray tasks.

The Cityscapes dataset illustrates remarkable results, especially for the Mask DINO
model, where LoRA excels. In SEEM, LoRA’s performance is similar to the other datasets,
slightly outperforming the single-adapter setups but underperforming the multiple-adapter
setups. However, in Mask DINO LoRA achieves the highest AP, outperforming all other
configurations including full-head tuning, despite using only 0.54M parameters (0.24%)
compared to 27.56M (12.37%) in full-head tuning. This success can be attributed to the
fact that the Cityscapes dataset more closely matches common pretraining datasets that
contain natural visible-light images of everyday scenes. Consequently, LoRA’s efficiency in
updating pretrained weights is sufficient for optimal performance, as minor adjustments to
existing features are sufficient in this context. On the other hand, adapters may introduce
additional complexity, making them less effective.

The parameter efficiency of LoRA makes it competitive in highly resource-constrained
scenarios, as clearly shown in Figures 6 and 7, while adapters tend to scale better with addi-
tional layers, showing different scaling characteristics. However, performance gains are not
always linear with increasing parameters. For SEEM, increasing the trainable parameters
for LoRA faces limitations at a rank of 16, indicating that the affected layers have a lower
intrinsic rank compared to Mask DINO. As a result, increasing the rank beyond 8 offers
no significant benefit and even leads to a performance drop. From Figures 6 and 7, it can
be concluded that the performance of LoRA quickly converges and that further increasing
the rank may not lead to better results, which matches the observations from the original
LoRA publication in the context of NLP [9]. In addition to these common limitations,
our findings show that the effectiveness of fine-tuning methods varies depending on the
task and model architecture.
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6.2. Qualitative Results

To provide a more detailed visual representation of our results, one image from
each dataset was tested three times with the Mask DINO inference script, using the best
fine-tuned weights from each of full-head training, two-adapter training, and LoRA. The
results provide a reasonable parameter–performance tradeoff across LoRA and the different
adapter sizes. Figure 8 visualizes the ground truth (GT) along with the corresponding
predictions of the two inference runs. A confidence threshold of 0.5 was implemented for
the inference, effectively removing lower confidence predictions before visualization.

For the NDD20 dataset (first row), the predictions for all methods are highly accurate,
almost achieving full intersection with the GT masks. The adapter method predicts the two
masks with 1% lower confidence than the traditionally fine-tuned model. For the LoRA
setting, the dolphin shapes are well-defined and slightly less accurate, which results in a
small difference in the exact contours compared to the GT and the adapter method.

In the WIXray dataset (second row), the regions of interest mostly consist of bright
contours on a white background. Although the adapters and LoRA successfully segment
two out of three objects and correctly assign them to their respective classes, they have
different levels of confidence, with LoRA showing the lowest confidence.

For the ZeroWaste dataset (third row), the selected image contains four GT object an-
notations. The full-head method detects one additional object compared to GT with higher
confidence, while the adapters and LoRA each miss one object and have lower precision.

In the Cityscapes dataset (fourth row), the inference example follows the trend of
almost exact object segmentation regardless of visual distance, occlusion, or the size of the
instances. Again, the adapters and LoRA show lower confidence scores compared to the
full-head fine-tuning, and both fail to detect the small car on the right.

These examples emphasize that employing the suggested adapter and LoRA fine-tuning
method can indeed compete with the traditional fine-tuning approach in terms of pixel-wise
object segmentation; however, further research is needed to fully compensate for the loss of
trainable parameters and increase the confidence of the model for individual detections.

Figure 8. Four example visualizations (cropped and scaled) for Mask DINO, one from each dataset,
showing the ground truth and the results of full-head, two-adapter, and LoRA fine-tuning.
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6.3. Inference Speed

The inference times for the tested datasets and configurations are shown in Table 3
along with the image dimensions and numbers of classes. The results illustrate the impact
of the PEFT methods on computational performance. The metric used for evaluation
is ms/iteration, where each iteration used a batch size of 1. The increase in inference
times when using adapters can be attributed to the computations introduced by the ad-
ditional layers. As the number of adapters increases, more parameters are added to the
model, which slightly increases the computational requirements and inference time. In con-
trast, LoRA generally imposes no computational overhead during inference, even with
increasing rank, as the weights are recomposed and added to the base weights during
initialization. This provides a clear advantage in terms of maintaining efficiency when
fine-tuning large models.

