
Citation: Chin, M.; Corizzo, R.

Continual Semi-Supervised Malware

Detection. Mach. Learn. Knowl. Extr.

2024, 6, 2829–2854. https://doi.org/

10.3390/make6040135

Academic Editor: Andreas

Holzinger

Received: 30 October 2024

Revised: 4 December 2024

Accepted: 5 December 2024

Published: 10 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Continual Semi-Supervised Malware Detection
Matthew Chin † and Roberto Corizzo *,†

Department of Computer Science, American University, Washington, DC 20016, USA; mc1038a@american.edu
* Correspondence: rcorizzo@american.edu
† These authors contributed equally to this work.

Abstract: Detecting malware has become extremely important with the increasing exposure of
computational systems and mobile devices to online services. However, the rapidly evolving nature
of malicious software makes this task particularly challenging. Despite the significant number of
machine learning works for malware detection proposed in the last few years, limited interest has
been devoted to continual learning approaches, which could allow models to showcase effective
performance in challenging and dynamic scenarios while being computationally efficient. Moreover,
most of the research works proposed thus far adopt a fully supervised setting, which relies on fully
labelled data and appears to be impractical in a rapidly evolving malware landscape. In this paper,
we address malware detection from a continual semi-supervised one-class learning perspective,
which only requires normal/benign data and empowers models with a greater degree of flexibility,
allowing them to detect multiple malware types with different morphology. Specifically, we assess the
effectiveness of two replay strategies on anomaly detection models and analyze their performance in
continual learning scenarios with three popular malware detection datasets (CIC-AndMal2017, CIC-
MalMem-2022, and CIC-Evasive-PDFMal2022). Our evaluation shows that replay-based strategies
can achieve competitive performance in terms of continual ROC-AUC with respect to the considered
baselines and bring new perspectives and insights on this topic.

Keywords: continual learning; malware detection; semi-supervised learning; one-class learning;
anomaly detection

1. Introduction

Malware infections are on the rise, especially with the pervasiveness of IoT and mobile
devices exposed to online services. A malware intends to alter, disrupt, or destroy software
elements that are essential to the proper functioning of a computer system or device. It can
steal sensitive information, gain persistent access to victim networks, as well as encrypt
and send system information to the threat actor’s command and control (C&C) centers.

Modern malware is coded using sophisticated techniques, which may make conven-
tional security mechanisms (such as firewalls and anti-viruses) ineffective. For this reason,
machine learning-based approaches for malware detection appear particularly attractive.
However, one central issue pertains to the adequacy of existing solutions in real-world
scenarios. While machine learning and deep learning have shown a promising detection
performance [1–3], they may provide a limited robustness in a continuous scenario where
malware morphology evolves over time, due to their reliance on labelled malware data, as
well as their demanding computational requirements.

In this context, continual learning (CL) could provide a significant advance to machine
learning-based malware detection, allowing models to effectively perform in challenging
and evolving scenarios with limited computational requirements. The goal is to continu-
ously adapt models to maintain and improve performance across all tasks encountered in
a lifelong learning setup. Success is measured by the model’s ability to balance plasticity
(learning new tasks) and stability (retaining old tasks) using metrics such as accuracy on
a sequence of tasks, forgetting rate, and forward/backward transfer. Learning strategies

Mach. Learn. Knowl. Extr. 2024, 6, 2829–2854. https://doi.org/10.3390/make6040135 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6040135
https://doi.org/10.3390/make6040135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-8366-6059
https://doi.org/10.3390/make6040135
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6040135?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2024, 6 2830

are task-driven and can be broadly categorized as regularization-based, replay-based, and
architectural-based.

One of the most popular strategies is experience replay (ER), which maintains and
revisits a subset of past data during training on new tasks. ER is also commonly adopted
in reinforcement learning (RL) [4] and Q-learning [5] to support agents in learning from a
mix of past experiences and approximate the value function or policy better [6,7]. In the
context of CL, however, ER focuses on mitigating catastrophic forgetting, i.e., the tendency
of neural networks to overwrite knowledge of previously learned tasks when learning new
ones [8]. While RL and CL share the overlapping goal of adapting to new information over
time, they are structurally different. In fact, RL focuses on training an agent that interacts
with an environment to maximize cumulative rewards over time [9]. The agent learns
policies for sequential decision-making tasks, often in stochastic or dynamic settings. On
the other hand, CL focuses on training models on a sequence of tasks without forgetting
knowledge of previously learned tasks. A structured breakdown of the differences for ER
in CL and RL learning settings is presented in Table 1.

Table 1. Comparison of replay in reinforcement learning and continual learning settings.

Reinforcement Learning (RL) Continual Learning (CL)

Goal Improve convergence Mitigate catastrophic forgetting

Stored Data Transitions or episodes Task data or summaries

Sampling Random or prioritized Task or diversity-aware

Constraints Less constrained by memory Highly memory-constrained

Focus Single task, dynamic exploration Multi-task knowledge retention

Despite the high potential of CL for malware detection, this has been scarcely explored
so far. In this paper, our focus is investigating malware detection from a continual, semi-
supervised, one-class learning perspective. One-class learning allows us to train models
using exclusively normal/benign data. This learning setting can empower models with a
greater degree of flexibility and robustness when compared to a fully supervised setting.
Specifically, (i) it overcomes the limitation of requiring labelled data for different malware
classes, and (ii) it allows models to detect novel malware types, possibly unknown at
training time. Moreover, in our work, a continual learning perspective is added to this
setting, where models are challenged to incorporate emerging normal tasks/concepts
while retaining knowledge of previously observed concepts and while being exposed
to new malware instances. We assess the detection performance and the forgetting of
a diverse set of anomaly detection models in two devised continual learning scenarios,
adopting continual learning strategies. Our contribution is three-fold. Specifically, we do
the following:

(i) Formulate a semi-supervised one-class continual malware detection workflow, which
is essential for real-world applications but has received limited attention in previ-
ous research.

(ii) Devise two model-agnostic experience replay strategies that support anomaly detec-
tion models popular in conventional learning settings.

(iii) Conduct a comprehensive empirical evaluation and analysis involving seven diverse
models, three real-world malware detection datasets, and two continual learning
scenarios, assessing the effectiveness of experience replay strategies compared to
proposed lower and upper-bound baselines.

Mach. Learn. Knowl. Extr. 2024, 6 2831

2. Background
2.1. Malware Detection

Malware detection has become an urgent need in recent years. Operating systems are
subject to run on a wide variety of devices, including desktops, servers, routers, security
cameras, drones, etc., which exacerbates the difficulty of this task [10].

Machine learning-based approaches for malware detection have become popular
in recent years. An LSTM-based approach to detect five malware families, i.e., Trojan,
rootkit, backdoor, virus, and worm, was proposed by [11]. Deep recurrent neural net-
works have been explored in the context of Android malware detection [12]. A multi-head
squeeze-and-excitation residual network to detect malware in Android apps has been de-
vised [3], analyzing manifest file permissions, API calls, and hardware features. Specularly,
a Chameleon–Hunter algorithm has been proposed [13] to address mobile malware in iOS
devices and detect UI-based illicit activity threats.

Some approaches specialize in ransomware detection, spanning from conventional
machine learning to deep learning models [14]. Recently, multi-classifier network-based [1],
concept-drift-aware approaches [15], and multi-view feature intelligence [2] have been pro-
posed. However, a significant pitfall of existing approaches stands in their fully supervised
nature. Semi-supervised learning in this context can provide more flexibility, allowing
models to generalize to unforeseeable classes of attacks that are not described by known
patterns or profiles.

The authors in [16] propose a semi-supervised approach to identify malicious traffic by
leveraging multimodal traffic characteristics, where two independent neural networks are
adopted to learn sequence and topological features from the traffic. The model is trained
using a joint strategy that minimizes both the reconstruction error from the autoencoder and
the classification loss, allowing it to effectively utilize limited labeled data alongside a large
amount of unlabeled data. A semi-supervised technique to detect Android malware from
Android permissions and Application Programmer Interface (API) call logs is proposed
in [17]. The ML technique is incorporated into an Android application to scan the installed
applications and detect the corresponding levels of maliciousness with success. The work
in [18] introduces a Semi-Supervised Vulnerability Detection (SSVD) mtehod that leverages
the information gain of model parameters as the certainty of the correctness of pseudo-labels
and prioritizes high-certainty pseudo-labeled code snippets as training data. The proposed
approach incorporates a triplet loss to maximize the separation between vulnerable and
non-vulnerable code snippets to better propagate labels from labeled code snippets to
nearby unlabeled snippets.

An ensemble semi-supervised classification algorithm named Random Forest of Ten-
sors (RFoT) is proposed in [19]. RFoT leverages tensor decomposition to extract intricate
latent patterns from the data and combines multidimensional analysis with clustering to
capture sample groupings within latent components, aiding in distinguishing between
malware and benign-ware. On a similar thread, the authors in [20] propose a hierarchical
semi-supervised algorithm (HNMFk) based on non-negative matrix factorization with au-
tomatic model selection. The method exploits the hierarchical structure of the malware data
together with a semi-supervised setup, which enables the classification malware families
under conditions of extreme class imbalance.

Despite the advantages provided by semi-supervised learning over fully supervised
approaches, continual learning has rarely been considered for malware detection, resulting
in a substantial gap. In fact, the unknown signatures of modern malware require models to
be proactive rather than reactive. As a result, investigating models that can evolve and deal
with dynamic scenarios where adaptation and knowledge retention are simultaneously
considered is of paramount importance for future research. With this present paper, we
attempt to fill this gap at the intersection of continual learning and semi-supervised malware
detection, providing a new perspective on this problem.

Mach. Learn. Knowl. Extr. 2024, 6 2832

2.2. Continual Learning

Also known as lifelong learning, it focuses on a continuous process in which a series
of different tasks (or concepts) are presented to a machine learning method over time [8],
challenging its adaptation and knowledge retention capabilities. In some cases, continual
learning strategies draw inspiration from diverse disciplines, including biology and neuro-
science [8]. Most common continual learning settings tackle image classification problems
in task-incremental, class-incremental, and domain-incremental scenarios [21]. Emerging
types of scenarios include online learning [22] and recurring tasks [23]. In anomaly detec-
tion, an emerging benchmark for continual learning with naturally occurring changes over
time is proposed in [24].

Continual learning strategies in the literature can be loosely grouped into three
main categories:

Regularization-based: These strategies introduce constraints on weight updates during
the training process of neural network models. This goal could be realized by preventing or
limiting updates to weights learned in previously observed tasks [25] or by freezing early
layers in the model architecture to mitigate forgetting previous tasks while updating late
layers to incorporate new tasks [26]. Another option is to use specialized losses to prevent
drastic changes in already learned weights, as in EWC [27] and LWF [28].

Dynamic architectures: They adaptively adjust the model architecture during the learn-
ing process by expanding the network with new neurons or layers as they encounter new
tasks [29,30]. Another option is to perform dynamic adaptation with pruning capabilities
to keep model capacity under control by removing insignificant weights, as in PackNet [31]
and WSN [32], as well as by introducing quantization capabilities [33]. Dynamic architec-
ture strategies consider a neural network model as built upon independent sub-networks,
each specialized in addressing a different task. Some approaches are also referred to as
forget-free [33], i.e., not subject to forgetting. However, this behavior holds only under
certain assumptions, such as the availability of task labels and unbounded capacity.

Replay-based: They focus on collecting a memory that represents a summarized version
of data from previous tasks, which can be used for model updates. This goal can be
achieved by selecting and storing salient samples in a buffer and replaying them during
model updates [8].

Several experience replay strategies have been recently proposed in the literature.
Examples include Retrospective Adversarial Replay (RAR) [34], which perturbs a buffered
sample towards its nearest neighbors drawn from the current task in a latent representation
space. Replaying such samples was shown to refine the boundary between previous and
current tasks.

A brain-inspired variant of replay is proposed in [35], where hidden representations
are replayed based on the neural network’s own, context-modulated feedback connections.

Adaptive-experience replay (AdaER) [36] introduces a contextually-cued memory
recall (C-CMR) strategy, which selectively replays memories that are most conflicting with
the current input data in terms of both data and task. It also incorporates an entropy-
balanced reservoir sampling (E-BRS) strategy to enhance the performance of the memory
buffer by maximizing information entropy.

Uncertainty-Aware Sampling (UAS) [37] employs model and data uncertainties to
select samples that are stable to the model and have low noise for rehearsal. The method
leverages a dual Convolutional Neural Network (CNN) and Bayesian Neural Network
(BNN) to continuously learn and consolidate knowledge.

The authors in [38] propose a mixup-based training approach to mitigate represen-
tation shifts by incorporating asymmetric mixup training into the replay method. The
method selectively targets the old data stored in the memory buffer, deliberately excluding
classes from the newly incoming data and enabling the model to learn new data while
preserving the representation of the old data.

In general, experience replay approaches adopt selection strategies, which are devised
to identify the most relevant samples for every task, with the intention to keep a compact

Mach. Learn. Knowl. Extr. 2024, 6 2833

replay buffer size and limit resource utilization [39]. Variants of these approaches have also
been explored in distributed and collaborative learning settings [40].

Alternatively to collecting samples, artificial samples can be obtained through genera-
tive models [41], resulting in a lower memory footprint.

Despite the growing interest in continual learning, proposed strategies are mostly
focused on training neural-based models in a supervised image classification setting. A few
works explored continual learning from an anomaly detection perspective [42], although not
strictly focused on malware detection. An exploration on continual learning for malware
detection was recently conducted [43]. Albeit limited to supervised approaches, important
takeaways of this study include an emphasis on continual learning methods as a more
memory-efficient alternative to conventional machine learning and a thorough analysis
that shows that the detection performance of available methods is still unsatisfactory.

In our work, we argue that continual semi-supervised learning could provide a sig-
nificant advantage in malware detection settings.Table 2 compares different learning ap-
proaches considering the key properties considered in our study and highlighting the lack
of a continual learning perspective in popular supervised and semi-supervised malware
detection approaches.

An overview of our semi-supervised one-class continual malware detection workflow
is graphically presented in Figure 1. Selected results in Figure 2 allow us to highlight
this potential: learning new concepts while mitigating forgetting of previously learned
concepts can lead to more robust models that exploit general knowledge to improve their
performance on all concepts. A more detailed discussion on the adopted continual learning
strategies for malware detection as well as the evaluation approaches used in our work is
provided in the following sections.

Table 2. Comparison of surveyed research works on supervised, semi-supervised, and continual
learning, based on three key aspects considered in our study. The first two groups are strictly focused
on malware detection. The third group includes continual learning works focused on different
downstream tasks such as image classification, reinforcement learning, and anomaly detection in
different domains.

Approaches
Learn from
Known Malware
Patterns

Generalize to
Unseen Malware
types

Provide Adaptation
and Knowledge
Retention

MFMCNS [1] X
Qiu et al. [2] X
Zhu et al. [3] X
Deepflow [11] X
HaddadPajouh et al. [12] X
Lee et al. [13] X
Beaman et al. [14] X
FeSA [15] X

Liu et al. [16] X X
Memon et al. [17] X X
Yu et al. [18] X X
Eren et al. [19] X X
Eren et al. [20] X X

Razavian et al. [25] X
EWC [27] X
LWF [28] X
Diethe et al. [29] X
Mignone et al. [30] X
Packnet [31] X
WSN [32] X
Ada-Q-Packnet [33] X
RAR [34] X
Van De Ven et al. [35] X
AdaER [36] X
UAS [37] X
MixER [38] X
Buzzega et al. [39] X
Faber et al. [40] X
Shin et al. [41] X

Rahman et al. [43] X X

Proposed X X X

Mach. Learn. Knowl. Extr. 2024, 6 2834

3. Methodology
3.1. Experience Replay Strategies

Our proposed continual malware detection workflow consists of alternate model
training and evaluation phases. In the experimental scenario, training concepts (In this
work, the terms task and concept are interchangeable. We refer to a concept as a self-consistent
behavior of the normal class in an anomaly detection setting, as opposed to the conventional
term task used in a classification setting.) Ci = 1, 2, . . . , N are presented to the model, which
is updated accordingly using a replay strategy. In the evaluation phase, one-class models
perform inference (anomaly detection) for all evaluation concepts Ei = 1, 2, . . . , k, and their
performance is evaluated.

In our work, we adopt commonly used anomaly detection models in a semi-supervised
one-class learning setting that does not require knowledge of anomalous patterns for the
model training phase. Therefore, models are trained on background data (normal) and
extract anomaly scores on newly observed data. A known drawback of model updates in
sequential learning is that models become prone to forgetting, which implies a decrease
in the model performance for previously learned concepts as new knowledge is acquired.
As a result, the challenge presented by a continual learning scenario is to incorporate new
concepts in the model while preserving knowledge acquired from previously observed
concepts. In our work, we leverage experience replay to consider stability and plasticity in
our base models simultaneously. The replay buffer allows storing a summarized version
of all concepts observed so far and leverages this knowledge to prevent forgetting while
updating the model. Using a subset of data points allows for small storage requirements for
the replay data. Notably, replay is model-agnostic, supporting any machine learning-based
anomaly detection model.

For each training concept Ci, we store its summarized version Ri as part of the replay
buffer. The complete experience replay buffer R can be defined as

R = {Ri ; ∀i ∈ {1, 2, . . . , k}}, (1)

where k is the number of training concepts observed in the scenario. As a result, the replay
buffer contains a subset of samples from each concept and allows us to maintain their
representation throughout the whole scenario. Thus, replay-based model training takes
into account all concepts observed so far. It is worth noting that data samples in the replay
buffer are selected from the original data in each concept without replacement. As a result,
each sample can be only included once in the replay buffer.

The replay buffer has a limited size controlled by budget B, which depends on the
available storage resources. This budget is typically relatively small in comparison to
observed data. In our work, the budget for each concept Ci is equal for all concepts in the
scenario based on the total budget B. We devise two variants of experience replay given a
concept Ci:

Random: selects data points at random from Ci according to budget B. This strategy
gives equal weight to all experiences, regardless of their distance from the centroid of each
concept. It favors the diversity of selected data samples, but it may increase the risk of
concept overlap and noise as more concepts are observed by anomaly detection models,
potentially impacting their ability to discriminate between normal data and anomalies.

Selective: selects data points closest to the centroid of Ci according to budget B. It is
based on the assumption that experiences that lie closest to the centroid in each concept
are the most relevant and should be preserved. It can potentially aid anomaly detection
models in defining a restricted concept boundary that does not overlap with other concepts
but may be subject to underfitting and limited exploitation of diversity.

Mach. Learn. Knowl. Extr. 2024, 6 2835

...

Replay Buffer

...

Training Concept

...

Evaluation Concept

Update
model Anomaly

Score
One-Class
Model

Experience
Replay

LOF IF OCSVM

ABOD HBOS COPOD

Random Selective
Centroid
Data point

Task/Concept

Selected data point

AE

Figure 1. Semi-supervised one-class continual malware detection workflow consisting of model
training and evaluation phases. Training concepts Ci contain exclusively normal data, whereas
evaluation concepts Ei contain normal and anomalous data points. The experience replay component
updates the replay buffer R each time a new training concept Ci is presented, according to the budget
B. Two strategies are used: Random and Selective.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.5 0.540.750.54 0.5 0.560.550.550.560.490.430.520.530.96

0.570.530.760.58 0.6 0.580.580.560.590.55 0.5 0.590.570.97

0.6 0.570.820.620.640.610.570.610.630.570.560.580.610.97

0.62 0.6 0.830.620.660.620.590.640.670.580.560.610.610.97

0.640.620.840.640.640.640.620.64 0.7 0.590.590.660.620.97

0.670.640.850.660.670.670.630.670.730.620.640.680.650.97

0.690.660.860.670.680.690.650.680.750.660.650.710.680.97

0.780.78 0.9 0.78 0.8 0.8 0.810.790.850.790.850.840.820.93

0.8 0.760.880.790.810.79 0.8 0.790.830.830.850.830.820.94

0.810.810.870.79 0.8 0.820.820.810.83 0.8 0.880.840.830.97

0.840.86 0.9 0.820.820.820.850.860.870.840.860.880.880.98

0.860.870.930.87 0.9 0.89 0.9 0.89 0.9 0.88 0.9 0.89 0.9 0.93

0.910.920.970.930.940.940.930.930.950.920.930.940.940.96

0.960.960.980.960.960.970.950.950.970.960.960.960.96 1

Cumulative

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12
Training task

0.5

0.6

0.7

0.8

0.9

1.0
Lif

el
on

g
RO

C-
AU

C

Cumulative

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(a) (b)

Figure 2. Example of model evaluation in continual malware detection: concept-level ROC-AUC
as a heatmap (a) and as a line plot showing performance over time (b)—CIC-MalMem-2022
dataset—Strategy: Cumulative—Scenario: A—Model: LOF. The results show that learning a new
concept without forgetting previous concepts leads to a more comprehensive and robust model,
which results in a performance improvement on all other concepts.

Once the replay buffer is formed, the entire buffer (all samples) is used for model
training independently from the chosen strategy. Intuitively, the proposed strategies allow
models to adapt during the learning scenario by processing new data and adjusting the
replay buffer to include a summary of past and new data. Performing training and model
updates using data collected in this buffer has the effect of incorporating new relevant
information without forgetting past knowledge, which is one of the most desired behaviors
in continual learning.

3.2. Scenarios

To define continual learning scenarios, we exploit the characterization defined in [44]
for continual/lifelong anomaly detection. The procedure leverages clustering functions to

Mach. Learn. Knowl. Extr. 2024, 6 2836

create normal and anomaly concepts (multiple self-consistent sets of data points) based
on normal and anomaly data, respectively. In general, a concept corresponds to a new
distribution, change in a performed activity, or a new state of the environment. For instance,
in network traffic data, the entire normal/benign class can be thought of as a set of concepts
describing legitimate traffic: web browsing, file transfer, and video streaming. Similarly,
in our malware detection context, a normal concept can be regarded as a set of benign
files with similar characteristics, where each file is described by a feature vector, and each
concept is characterized by similar vectors, i.e., vectors with numeric feature values in a
specific range.