For both models, the inference time varies across datasets; specifically, three factors
influence this variation: variations in image resolution, the different numbers of classes
in the datasets, and the different backbones used by the models. Datasets with higher-
resolution images require more processing time, as do datasets with a larger number of
classes. Although the open-set nature of SEEM ensures adaptability to different datasets, it
does not reflect consistent processing times due to the variability of these characteristics.

In particular, the Cityscapes dataset shows a significant increase in inference time,
especially when using Mask DINO. This is largely due to the Swin-L backbone used for
Cityscapes, which is more computationally intensive than the ResNet50 backbone used for
the other datasets, as well as the high-resolution image size of 1024 × 512. The opposite
behavior can be observed for the WIXray dataset, where the original images are only
450 × 450.

On average, each increase of adapter repetition I was measured to introduce a delay of
1–2 milliseconds per iteration. Again, this result indicates the tradeoff between performance
and computational complexity, achieving comparable results between LoRA and training
the full segmentation head. It is important to note that these inference speeds are within
the millisecond range, which may be negligible and unnoticeable during actual use.

Table 3. Image size, number of classes, and inference time (ms/iteration) of the baseline, adapter,
and LoRA models across datasets.

Dataset NDD20 ZeroWaste WIXray Cityscapes

Image Size 512 × 512 512 × 512 450 × 450 1024 × 512

# Classes 1 4 12 8

Model SEEM Mask DINO SEEM Mask DINO SEEM Mask DINO SEEM Mask DINO

Model Baseline 65.43 52.19 85.06 64.59 54.5 40.2 135.69 267.36

1 Adapters (κ + λ) 66.58 54.92 87.02 66.7 55.63 42.89 136.73 271.25

2 Adapters (κ + λ) 67.52 56.38 88.16 67.57 56.91 44.03 137.18 275.31

3 Adapters (κ + λ) 68.32 58.29 88.28 69.07 57.52 46.08 137.94 283.92

4 Adapters (κ + λ) 70.36 61.12 88.79 71.11 58.52 48.22 138.43 298.11

LoRA (r=8) 65.76 52.21 85.28 64.85 54.11 40.61 135.86 266.34

7. Summary and Conclusions

This study investigated the effectiveness of sequentially repeated adapters and LoRA
for instance segmentation tasks in CV. By applying these techniques to the SEEM and Mask
DINO architectures and evaluating them on four different datasets (NDD20, ZeroWaste,
WIXray, and Cityscapes), we have demonstrated their flexibility and scalability in transfer
learning for large pretrained models.

Key findings and considerations include:

1. Tradeoff between efficiency and performance: While this study demonstrates significant
parameter efficiency, it also reveals a consistent performance gap in certain scenarios.
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The adapter configurations used only 1.23 − 3.88% (SEEM) and 0.5 − 6.35% (Mask
DINO) of the total model parameters, compared to 39.55% (SEEM) and 54.91% (Mask
DINO) for full-head tuning. LoRA demonstrated even greater efficiency, using just
0.42% as many parameters for SEEM and about 1% as many for Mask DINO with a
ResNet-50 backbone. LoRA generally requires less computation and memory during
training and inference due to its parameter-efficient design. Sequential alignment of
adapters, despite being more parameter-intensive, can provide additional capacity,
which is beneficial for complex tasks or significant domain shifts. This tradeoff
between efficiency and performance raises important questions about the practical
applicability of these methods in high-demand domains where even small drops
in performance can be critical. Our results show that PEFT methods can achieve
comparable performance to traditional full-head tuning while significantly reducing
the number of trainable parameters.

2. Optimal configurations: Empirical evidence shows that between two and three adapter
repetitions provides the best tradeoff between performance and parameter efficiency.
Adding four adapters tends to result in diminishing returns in terms of performance
improvement while significantly increasing the number of additional parameters.
In contrast, LoRA demonstrates high parameter efficiency, often outperforming single-
adapter configurations despite using fewer parameters.