Scenarios are built based upon the selection of the number of desired concepts k for
normal (N) and anomaly (A) data from a given dataset and functions ϕ and γ to create
multiple self-consistent sets of data points (normal and anomaly concepts, respectively)
having common characteristics based on the entire classes.

The scenario creation procedure is described in more detail in Algorithm 1 [44]. First,
we create concepts for the normal class through a concept creation function ϕ (Line 1). The
function can consider any aspect (or feature values) that can delineate the boundaries of one
concept. Second, we create concepts for the anomaly class through the anomalous concepts
creation function γ (Line 2). Third, for each normal concept CNi , we select a corresponding
anomaly concept CAj using a function λ (Line 3–5). The combination of CNi and CAj is a
concept added to the continual learning scenario (Line 6). Each time a concept is built, the
selected anomaly concept CAj is removed from the set of available anomaly concepts CA
(Line 7). The algorithm returns the resulting scenario as a sequence of concepts (Line 9),
each of which may need to be separated into training and evaluation data depending on
the learning settings, e.g., unsupervised or semi-supervised.

In this work, we leverage the k-Means clustering algorithm to implement ϕ and γ. The
assignment function λ matches each normal concept with an anomaly concept, leading to a
combined concept, which allows for model training (normal data) and evaluation (normal
and anomaly data). We leverage two continual learning scenario types based on different
choices of λ:

A: clustered anomaly concepts assigned to the closest normal concept.
C: clustered anomaly concepts assigned randomly to normal concepts.

In regards to experiments and the relationship between datasets, scenarios, and corre-
sponding model performance, it is worth noting that the ordering of data samples in the
replay buffer does not affect experiments, since samples used for model updates have all
equal weight, and models have no notion of time to consider them differently. A different
ordering of concepts in the learning scenario may, however, lead to a different model
performance on single concepts. Emerging studies on curriculum learning in continual
learning scenarios recently studied this phenomenon [45–47].

Algorithm 1: Scenario creation protocol [44]
Input: c – Number of desired concepts
Input: N, A – Normal/anomaly data
Input: ϕ – Concepts creation function for normal data
Input: γ – Concepts creation function for anomalies
Input: λ – Assignment function

1 CN ← ϕ(N, c) // Create concepts {CN0 , CN1 , . . . , CNc}
2 CA ← γ(A, c) // Create concepts {CA0 , CA1 , . . . , CAc}
3 T ← ∅ // Result scenario
4 for CNi ∈ CN do
5 j← λ(CA, CNi) // Match anomaly–normal concepts
6 T ← T ∪ (CNi , CAj) // Add concepts to scenario
7 CA ← CA − CAj // Remove used anomaly concept
8 end
9 return T

Mach. Learn. Knowl. Extr. 2024, 6 2837

4. Experiments

All experiments are run on a machine with an Intel Core i7-9750H CPU and 32 GB of
RAM. The code and processed dataset of this paper are available at https://github.com/
rcorizzo/cl-malware (accessed on 29 October 2024).

4.1. Datasets

The datasets adopted in our study were selected to satisfy goals of realism, scale,
and diversity. First, datasets are representative and significant examples in real-world
malware detection, as they are curated by the Canadian Institute for Cybersecurity (CIC), a
comprehensive multidisciplinary training, research and development, and entrepreneurial
unit that draws on the expertise of researchers in social sciences, business, computer science,
engineering, law, and science. Second, they are large-scale, as they contain a large number
of samples and malware types. Third, they cover diverse malware types spanning from
Android applications to malware memory analysis and infections in PDF files.

CIC-MalMem-2022 [48]: This dataset is designed to test obfuscated malware detection
methods through memory. The dataset was created to represent real-world malware types,
including Spyware, Ransomware, and Trojan Horse. Debug mode was used for the memory
dump process to reproduce typical use cases of users with applications in execution when
malware attacks occur. The dataset contains a total of 58,596 instances (29,298 benign,
29,298 malicious).

CIC-Evasive-PDFMal2022 [49]: PDF is the most widely used document format due
to its portability and reliability. Unfortunately, its popularity and advanced features have
allowed attackers to misuse them to deliver a malicious payload. Authors collected a large
number of malicious files from Contagio and VirusTotal and extracted 32 representative
features, including 12 general and 25 structural. After processing, this dataset consists of
10,025 instances (4468 benign, 5557 malicious).

CIC-AndMal-2017 [50]: Android malware detection is becoming increasingly chal-
lenging for cybersecurity experts, due to the large number of variants released every day.
This dataset includes 10,854 samples (4354 malware and 6500 benign) from several sources.
Benign data are collected from the Google Play market. A total of 5000 of the collected
apps (426 malware and 5065 benign) were installed on real devices. Malware samples are
classified into four categories: Adware, Ransomware, Scareware, and SMS Malware.

4.2. Strategies

In addition to the proposed replay-based strategies, we adopt the following baselines
in our experiments:

Naive: Models are updated each time a new training concept is available, without
exploiting any smart continual learning strategy to provide both adaptation and knowledge
retention. This strategy has the goal of simulating lower-bound performance provided by
incremental learning, which is expected to gradually or catastrophically forget knowledge
of previously presented concepts.

Cumulative: It accumulates all data from concepts observed so far, and it updates the
model accordingly. It can be thought of as an upper bound adoptable when unlimited mem-
ory resources are available. Despite being unrealistic, it is useful to compare performances
against resource-aware learning strategies.

In our experiments, we aim to compare the performance of two variants of experience
replay (ER) with naive and cumulative.

4.3. Anomaly Detection Models

We adopt standard anomaly detection learning methods that are often used in un-
supervised and semi-supervised settings. We selected seven methods, spanning a large
diversity of modeling approaches:

LOF (Local Outlier Factor) [51]: simple but effective anomaly detection method based
on a nearest-neighbor-based approach. LOF measures the deviation in the local density of

https://github.com/rcorizzo/cl-malware
https://github.com/rcorizzo/cl-malware

Mach. Learn. Knowl. Extr. 2024, 6 2838

data points with respect to their neighbors and compares the local density of data points
with the average local density of nearest neighbors, considering it as an anomaly score.

Considering an object O1, local reachability densities are compared with those of its
neighbors as

LOFk(O1) :=
ΣO2∈Nk(O1)

lrk(O2)
rrk(O1)

|Nk(O1)|
=

ΣO2∈Nk(O1)
lrk(O2)

|Nk(O1)| · lrk(O1)
, (2)

which denotes the average local reachability density of neighbors divided by the local
reachability density of the object. If the score is less than 1, the object has a higher density
than its neighbors, indicating it is an inlier. A score greater than 1 suggests a lower density
than its neighbors, classifying the object as an outlier.

LOF measures the deviation in the local density of data objects with respect to their
neighbors. The prediction score returned by LOF for a particular data object is obtained as
the ratio between its local density and the average local density of the nearest neighbors.

Considering the k-distance kD as the distance of object O1 from its k-th nearest neigh-
bors, the notion of reachability distance can be defined as

RDk(O1, O2) = max{kD(O2), d(O1, O2)}.

Based on this definition, objects that belong to the k nearest neighbors of O2 are considered
to be equally distant. The local reachability density of an object O1 defined as lrk(O2) is the
inverse of the average reachability distance of the object O1 from its neighbors.

A value of approximately 1 indicates that the object is similar to its neighbors (and
thus not an outlier). A value below 1 indicates a denser region (i.e., an inlier), whereas
values significantly larger than 1 indicate outliers. A value lower than 1 expresses a higher
density than neighbors (inlier), while a value greater than 1 denotes a lower density than
neighbors (outlier).

IF (Isolation Forests) [52]: The tree and ensemble-based modeling capabilities of IF
showed great potential in anomaly detection works. The method computes an isolation
score for every data object. The average distance from the tree’s root to the leaf associated
with the data object (corresponding to the number of splits required to reach the object)
is used to predict the anomaly score. Considering that more pronounced variations in
values equal shorter paths in the tree, Isolation Forest uses this information to distinguish
an abnormal data object from the rest. The anomaly score is defined as

s(x, n) = 2−
E(h(x))

c(n) , (3)

where h(x) is the path length of the object x, c(n) is the average path length of an unsuc-
cessful search in the Binary Search Tree, and n is the number of external nodes. An anomaly
score close to 1 indicates that an object has a high chance of being an anomaly, while scores
that are smaller than 0.5 are indicative of a regular (or non-anomaly) data object. OCSVM
(One-Class Support Vector Machines) [53]: A well-recognized hyperplane-based method in
anomaly detection is due to its ability to detect out-of-distribution data points considering
their distance from the decision boundary. It conceptually operates in a similar way to
Support Vector Machines, which identify a hyperplane to separate data instances from two
classes. However, the one-class learning counterpart uses a hyperplane to encompass all of
the background data instances (human essays). Solving the OCSVM optimization problem
corresponds to solving the dual quadratic programming problem:

min
α

1
2 ∑

ij
αiαjK

(
xi, xj

)
subject to the constraints 0 ≤ αi ≤ 1

νl and ∑i αi = 1, where αi is the weight for the
instance i, vectors with non-zero weights are defined as support vectors and determine the

Mach. Learn. Knowl. Extr. 2024, 6 2839

optimal hyperplane, ν is a parameter that represents a trade-off between the distance of the
hyperplane from the origin and the number of instances covered by the hyperplane, l is the
number of instances in training data, and K

(
xi, xj

)
is the kernel function. Leveraging the

kernel function to project input vectors into a feature space allows for nonlinear decision
boundaries. Specifically, a feature map can be defined as

ϕ : X → RN ,

where ϕ maps training vectors from the input space X to a dimensional feature space, and
the kernel function is defined as

K(x, y) = ⟨ϕ(x), ϕ(y)⟩

The adoption of kernel values K(x, y) allows one to avoid the explicit computation of
feature vectors, with a great improvement in computational efficiency. Common kernels
include Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid.

Following the training phase, the OCSVM-learned hyperplane can categorize a new
data instance (essay) as regular/normal (human) or different/anomaly (AI-generated)
with regard to the training data distribution, based on its geometric location within the
decision boundary.

COPOD (Copula-based Outlier-Detection) [54]: Copulas are defined as multi-variate
cumulative distribution functions with a uniform marginal probability distribution for each
feature. Copula-based anomaly detection predicts the degree of “extremeness” of data
samples based on tail probabilities. COPOD is known as a robust parameterless one-class
learning method.

HBOS (Histogram-based Outlier Score) [55]: a statistical approach that assumes in-
dependence across features. It generates a histogram for each feature and multiplies the
inverse height of the bins, assessing the density of all features. Even though feature rela-
tionships are ignored (i.e., the method assumes feature independence), this simplification
allows the method to converge quickly. HBOS builds histograms in two different modali-
ties: (i) static bin sizes and a preset bin width, and (ii) dynamic bins with a close-to-equal
number of bins. This approach, similar in nature to the Naive Bayes algorithm, provides a
quick and effective way to identify anomalies.