3. Scalability: Both PEFT methods showed performance improvements with an increase
in trainable parameters. More steady performance enhancement was observed for the
adapters compared to LoRA, which is potentially attributable to the linear nature
of sequentially aligned adapters. Scaling the number of layers instead of the bot-
tleneck dimension or the rank in LoRA matrices may better capture the underlying
representations and dependencies of certain downstream tasks.

4. Dependence on dataset and architecture: We found that the effectiveness of PEFT methods
varied across datasets and model architectures, indicating that dataset complexity
and architectural features play an important role in PEFT performance. For exam-
ple, despite being six times smaller, Mask DINO achieved comparable or superior
performance to SEEM in several experiments, likely due to its deformable attention-
based detection branch and contrastive denoising approach. For the WIXray dataset,
LoRA exhibited worse performance than adapters, suggesting that LoRA may be
less effective on datasets where the images deviate significantly from the data used
during pretraining.

5. Extended applicability: This study successfully applied PEFT techniques to the mul-
tiscale deformable attention module, thereby extending their applicability beyond
standard transformer architectures. This opens up possibilities for application to other
SOTA methods based on DETR.

These findings emphasize the importance of selecting PEFT methods based on model
architecture and dataset characteristics. Furthermore, our empirical validation demon-
strates the need to carefully consider the specific task requirements and computational
constraints when choosing between LoRA and adapters.

There are several limitations to the study. First, there is some performance variability
between tasks, with LoRA not performing as well on more complex datasets such as
WIXray. This suggests that PEFT methods may not work equally well for every instance
segmentation task. Another limitation is the increased inference time caused by the adapters
due to the extra layers, which makes them less suitable for real-time applications. While
LoRA shows promise in vision tasks, its potential has not yet been fully explored beyond
the specific use cases discussed here, leaving many opportunities for broader application
within vision models. In addition, the present study focuses on only two models, and does
not fully explore how well these PEFT methods would generalize to other architectures
or tasks such as object recognition or panoptic segmentation. Finally, the lack of detailed
hyperparameter tuning in this paper means that several aspects which could be key to
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further performance improvements, such as the learning rate and adapter placement, were
not thoroughly investigated.

Future research could explore several directions to further optimize PEFT methods.
A key area is to identify which tasks and model architectures are best suited to LoRA,
potentially leading to guidelines on when it should be used versus adapters. In addition,
hybrid fine-tuning strategies combining adapters and LoRA, such as by using adapters
in higher layers and LoRA in attention layers, could be explored to further optimize
efficiency. Although we successfully applied LoRA to the deformable attention mechanism
in this work, several hyperparameters and configurations should be further investigated.
Researchers could also develop new variants of adapters, such as using convolutional layers
or testing different injection points in the network, which could improve performance and
reduce early-stage errors. In addition, broader benchmarking on diverse sources such as
medical imaging, multimodal learning, and different vision tasks such as object detection
or panoptic segmentation could help to further test the adaptability and scalability of these
methods. Overall, such efforts could pave the way for more effective and computationally
efficient fine-tuning of large pretrained models.

In conclusion, this study provides empirical evidence supporting the feasibility of
PEFT methods for the efficient adaptation of large pretrained models to instance seg-
mentation tasks. By demonstrating competitive performance with significantly reduced
parameter counts, these techniques offer promising solutions for resource-constrained envi-
ronments and fast adaptation scenarios. As the field progresses, these results can contribute
to ongoing efforts towards balancing computational efficiency and model performance in
transfer learning for CV applications.
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GT Ground Truth
mIoU mean Intersection-over-Union
LN Layer Normalization
LoRA Low-Rank Adaptation
ME Mask Embedding
MLP Multi-Layer Perceptron
MRF Materials Recovery Facilities
NLP Natural Language Processing
PEFT Parameter-Efficient Fine-Tuning
SAM Segment Anything Model
SEEM Segment Everything Everywhere Model
SOTA State-Of-The-Art
ViT Vision Transformer

Appendix A

The appendix presents Table A1, which evaluates four α values with constant r = 8.
This comparison provides insights into the models’ performance on the WIXray dataset
under different scaling conditions.

Table A1. Evaluation of different scaling configurations α for LoRA.

WIXray Dataset α = 1 α = 2 α = 4 α = 8

AP 32.2 33.95 34.86 36.5
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