ABOD (Angle–Base Outlier Detection) [56] computes the variance of weighted cosine
scores between data points and their neighbors and considers them as the anomaly score.
It is known for efficiently identifying outliers in high-dimensional datasets and for being
robust to false positives.

Auto-Encoder (AE) [57]: Auto-encoders compress data into a simplified latent repre-
sentation and then reconstruct the original data from it. Auto-encoders present a mirrored
structure, i.e., the number of layers in the decoding phase matches the encoding phase. The
final output layer has the same size as the input layer and reconstructs the input data. A
common approach is to train an auto-encoder on normal data and then detect anomalies by
identifying data that the model cannot reconstruct well.

Auto-encoders consist of a model architecture with multiple hidden layers, where the
output of the i-th hidden layer is the i-th encoding level of the input data. Typically, the
model presents a mirrored architecture, where the number of layers for the decoding stage
corresponds to the number of layers defined for the encoding stage. Finally, the last layer
of the auto-encoder has the same size as the input layer and returns the reconstructed input
representation by means of the decoded stage.

After training, the model is used to reconstruct unseen data objects. When a high
reconstruction error is observed for a new data object, this is assumed to belong to a
different class than that observed during training (normal/benign), i.e., it is classified as
malicious. Otherwise, it is recognized to belong to the training data distribution, i.e., it is
classified as benign.

Mach. Learn. Knowl. Extr. 2024, 6 2840

4.4. Model Evaluation

We devise an evaluation protocol to assess model performance for any one-class
learning model across all concepts in our continual learning scenarios. We initialize a
matrix R to store anomaly detection results for specific tasks/concepts. The protocol
iterates over training concepts and trains/updates the model accordingly. Following up,
models are evaluated on all testing concepts, i.e., previous, current, and future concepts. In
the resulting matrix R, entries Ri,j contain the ROC–AUC metric of the model on concept
j after learning concept i. The resulting matrix R can then be used to compute continual
learning metrics directly, such as backward and forward transfer, which allow us to assess
model behavior more precisely than standard performance metrics, taking into account
model performance on previous, current, and future concepts:

Continual ROC–AUC (ROC− AUC): Inspired by [58], we propose a variant of ROC-AUC
that assesses each model’s performance on all concepts after learning every new concept:

ROC− AUC =
∑N

i≥j Ri,j

N(N+1)
2

(4)

This metric is calculated considering previously learned concepts, including the current
concept (corresponding to averaging over N(N+1)

2 lower triangular entries). One major
advantage of ROC–AUC over threshold-dependent metrics such as F1–Score is that it
evaluates the model’s performance in a more detailed manner, considering all possible
detection thresholds. However, ROC–AUC may be swapped with other metrics of choice
in our protocol.

Backward transfer for ROC–AUC (BWT): It measures the impact of learning new
concepts on the model’s performance of all previously learned concepts. Negative BWT
indicates that the model presents a degree of forgetting (a strongly negative BWT value is
also known as catastrophic forgetting). Positive BWT signals that learning new concepts
benefits models’ performance on previously observed concepts:

BWT =
∑N

i=2 ∑i−1
j=1 Ri,j − Rj,j

N(N−1)
2

(5)

Forward transfer for ROC–AUC (FWT): It measures the impact of learning each
concept on the model’s performance on future concepts, i.e., zero-shot model performance
on future concepts:

FWT =
∑N

i<j Ri,j

N(N−1)
2

(6)

4.5. Results and Discussion

In this subsection, we analyze the extracted results. The main research question we aim
to address is whether the adoption of experience replay is beneficial for the performance
of one-class learning models in continual malware detection scenarios. We recall that a
replay strategy is in charge of selecting and maintaining a buffer of data samples from
previously observed concepts, and it is limited in size by a budget, which represents a
subset of available data points for concepts. As the model is provided with a new task
(concept), the buffer is updated in order to capture knowledge of all concepts presented in
the scenario so far. This behavior should, in principle, equip models with both adaptation
and knowledge retention capabilities [39]. As a result, the model should be able to provide
a satisfactory performance on all concepts, without a significant degree of forgetting for
any of them.

Mach. Learn. Knowl. Extr. 2024, 6 2841

Results in Tables 3–5 show the performance achieved by all models on all datasets
(the best results for each strategy in both scenarios are marked in bold—all reported ER
configurations are with a budget of 0.15, i.e., 15% of data for each concept is stored in the
replay buffer). We compare replay strategies in terms of anomaly detection performance
(ROC-AUC), backward transfer (BWT), and forward transfer (FWT) with respect to the
naive (lower bound) and cumulative (upper bound) strategies. Results show that the Replay
strategy (ER) brings various degrees of improvement. In some cases, the improvement in
ROC-AUC over naive is non-existent, as seen in Table 3 (Scenario: A) for ER (Random)
with IF as the base model, i.e., the ROC-AUC is the same (0.511). In many other cases, the
improvement is significant. For example, focusing on ABOD, we can observe in Table 5
that ER (Random) increases ROC-AUC from 0.613 to 0.674 (Scenario: A) and from 0.669
to 0.73 (Scenario: C). There are also cases where the improvement is remarkable. This is
the case for LOF in Table 3 (from 0.621 to 0.662 in Scenario: A and from 0.586 to 0.654 in
Scenario: C) and for ABOD in Table 4 (from 0.591 to 0.864 in Scenario: A and from 0.559 to
0.821 in Scenario: C).

Our results emphasize that some anomaly detection models (LOF, ABOD) are more
robust than others in terms of detection performance and resistance to forgetting. One
explanation for this phenomenon is that LOF and ABOD are more suitable for datasets with
complex and irregular distributions, as they can capture local density variations effectively.
In contrast, IF and OCSVM tend to struggle when the data distribution is highly irregular
or presents overlapping clusters and are more sensitive to hyperparameter tuning. ABOD
and LOF also tend to be more effective at detecting local anomalies or clusters of anomalies,
compared to IF and OCSVM.

Table 3. Results: CIC-MalMem-2022 dataset: forward transfer (FWT), backward transfer (BWT), and
ROC-AUC (AUC) with all models and strategies, including two experience replay (ER) variants in
two scenarios (A,C). For all metrics, higher values are indicative of a better performance: zero-shot
model capabilities on future concepts (FWT), models’ ability to avoid forgetting and improve on
previously learned concepts (BWT), and anomaly detection performance (AUC). Values in bold
highlight the best model for each strategy according to AUC.

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.398 0.004 0.458 0.46 0.003 0.511 0.561 0.049 0.621 0.364 0.006 0.44
Cumulative 0.395 0.0 0.455 0.462 0.0 0.51 0.669 0.122 0.783 0.383 0.006 0.469
ER (Random) 0.4 0.001 0.459 0.461 0.001 0.511 0.594 0.059 0.659 0.367 0.01 0.447
ER (Selective) 0.39 −0.005 0.459 0.44 −0.005 0.485 0.586 0.072 0.662 0.359 0.008 0.438

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.455 0.001 0.511 0.624 −0.04 0.586 0.586 0.0 0.569
Cumulative 0.455 −0.001 0.511 0.315 −0.049 0.289 0.587 −0.001 0.569
ER (Random) 0.454 0.001 0.511 0.549 −0.2 0.419 0.588 0.0 0.571
ER (Selective) 0.444 −0.004 0.498 0.591 −0.053 0.546 0.588 −0.0 0.571

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.383 0.001 0.472 0.498 0.003 0.485 0.61 0.025 0.586 0.368 0.001 0.444
Cumulative 0.381 0.001 0.475 0.495 0.002 0.482 0.698 0.16 0.822 0.405 0.004 0.455
ER (Random) 0.381 0.001 0.474 0.496 0.001 0.483 0.632 0.061 0.648 0.382 0.002 0.45
ER (Selective) 0.409 −0.008 0.444 0.465 −0.011 0.45 0.63 0.064 0.654 0.384 −0.005 0.435

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.495 −0.001 0.478 0.629 −0.009 0.591 0.562 0.0 0.592
Cumulative 0.495 −0.0 0.478 0.323 −0.071 0.283 0.562 −0.0 0.591
ER (Random) 0.495 −0.001 0.479 0.512 −0.265 0.286 0.564 0.001 0.595
ER (Selective) 0.474 −0.012 0.458 0.59 −0.029 0.553 0.566 0.0 0.594

Mach. Learn. Knowl. Extr. 2024, 6 2842

Table 4. Results: CIC-Evasive-PDFMal2022 dataset: forward transfer (FWT), backward transfer
(BWT), and ROC-AUC with all models and strategies, including two experience replay (ER) variants
in two scenarios (A,C). For all metrics, higher values are indicative of a better performance: zero-shot
model capabilities on future concepts (FWT), models’ ability to avoid forgetting and improve on
previously learned concepts (BWT), and anomaly detection performance (AUC). Values in bold
highlight the best model for each strategy according to AUC.

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.187 −0.356 0.508 0.566 −0.138 0.739 0.205 −0.401 0.484 0.505 −0.204 0.559
Cumulative 0.18 −0.154 0.41 0.549 −0.061 0.699 0.173 −0.014 0.733 0.515 0.054 0.698
ER (Random) 0.186 −0.266 0.383 0.564 −0.111 0.704 0.184 −0.022 0.712 0.51 −0.022 0.642
ER (Selective) 0.187 −0.178 0.507 0.565 −0.107 0.721 0.184 −0.123 0.66 0.511 −0.013 0.644

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.56 −0.077 0.784 0.249 −0.512 0.591 0.27 −0.17 0.507
Cumulative 0.558 0.006 0.771 0.214 −0.016 0.909 0.315 0.043 0.573
ER (Random) 0.557 −0.002 0.776 0.221 −0.084 0.864 0.376 −0.049 0.54
ER (Selective) 0.558 −0.008 0.779 0.232 −0.172 0.814 0.315 −0.028 0.578

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.37 −0.649 0.534 0.575 −0.374 0.703 0.439 −0.541 0.492 0.574 −0.139 0.596
Cumulative 0.301 −0.199 0.399 0.651 −0.024 0.7 0.392 0.002 0.749 0.606 −0.003 0.671
ER (Random) 0.373 −0.419 0.538 0.652 −0.138 0.728 0.48 0.067 0.781 0.594 −0.07 0.631
ER (Selective) 0.375 −0.383 0.565 0.664 −0.138 0.733 0.405 −0.068 0.761 0.592 −0.067 0.633

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.656 −0.273 0.759 0.395 −0.626 0.559 0.568 −0.396 0.528
Cumulative 0.728 −0.008 0.775 0.411 −0.031 0.85 0.397 −0.013 0.581
ER (Random) 0.708 −0.063 0.773 0.488 −0.09 0.821 0.471 −0.27 0.541
ER (Selective) 0.706 −0.075 0.753 0.422 −0.155 0.794 0.481 −0.169 0.566

Overall, we observe that at least one of the replay strategies presents a performance
that is equal to or higher than naive in 34 out of 42 configurations (7 models, 3 datasets,
2 scenarios). Ablation results (see Appendix A) reveal the performance achieved with dif-
ferent replay budgets (0.05, 0.1, 0.15, 0.2). One interesting result is that model performance
does not increase dramatically with larger budgets, which represents a promising direction
for lightweight replay strategies in settings with limited memory requirements. It is also
worth noting that, in our experiments, model performance did not increase significantly
with budget values higher than 0.2.

Another important consideration is that ROC-AUC generally improves symmetrically
with BWT, which means that replay strategies are beneficial for both the anomaly detection
performance and the ability for one-class models to reuse knowledge across different
tasks. It should be noted that in many of the cases in which replay does not provide an
improvement over naive, we observe that all strategies perform poorly for the specific base
model, as noted by their poor scores (close to random performance). This phenomenon
suggests that the poor performance may not depend on the replay strategy but on predictive
models being fundamentally inadequate to deal with the complexity presented by specific
datasets or continual learning scenarios.

We note that there is still a gap between results obtained with the replay strategies and
the simulated cumulative strategy considered as the upper-bound. We can observe that
cumulative presents the best results in 21 out of 42 cases. This result demonstrates that it is
possible to achieve a higher performance on the considered malware detection datasets
and scenarios and signals the need for more sophisticated continual learning strategies to
address this gap.

Mach. Learn. Knowl. Extr. 2024, 6 2843

Table 5. Results: CIC-AndMal2017 dataset: forward transfer (FWT), backward transfer (BWT), and
ROC-AUC with all models and strategies, including two experience replay (ER) variants in two
scenarios (A,C). For all metrics, higher values are indicative of a better performance: zero-shot model
capabilities on future concepts (FWT), models’ ability to avoid forgetting and improve on previously
learned concepts (BWT), and anomaly detection performance (AUC). Values in bold highlight the
best model for each strategy according to AUC.

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.668 −0.107 0.635 0.616 −0.09 0.615 0.652 −0.076 0.65 0.508 −0.084 0.462
Cumulative 0.606 −0.082 0.655 0.604 −0.024 0.658 0.579 −0.003 0.673 0.526 −0.037 0.586
ER (Random) 0.608 −0.105 0.648 0.594 −0.036 0.673 0.589 −0.102 0.636 0.524 −0.1 0.51
ER (Selective) 0.664 −0.114 0.641 0.602 −0.063 0.645 0.637 −0.1 0.629 0.526 −0.096 0.518

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.532 −0.063 0.612 0.663 −0.118 0.613 0.66 −0.002 0.66
Cumulative 0.55 −0.005 0.644 0.595 0.001 0.679 0.61 −0.008 0.645
ER (Random) 0.539 −0.026 0.628 0.6 0.003 0.674 0.594 −0.013 0.65
ER (Selective) 0.533 −0.025 0.631 0.68 −0.029 0.668 0.622 −0.002 0.652

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.595 −0.343 0.67 0.583 −0.306 0.654 0.584 −0.317 0.671 0.42 −0.18 0.536
Cumulative 0.606 −0.109 0.69 0.612 −0.051 0.671 0.535 −0.071 0.758 0.471 −0.044 0.58
ER (Random) 0.591 −0.224 0.692 0.592 −0.151 0.678 0.573 −0.184 0.729 0.444 −0.13 0.56
ER (Selective) 0.602 −0.234 0.701 0.595 −0.154 0.678 0.553 −0.197 0.726 0.444 −0.122 0.563

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

Naive 0.55 −0.141 0.622 0.571 −0.347 0.669 0.622 −0.092 0.64
Cumulative 0.569 −0.029 0.632 0.566 −0.082 0.727 0.624 −0.037 0.659
ER (Random) 0.557 −0.083 0.628 0.586 −0.135 0.726 0.615 −0.036 0.63
ER (Selective) 0.554 −0.086 0.624 0.581 −0.169 0.73 0.616 −0.058 0.647

The heatmaps shown in Figures 3–5 allow us to zoom into the performance of different
replay strategies on specific tasks/concepts. Considering the CIC-MalMem-2022 dataset
presented in Figure 3, we observe that, for the A scenario, the ER strategy manages to
preserve knowledge of multiple concepts (3, 10–12), especially in the second half of the
scenario, as visible by the darker colored areas. Training the model on concept 12 shows
a significant spike in model performance on all concepts, whereas the performance on
concept 7 is preserved throughout the entire scenario. However, its performance is still far
from the upper bound achieved by cumulative. In the C scenario, ER appears less robust on
concept 7 across the entire scenario, although training the model on task 7 appears to boost
the performance on all concepts. The performance on concept 13 is preserved throughout
the entire scenario. Shifting the focus to the CIC-Evasive-PDFMal2022 dataset in Figure 4,
we observe a robust performance for ER in the A scenario, as shown by the dark-colored
areas in the lower diagonal part of the heatmap. This performance is quite close to that
achieved by the cumulative strategy. However, the performance for ER appears weaker on
concept 2 in the C scenario. On the CIC-AndMal2017 dataset, results in Figure 5 show a
generally satisfactory performance for ER across the scenario. The model appears relatively
robust to forgetting, and its performance is significantly better than naive. One interesting
case is that of concept 3, where ER achieves 0.93 after the model is trained on concept 0,
possibly due to a high concept similarity. On this dataset, it can also be noted that the
difference in performance between the ER and cumulative strategies is minimal, which
represents a successful case for ER.

Mach. Learn. Knowl. Extr. 2024, 6 2844

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.560.550.570.740.530.510.490.950.480.570.560.540.510.43

0.580.540.550.740.530.510.510.95 0.5 0.590.580.560.520.41

0.590.550.540.740.530.520.520.960.510.590.590.550.520.42

0.570.560.570.720.520.510.490.950.480.560.560.54 0.5 0.44

0.580.540.560.74 0.5 0.520.490.950.490.580.580.550.520.41

0.580.540.570.730.510.480.490.950.480.570.570.54 0.5 0.4

0.590.550.580.740.520.520.470.960.490.580.580.550.530.42

0.580.540.580.730.520.51 0.5 0.950.480.560.570.54 0.5 0.41

0.570.540.580.740.540.510.510.950.490.570.590.550.510.43

0.580.550.560.730.520.520.510.950.490.560.570.550.510.42

0.580.550.560.750.530.520.510.95 0.5 0.580.560.550.510.42

0.590.550.560.750.530.520.510.95 0.5 0.580.580.540.520.43

0.830.820.82 0.9 0.810.83 0.8 0.970.820.830.870.820.810.82

0.580.530.580.740.540.510.510.960.510.590.590.550.520.41

Naive

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.560.550.570.740.530.510.490.950.480.570.560.540.510.43

0.590.540.570.750.530.520.510.96 0.5 0.580.580.560.520.43

0.620.550.560.750.570.540.550.960.530.570.590.590.530.47

0.6 0.570.580.730.570.540.530.96 0.5 0.540.570.570.520.55

0.620.560.570.760.550.540.530.960.510.53 0.6 0.590.530.46

0.610.550.590.740.57 0.5 0.520.95 0.5 0.530.580.570.52 0.5

0.620.560.610.770.590.550.520.960.520.550.610.590.560.48

0.610.55 0.6 0.750.570.530.530.950.510.560.610.570.55 0.5

0.610.560.610.76 0.6 0.550.550.960.510.560.630.610.560.51

0.610.560.610.75 0.6 0.550.560.960.530.550.63 0.6 0.570.51

0.620.570.610.76 0.6 0.580.580.960.550.580.620.630.580.53

0.630.560.610.76 0.6 0.590.580.960.550.560.630.620.580.55

0.830.830.84 0.9 0.830.860.840.950.860.870.880.850.870.83

0.68 0.6 0.680.69 0.7 0.69 0.7 0.940.710.660.740.690.730.62

Experience replay RS 0.15

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.560.550.570.740.530.510.490.950.480.570.560.540.510.43

0.610.550.610.760.590.560.560.960.540.610.630.610.560.55

0.640.550.610.810.630.58 0.6 0.970.61 0.6 0.650.620.570.59

0.650.580.61 0.8 0.64 0.6 0.590.970.63 0.6 0.680.61 0.6 0.6

0.650.610.620.820.620.630.630.970.640.61 0.7 0.620.630.62

0.660.630.650.830.650.630.660.970.670.640.730.640.650.64

0.680.670.670.840.680.680.670.970.680.660.750.67 0.7 0.67

0.7 0.680.680.840.680.690.680.97 0.7 0.690.750.680.710.67

0.710.71 0.7 0.850.710.710.690.980.71 0.7 0.77 0.7 0.730.68

0.720.740.720.860.730.720.710.980.74 0.7 0.780.720.740.71

0.740.740.730.860.730.750.730.970.760.710.760.740.750.72

0.770.740.750.870.750.780.750.970.780.720.790.740.760.76

0.910.930.910.960.930.920.920.980.930.930.920.940.920.95

0.960.970.950.980.960.970.950.990.960.960.970.950.960.96

Cumulative

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12
Training task

0.4

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Naive
0
1
2
3
4
5
6
7
8
9
10
11
12
13

0 2 4 6 8 10 12
Training task

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Experience replay RS 0.15
0
1
2
3
4
5
6
7
8
9
10
11
12
13

0 2 4 6 8 10 12
Training task

0.5

0.6

0.7

0.8

0.9

1.0

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Scenario: A

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.5 0.540.750.54 0.5 0.560.550.550.560.490.430.520.530.96

0.530.520.760.550.530.560.550.550.58 0.5 0.420.540.550.95

0.530.540.740.550.530.570.560.550.580.510.420.550.540.96

0.530.560.760.520.520.580.560.570.570.510.430.550.540.96

0.530.540.750.55 0.5 0.550.550.540.560.490.450.530.530.95

0.540.550.750.540.520.540.560.550.560.510.450.530.530.96

0.530.540.750.540.510.560.540.560.57 0.5 0.440.540.530.96

0.830.830.920.830.840.830.84 0.8 0.86 0.8 0.8 0.850.830.97

0.530.550.750.550.520.560.550.550.55 0.5 0.440.540.530.95

0.530.540.750.550.520.560.550.540.560.480.460.540.530.95

0.530.540.750.550.520.560.560.550.570.510.420.530.540.96

0.530.530.750.540.520.560.560.550.57 0.5 0.440.530.540.96

0.550.550.750.540.550.560.580.550.570.520.430.560.540.96

0.550.530.750.560.530.560.560.550.58 0.5 0.460.550.540.96

Naive

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.5 0.540.750.54 0.5 0.560.550.550.560.490.430.520.530.96

0.540.520.760.570.530.570.550.550.58 0.5 0.440.540.560.95

0.570.550.750.570.540.590.550.560.580.520.440.550.550.96

0.590.560.760.570.550.590.540.580.590.540.450.550.570.96

0.580.550.750.590.510.590.530.570.580.520.530.540.560.96

0.590.560.760.590.550.580.530.58 0.6 0.53 0.5 0.560.560.97

0.6 0.550.750.610.550.610.510.580.630.540.510.580.580.97

0.830.820.920.830.830.820.840.810.870.790.820.850.830.96

0.630.560.740.620.590.650.620.590.680.610.580.65 0.6 0.9

0.640.570.710.64 0.6 0.670.630.590.69 0.6 0.590.650.620.86

0.650.590.720.66 0.6 0.660.620.620.710.640.570.680.640.86

0.670.560.690.650.660.670.670.630.750.660.55 0.7 0.670.85

0.710.580.680.650.69 0.7 0.670.630.740.670.570.720.660.94

0.730.580.660.680.69 0.7 0.670.640.750.670.610.730.680.93

Experience replay RS 0.15

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Evaluation task

0
1

2
3

4
5

6
7

8
9

10
11

12
13

Tr
ai

ni
ng

 ta
sk

0.5 0.540.750.54 0.5 0.560.550.550.560.490.430.520.530.96

0.570.530.760.58 0.6 0.580.580.560.590.55 0.5 0.590.570.97

0.6 0.570.820.620.640.610.570.610.630.570.560.580.610.97

0.62 0.6 0.830.620.660.620.590.640.670.580.560.610.610.97

0.640.620.840.640.640.640.620.64 0.7 0.590.590.660.620.97

0.670.640.850.660.670.670.630.670.730.620.640.680.650.97

0.690.660.860.670.680.690.650.680.750.660.650.710.680.97

0.780.78 0.9 0.78 0.8 0.8 0.810.790.850.790.850.840.820.93

0.8 0.760.880.790.810.79 0.8 0.790.830.830.850.830.820.94

0.810.810.870.79 0.8 0.820.820.810.83 0.8 0.880.840.830.97

0.840.86 0.9 0.820.820.820.850.860.870.840.860.880.880.98

0.860.870.930.87 0.9 0.89 0.9 0.89 0.9 0.88 0.9 0.89 0.9 0.93

0.910.920.970.930.940.940.930.930.950.920.930.940.940.96

0.960.960.980.960.960.970.950.950.970.960.960.960.96 1

Cumulative

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12
Training task

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lif
el

on
g

RO
C-

AU
C

Naive
0
1
2
3
4
5
6
7
8
9
10
11
12
13

0 2 4 6 8 10 12
Training task

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Experience replay RS 0.15
0
1
2
3
4
5
6
7
8
9
10
11
12
13

0 2 4 6 8 10 12
Training task

0.5

0.6

0.7

0.8

0.9

1.0

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Scenario: C

Figure 3. Continual ROC-AUC performance (CIC-MalMem-2022 dataset) with different strategies
(naive: left; ER—Best-performing variant: center; cumulative: right) on single tasks/concepts after
learning each task in two scenarios (A, C) with the best-performing one-class model (LOF).

Mach. Learn. Knowl. Extr. 2024, 6 2845

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

0.66 0.92 0.75 0.97 0.042

0.54 0.94 0.71 0.97 0.066

0.59 0.87 0.9 0.98 0.049

0.75 0.95 0.93 1 0.14

0.47 0.65 0.74 0.98 0.78

Naive

0.2

0.4

0.6

0.8

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

0.91 0.84 0.48 0.11 0.022

0.76 0.97 0.32 0.1 0.027

0.84 0.91 0.9 0.26 0.026

0.81 0.96 0.82 0.99 0.03

0.73 0.96 0.8 0.94 0.67

Experience replay 0.15

0.2

0.4

0.6

0.8

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

0.91 0.84 0.48 0.11 0.022

0.88 0.97 0.35 0.086 0.025

0.9 0.97 0.88 0.17 0.028

0.9 0.98 0.85 0.98 0.039

0.87 0.98 0.84 0.98 0.75

Cumulative

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Naive

0
1
2
3
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Experience replay 0.15

0
1
2
3
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3
4

Scenario: A

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

1 0.85 0.12 0.94 0.9

0.97 0.95 0.0016 0.92 0.79

0.79 0.69 0.86 0.6 0.68

0.97 0.8 0.004 0.93 0.75

0.97 0.72 0.023 0.83 0.9

Naive

0.2

0.4

0.6

0.8

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

1 0.15 0.24 0.56 0.53

0.98 0.98 0.0023 0.86 0.72

0.97 0.93 0.48 0.84 0.47

0.98 0.95 0.14 0.98 0.52

0.95 0.95 0.15 0.95 0.91

Experience replay 0.15

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
Evaluation task

0
1

2
3

4
Tr

ai
ni

ng
 ta

sk

0.91 0.84 0.48 0.11 0.022

0.88 0.97 0.35 0.086 0.025

0.9 0.97 0.88 0.17 0.028

0.9 0.98 0.85 0.98 0.039

0.87 0.98 0.84 0.98 0.75

Cumulative

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Naive

0
1
2
3
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Experience replay 0.15

0
1
2
3
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training task

0.0

0.2

0.4

0.6

0.8

1.0

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3
4

Scenario: C

Figure 4. Continual ROC-AUC performance (CIC-Evasive-PDFMal2022 dataset) with different strate-
gies (naive: left; ER—Best-performing variant: center; cumulative: right) on single tasks/concepts
after learning each task in two scenarios (A, C) with the best-performing one-class model (ABOD).

Mach. Learn. Knowl. Extr. 2024, 6 2846

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.64 0.92 0.79 0.36

0.66 0.93 0.64 0.91

0.58 0.75 0.85 0.53

0.56 0.59 0.59 0.92

Naive

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.64 0.92 0.79 0.36

0.67 0.93 0.66 0.95

0.64 0.93 0.83 0.52

0.66 0.94 0.67 0.94

Experience replay RS 0.15

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.64 0.92 0.79 0.36

0.63 0.89 0.76 0.56

0.65 0.93 0.84 0.34

0.65 0.93 0.77 0.85

Cumulative

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.4

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Naive

0
1
2
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.4

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Experience replay RS 0.15

0
1
2
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.4

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3

Scenario: A

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.8 0.8 0.6 0.9

0.49 0.93 0.64 0.57

0.49 0.77 0.6 0.79

0.69 0.48 0.7 0.86

Naive

0.5

0.6

0.7

0.8

0.9

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.84 0.54 0.6 0.93

0.78 0.96 0.59 0.57

0.75 0.92 0.7 0.71

0.8 0.85 0.69 0.93

Experience replay 0.15

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 1 2 3
Evaluation task

0
1

2
3

Tr
ai

ni
ng

 ta
sk

0.8 0.8 0.6 0.9

0.77 0.92 0.64 0.2

0.77 0.95 0.61 0.31

0.77 0.95 0.58 0.79

Cumulative

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Naive
0
1
2
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Experience replay 0.15

0
1
2
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training task

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lif
el

on
g

RO
C-

AU
C

Cumulative

0
1
2
3

Scenario: C

Figure 5. Continual ROC-AUC performance (CIC-AndMal2017 dataset) with different strategies
(naive: left; ER—Best-performing variant: center; cumulative: right) on single tasks/concepts after
learning each task in two scenarios (A, C) with the best-performing one-class models (ABOD and
LOF, respectively).

Mach. Learn. Knowl. Extr. 2024, 6 2847

5. Conclusions

In this work, we investigate a semi-supervised one-class continual malware detection
workflow, leveraging two model-agnostic experience replay strategies. In addition to
adopting a conventional replay strategy that selects data samples at random from each
concept, we proposed a selective replay strategy, which attempts to select the most relevant
data by prioritizing samples that are closer to the centroid of each concept. Our extensive
evaluation involves seven diverse anomaly detection models, three real-world malware
detection datasets, and two continual learning scenarios. Our results show that anomaly
detection models combined with replay strategies are in some cases effective in providing a
proper stability–plasticity trade-off in the presence of complex malware detection scenarios.
In our experiments, replay strategies are capable of improving the performance of a naive
incremental learning strategy in 34 out of 42 of the considered settings, both in terms of
continual ROC-AUC and backward transfer. Our results suggest that the selective replay
strategy achieves a similar performance to conventional replay, with slight improvements in
some configurations. Moreover, the experiments emphasize that some models (LOF, ABOD)
are more robust than others in terms of detection performance and limited forgetting.

Overall, we advocate continual learning as a suitable learning framework for malware
detection, with the potential to provide reactive model capabilities in evolving scenarios
with limited computational requirements. However, we underscore that further research is
required to design more sophisticated strategies in order to fill the existing gap between re-
play strategies and simulated upper-bound performance, as emphasized by our results with
the cumulative strategy. In future work, we aim to explore continual malware detection in
task-free/task-agnostic scenarios where task boundaries are not known. Moreover, we aim
to investigate new continual learning strategies specifically tailored for malware detection.

Author Contributions: Conceptualization, R.C.; methodology, R.C. and M.C.; software, R.C. and M.C.;
validation, R.C.; investigation, R.C. and M.C.; resources, R.C.; data curation, M.C.;
writing—original draft preparation, R.C.; writing—review and editing, M.C.; visualization, R.C. and
M.C.; supervision, R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code and the processed datasets of this paper are available at
https://github.com/rcorizzo/cl-malware accessed on 29 October 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Model Hyperparameters

For experience replay (ER), the budget B adopted for results reported in the main
paper is 20% of the data samples available in each concept.

For reproducibility, Table A1 shows hyperparameter configurations for all models
considered in our experiments. Using ROC-AUC as an evaluation metric allows us to
overcome the burden of optimizing hyperparameters that influence different scales for
the anomaly score since no decision function based on a threshold is used for the predic-
tions. For all methods, we follow the recommended guidelines or default values provided
in the PyOD [59] documentation or recommended in reference papers of the methods,
where suitable.

Table A1. Hyperparameters for all the anomaly detection models considered in our experiments. All
models are trained and evaluated five times using all hyperparameter values in the sets shown in the
table, and the final results are averaged.

LOF leaf_size = 20, n_neighbors = 5
IF n_estimators = 85

OCSVM kernel = rbf, gamma = 8, shrinking = True
COPOD parameterless

https://github.com/rcorizzo/cl-malware

Mach. Learn. Knowl. Extr. 2024, 6 2848

Appendix A.1. Qualitative Analysis

Figure A1. Visualization of extracted concepts via t-SNE: CIC-MalMem-2022 dataset. Normal class
(left) and anomaly class (right).

Figure A2. Visualization of extracted concepts via t-SNE: CIC-Evasive-PDFMal2022 dataset. Normal
class (left) and anomaly class (right).

Figure A3. Visualization of extracted concepts via t-SNE: CIC-AndMal-2017 dataset. Normal class
(left) and anomaly class (right).

Mach. Learn. Knowl. Extr. 2024, 6 2849

Appendix A.2. Ablation Experiments

Table A2. Results: CIC-MalMem-2022 dataset: forward transfer (FWT), backward transfer (BWT),
and ROC-AUC with all models and strategies including two experience replay (ER) variants in two
scenarios (A,C) with different budget rates (B = 0.05, 0.1, 0.15, 0.2).

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.395 0.002 0.454 0.462 0.006 0.512 0.575 0.054 0.639 0.365 0.007 0.442
ER (Random) 0.1 0.398 0.001 0.456 0.461 −0.001 0.51 0.584 0.059 0.647 0.366 0.008 0.444
ER (Random) 0.15 0.4 0.001 0.459 0.461 0.001 0.511 0.594 0.059 0.659 0.367 0.01 0.447
ER (Random) 0.2 0.397 0.001 0.456 0.462 −0.006 0.511 0.601 0.064 0.669 0.368 0.011 0.448

ER (Selective) 0.05 0.389 0.001 0.453 0.452 0.001 0.499 0.566 0.058 0.633 0.361 0.005 0.436
ER (Selective) 0.1 0.387 −0.003 0.458 0.446 0.001 0.497 0.573 0.059 0.643 0.359 0.007 0.437
ER (Selective) 0.15 0.39 −0.005 0.459 0.44 −0.005 0.485 0.586 0.072 0.662 0.359 0.008 0.438
ER (Selective) 0.2 0.393 −0.007 0.458 0.434 −0.007 0.479 0.602 0.076 0.673 0.36 0.006 0.439

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.454 0.001 0.511 0.612 −0.098 0.536 0.587 0.001 0.569
ER (Random) 0.1 0.455 0.0 0.511 0.587 −0.156 0.476 0.588 0.001 0.57
ER (Random) 0.15 0.454 0.001 0.511 0.549 −0.2 0.419 0.588 0.0 0.571
ER (Random) 0.2 0.454 0.001 0.511 0.511 −0.223 0.372 0.588 −0.001 0.57

ER (Selective) 0.05 0.449 −0.001 0.504 0.616 −0.042 0.576 0.588 0.001 0.569
ER (Selective) 0.1 0.445 −0.002 0.501 0.604 −0.049 0.558 0.588 −0.0 0.57
ER (Selective) 0.15 0.444 −0.004 0.498 0.591 −0.053 0.546 0.588 −0.0 0.571
ER (Selective) 0.2 0.445 −0.008 0.493 0.577 −0.049 0.534 0.588 0.001 0.571

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.384 0.002 0.476 0.497 0.001 0.486 0.624 0.042 0.616 0.37 0.001 0.446
ER (Random) 0.1 0.38 0.001 0.472 0.495 0.004 0.485 0.63 0.05 0.634 0.374 0.003 0.448
ER (Random) 0.15 0.381 0.001 0.474 0.496 0.001 0.483 0.632 0.061 0.648 0.382 0.002 0.45
ER (Random) 0.2 0.382 0.001 0.476 0.495 0.002 0.483 0.639 0.072 0.669 0.387 0.004 0.451

ER (Selective) 0.05 0.403 −0.013 0.453 0.485 −0.009 0.466 0.615 0.045 0.607 0.367 −0.004 0.437
ER (Selective) 0.1 0.406 −0.009 0.448 0.472 −0.011 0.46 0.621 0.05 0.623 0.374 −0.004 0.436
ER (Selective) 0.15 0.409 −0.008 0.444 0.465 −0.011 0.45 0.63 0.064 0.654 0.384 −0.005 0.435
ER (Selective) 0.2 0.411 −0.01 0.441 0.464 −0.01 0.447 0.641 0.072 0.667 0.386 −0.006 0.434

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.495 −0.001 0.479 0.59 −0.145 0.455 0.562 0.001 0.591
ER (Random) 0.1 0.496 −0.001 0.479 0.538 −0.25 0.321 0.573 0.001 0.593
ER (Random) 0.15 0.495 −0.001 0.479 0.512 −0.265 0.286 0.564 0.001 0.595
ER (Random) 0.2 0.495 −0.001 0.479 0.498 −0.247 0.294 0.564 0.0 0.593

ER (Selective) 0.05 0.489 −0.006 0.469 0.617 −0.014 0.582 0.566 0.002 0.593
ER (Selective) 0.1 0.481 −0.01 0.462 0.605 −0.021 0.568 0.564 0.001 0.595
ER (Selective) 0.15 0.474 −0.012 0.458 0.59 −0.029 0.553 0.566 0.0 0.594
ER (Selective) 0.2 0.473 −0.014 0.455 0.574 −0.029 0.542 0.564 0.001 0.593

Mach. Learn. Knowl. Extr. 2024, 6 2850

Table A3. Results: CIC-Evasive-PDFMal2022 dataset: forward transfer (FWT), backward transfer
(BWT), and ROC-AUC with all models and strategies including two experience replay (ER) variants
in two scenarios (A,C) with different budget rates (B = 0.05, 0.1, 0.15, 0.2).

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.187 −0.279 0.399 0.555 −0.086 0.698 0.2 −0.263 0.557 0.507 −0.089 0.613
ER (Random) 0.1 0.191 −0.282 0.379 0.558 −0.13 0.7 0.186 −0.079 0.674 0.508 −0.051 0.628
ER (Random) 0.15 0.186 −0.266 0.383 0.564 −0.111 0.704 0.184 −0.022 0.712 0.51 −0.022 0.642
ER (Random) 0.2 0.187 −0.257 0.388 0.563 −0.106 0.689 0.184 −0.033 0.702 0.51 −0.008 0.652

ER (Selective) 0.05 0.187 −0.196 0.518 0.544 −0.095 0.711 0.199 −0.303 0.537 0.508 −0.09 0.61
ER (Selective) 0.1 0.186 −0.179 0.513 0.557 −0.084 0.721 0.196 −0.163 0.624 0.51 −0.037 0.63
ER (Selective) 0.15 0.187 −0.178 0.507 0.565 −0.107 0.721 0.184 −0.123 0.66 0.511 −0.013 0.644
ER (Selective) 0.2 0.185 −0.18 0.503 0.564 −0.052 0.731 0.184 −0.115 0.668 0.511 0.002 0.653

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.561 −0.026 0.778 0.239 −0.122 0.842 0.427 −0.004 0.617
ER (Random) 0.1 0.56 −0.01 0.776 0.216 −0.102 0.853 0.346 −0.017 0.615
ER (Random) 0.15 0.557 −0.002 0.776 0.221 −0.084 0.864 0.376 −0.049 0.54
ER (Random) 0.2 0.553 −0.002 0.773 0.221 −0.071 0.875 0.371 −0.016 0.551

ER (Selective) 0.05 0.557 −0.022 0.782 0.203 −0.306 0.718 0.432 −0.165 0.513
ER (Selective) 0.1 0.559 −0.017 0.778 0.237 −0.2 0.794 0.382 −0.144 0.517
ER (Selective) 0.15 0.558 −0.008 0.779 0.232 −0.172 0.814 0.315 −0.028 0.578
ER (Selective) 0.2 0.555 −0.009 0.775 0.204 −0.145 0.832 0.451 −0.069 0.569

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.383 −0.471 0.561 0.626 −0.245 0.722 0.552 −0.025 0.666 0.579 −0.109 0.611
ER (Random) 0.1 0.378 −0.429 0.551 0.657 −0.18 0.734 0.551 0.075 0.754 0.582 −0.083 0.625
ER (Random) 0.15 0.373 −0.419 0.538 0.652 −0.138 0.728 0.48 0.067 0.781 0.594 −0.07 0.631
ER (Random) 0.2 0.372 −0.411 0.525 0.629 −0.09 0.715 0.482 0.04 0.761 0.596 −0.059 0.637
ER (Selective) 0.05 0.372 −0.464 0.582 0.635 −0.239 0.717 0.502 −0.155 0.636 0.574 −0.108 0.611

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Selective) 0.1 0.374 −0.398 0.574 0.641 −0.161 0.709 0.414 −0.05 0.754 0.58 −0.082 0.624
ER (Selective) 0.15 0.375 −0.383 0.565 0.664 −0.138 0.733 0.405 −0.068 0.761 0.592 −0.067 0.633
ER (Selective) 0.2 0.376 −0.368 0.552 0.663 −0.132 0.719 0.389 0.022 0.767 0.595 −0.055 0.638

ER (Random) 0.05 0.7 −0.121 0.772 0.483 −0.144 0.792 0.396 −0.254 0.516
ER (Random) 0.1 0.704 −0.074 0.775 0.489 −0.103 0.818 0.419 −0.176 0.535
ER (Random) 0.15 0.708 −0.063 0.773 0.488 −0.09 0.821 0.471 −0.27 0.541
ER (Random) 0.2 0.708 −0.051 0.77 0.487 −0.077 0.821 0.454 −0.182 0.536

ER (Selective) 0.05 0.698 −0.125 0.755 0.38 −0.264 0.728 0.352 −0.081 0.577
ER (Selective) 0.1 0.703 −0.096 0.746 0.411 −0.162 0.791 0.428 0.141 0.507
ER (Selective) 0.15 0.706 −0.075 0.753 0.422 −0.155 0.794 0.481 −0.169 0.566
ER (Selective) 0.2 0.706 −0.058 0.758 0.417 −0.155 0.794 0.495 −0.186 0.535

Mach. Learn. Knowl. Extr. 2024, 6 2851

Table A4. Results: CIC-AndMal2017 dataset: forward transfer (FWT), backward transfer (BWT),
and ROC-AUC with all models and strategies including two experience replay (ER) variants in two
scenarios (A,C) with different budget rates (B = 0.05, 0.1, 0.15, 0.2).

Scenario: A

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.62 −0.103 0.644 0.619 −0.055 0.644 0.616 −0.091 0.642 0.518 −0.095 0.484
ER (Random) 0.1 0.606 −0.102 0.648 0.599 −0.054 0.656 0.596 −0.129 0.622 0.522 −0.098 0.5
ER (Random) 0.15 0.608 −0.105 0.648 0.594 −0.036 0.673 0.589 −0.102 0.636 0.524 −0.1 0.51
ER (Random) 0.2 0.604 −0.099 0.646 0.609 −0.027 0.665 0.581 −0.089 0.643 0.526 −0.098 0.52

ER (Selective) 0.05 0.666 −0.123 0.635 0.596 −0.063 0.639 0.654 −0.122 0.62 0.52 −0.097 0.488
ER (Selective) 0.1 0.664 −0.12 0.638 0.597 −0.042 0.662 0.648 −0.135 0.61 0.524 −0.098 0.506
ER (Selective) 0.15 0.664 −0.114 0.641 0.602 −0.063 0.645 0.637 −0.1 0.629 0.526 −0.096 0.518
ER (Selective) 0.2 0.662 −0.107 0.645 0.594 −0.015 0.678 0.631 −0.089 0.635 0.528 −0.091 0.528

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.535 −0.04 0.622 0.616 −0.003 0.673 0.584 −0.005 0.642
ER (Random) 0.1 0.538 −0.031 0.626 0.591 0.005 0.675 0.612 −0.006 0.649
ER (Random) 0.15 0.539 −0.026 0.628 0.6 0.003 0.674 0.594 −0.013 0.65
ER (Random) 0.2 0.542 −0.018 0.631 0.602 0.006 0.682 0.588 −0.009 0.641

ER (Selective) 0.05 0.532 −0.04 0.623 0.675 −0.057 0.652 0.603 0.012 0.651
ER (Selective) 0.1 0.532 −0.032 0.628 0.68 −0.03 0.668 0.598 0.001 0.654
ER (Selective) 0.15 0.533 −0.025 0.631 0.68 −0.029 0.668 0.622 −0.002 0.652
ER (Selective) 0.2 0.533 −0.02 0.633 0.68 −0.031 0.666 0.667 0.001 0.653

Scenario: C

Strategy OCSVM IF LOF COPOD
FWT BWT AUC FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.6 −0.262 0.683 0.587 −0.236 0.673 0.6 −0.214 0.677 0.431 −0.159 0.545
ER (Random) 0.1 0.591 −0.242 0.686 0.579 −0.167 0.68 0.585 −0.201 0.707 0.438 −0.143 0.553
ER (Random) 0.15 0.591 −0.224 0.692 0.592 −0.151 0.678 0.573 −0.184 0.729 0.444 −0.13 0.56
ER (Random) 0.2 0.595 −0.211 0.69 0.575 −0.144 0.672 0.569 −0.158 0.751 0.449 −0.119 0.565

ER (Selective) 0.05 0.602 −0.275 0.687 0.572 −0.214 0.688 0.562 −0.262 0.694 0.431 −0.157 0.546
ER (Selective) 0.1 0.601 −0.254 0.696 0.604 −0.185 0.672 0.552 −0.227 0.714 0.438 −0.138 0.556
ER (Selective) 0.15 0.602 −0.234 0.701 0.595 −0.154 0.678 0.553 −0.197 0.726 0.444 −0.122 0.563
ER (Selective) 0.2 0.601 −0.22 0.703 0.593 −0.138 0.671 0.552 −0.176 0.739 0.449 −0.111 0.568

Strategy HBOS ABOD AE
FWT BWT AUC FWT BWT AUC FWT BWT AUC

ER (Random) 0.05 0.555 −0.108 0.63 0.593 −0.18 0.707 0.626 −0.036 0.635
ER (Random) 0.1 0.555 −0.092 0.63 0.594 −0.15 0.721 0.613 −0.035 0.629
ER (Random) 0.15 0.557 −0.083 0.628 0.586 −0.135 0.726 0.615 −0.036 0.63
ER (Random) 0.2 0.559 −0.076 0.629 0.59 −0.131 0.727 0.619 −0.036 0.628

ER (Selective) 0.05 0.552 −0.107 0.621 0.576 −0.211 0.717 0.613 −0.055 0.646
ER (Selective) 0.1 0.553 −0.095 0.626 0.581 −0.179 0.729 0.614 −0.061 0.641
ER (Selective) 0.15 0.554 −0.086 0.624 0.581 −0.169 0.73 0.616 −0.058 0.647
ER (Selective) 0.2 0.557 −0.076 0.627 0.583 −0.156 0.737 0.625 −0.045 0.644

References
1. Almashhadani, A.O.; Carlin, D.; Kaiiali, M.; Sezer, S. MFMCNS: A multi-feature and multi-classifier network-based system for

ransomworm detection. Comput. Secur. 2022, 121, 102860. [CrossRef]
2. Qiu, J.; Han, Q.L.; Luo, W.; Pan, L.; Nepal, S.; Zhang, J.; Xiang, Y. Cyber code intelligence for android malware detection. IEEE

Trans. Cybern. 2022, 53, 617–627. [CrossRef] [PubMed]
3. Zhu, H.j.; Gu, W.; Wang, L.m.; Xu, Z.c.; Sheng, V.S. Android malware detection based on multi-head squeeze-and-excitation

residual network. Expert Syst. Appl. 2023, 212, 118705. [CrossRef]

http://doi.org/10.1016/j.cose.2022.102860
http://dx.doi.org/10.1109/TCYB.2022.3164625
http://www.ncbi.nlm.nih.gov/pubmed/35476561
http://dx.doi.org/10.1016/j.eswa.2022.118705

Mach. Learn. Knowl. Extr. 2024, 6 2852

4. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018; Volume 32.

5. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration. In Proceedings of the
International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 2829–2838.

6. Saglam, B.; Mutlu, F.B.; Cicek, D.C.; Kozat, S.S. Actor prioritized experience replay. J. Artif. Intell. Res. 2023, 78, 639–672.
[CrossRef]

7. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W.
Hindsight experience replay. arXiv 2017, arXiv:1707.01495.

8. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural
Netw. 2019, 113, 54–71. [CrossRef]

9. Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495.
[CrossRef]

10. Bensaoud, A.; Kalita, J.; Bensaoud, M. A survey of malware detection using deep learning. Mach. Learn. Appl. 2024, 16, 100546.
[CrossRef]

11. Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep learning-based malware detection by mining Android application
for abnormal usage of sensitive data. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC),
Heraklion, Greece, 3–6 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 438–443.

12. HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A deep recurrent neural network based approach for internet
of things malware threat hunting. Future Gener. Comput. Syst. 2018, 85, 88–96. [CrossRef]

13. Lee, Y.; Wang, X.; Liao, X.; Wang, X. Understanding illicit UI in iOS apps through hidden UI analysis. IEEE Trans. Dependable
Secur. Comput. 2019, 18, 2390–2402. [CrossRef]

14. Beaman, C.; Barkworth, A.; Akande, T.D.; Hakak, S.; Khan, M.K. Ransomware: Recent advances, analysis, challenges and future
research directions. Comput. Secur. 2021, 111, 102490. [CrossRef] [PubMed]

15. Fernando, D.W.; Komninos, N. FeSA: Feature selection architecture for ransomware detection under concept drift. Comput. Secur.
2022, 116, 102659. [CrossRef]

16. Liu, M.; Yang, Q.; Wang, W.; Liu, S. Semi-Supervised Encrypted Malicious Traffic Detection Based on Multimodal Traffic
Characteristics. Sensors 2024, 24, 6507. [CrossRef] [PubMed]

17. Memon, M.; Unar, A.A.; Ahmed, S.S.; Daudpoto, G.H.; Jaffari, R. Feature-based semi-supervised learning approach to android
malware detection. Eng. Proc. 2023, 32, 6. [CrossRef]

18. Yu, X.; Lin, G.; Hu, X.; Keung, J.W.; Xia, X. Less is More: Unlocking Semi-Supervised Deep Learning for Vulnerability Detection.
Acm Trans. Softw. Eng. Methodol. 2024. [CrossRef]

19. Eren, M.E.; Alexandrov, B.S.; Nicholas, C. Classifying Malware Using Tensor Decomposition. In Malware: Handbook of Prevention
and Detection; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3–36.

20. Eren, M.E.; Bhattarai, M.; Joyce, R.J.; Raff, E.; Nicholas, C.; Alexandrov, B.S. Semi-supervised classification of malware families
under extreme class imbalance via hierarchical non-negative matrix factorization with automatic model selection. ACM Trans.
Priv. Secur. 2023, 26, 1–27. [CrossRef]

21. Van de Ven, G.M.; Tolias, A.S. Three scenarios for continual learning. arXiv 2019, arXiv:1904.07734.
22. De Lange, M.; Tuytelaars, T. Continual Prototype Evolution: Learning Online From Non-Stationary Data Streams. In Proceedings

of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October
2021; pp. 8250–8259.

23. Cossu, A.; Graffieti, G.; Pellegrini, L.; Maltoni, D.; Bacciu, D.; Carta, A.; Lomonaco, V. Is Class-Incremental Enough for Continual
Learning? arXiv 2022, arXiv:2112.02925. [CrossRef]

24. Dragoi, M.; Burceanu, E.; Haller, E.; Manolache, A.; Brad, F. AnoShift: A distribution shift benchmark for unsupervised anomaly
detection. Adv. Neural Inf. Process. Syst. 2022, 35, 32854–32867.

25. Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June
2014; pp. 806–813.

26. Lomonaco, V.; Maltoni, D. Core50: A new dataset and benchmark for continuous object recognition. In Proceedings of the
Conference on Robot Learning—PMLR, Mountain View, CA, USA, 13–15 November 2017; pp. 17–26.

27. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef]

28. Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [CrossRef] [PubMed]
29. Diethe, T.; Borchert, T.; Thereska, E.; Balle, B.; Lawrence, N. Continual learning in practice. arXiv 2018, arXiv:1903.05202.
30. Mignone, P.; Corizzo, R.; Ceci, M. Distributed and explainable GHSOM for anomaly detection in sensor networks. Mach. Learn.

2024, 113, 4445–4486. [CrossRef]
31. Mallya, A.; Lazebnik, S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. arXiv 2017, arXiv:1711.05769.

http://dx.doi.org/10.1613/jair.1.14819
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1016/j.eswa.2023.120495
http://dx.doi.org/10.1016/j.mlwa.2024.100546
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1109/TDSC.2019.2950253
http://dx.doi.org/10.1016/j.cose.2021.102490
http://www.ncbi.nlm.nih.gov/pubmed/34602684
http://dx.doi.org/10.1016/j.cose.2022.102659
http://dx.doi.org/10.3390/s24206507
http://www.ncbi.nlm.nih.gov/pubmed/39459989
http://dx.doi.org/10.3390/engproc2023032006
http://dx.doi.org/10.1145/3699602
http://dx.doi.org/10.1145/3624567
http://dx.doi.org/10.3389/frai.2022.829842
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://www.ncbi.nlm.nih.gov/pubmed/29990101
http://dx.doi.org/10.1007/s10994-023-06501-y

Mach. Learn. Knowl. Extr. 2024, 6 2853

32. Kang, H.; Mina, R.J.L.; Rizky, S.; Madjid, H.; Yoon, J.; Hasegawa-Johnson, M.; Ju-Hwang, S.; Yoo, C.D. Forget-free Continual
Learning with Winning Subnetworks. ICML 2022, 162, 10734–10750.

33. Pietroń, M.; Żurek, D.; Faber, K.; Corizzo, R. Ada-QPacknet–adaptive pruning with bit width reduction as an efficient continual
learning method without forgetting. In Proceedings of the European Conference on Artificial Intelligence (ECAI), Krakow,
Poland, 30 September–4 October 2023; pp. 1882–1889.

34. Kumari, L.; Wang, S.; Zhou, T.; Bilmes, J.A. Retrospective adversarial replay for continual learning. Adv. Neural Inf. Process. Syst.
2022, 35, 28530–28544.

35. Van de Ven, G.M.; Siegelmann, H.T.; Tolias, A.S. Brain-inspired replay for continual learning with artificial neural networks. Nat.
Commun. 2020, 11, 4069. [CrossRef]

36. Li, X.; Tang, B.; Li, H. AdaER: An adaptive experience replay approach for continual lifelong learning. Neurocomputing 2024,
572, 127204. [CrossRef]

37. Wang, Q.; Ji, Z.; Pang, Y.; Zhang, Z. Uncertainty-aware enhanced dark experience replay for continual learning. Appl. Intell. 2024,
54, 7135–7150. [CrossRef]

38. Lim, W.S.; Zhou, Y.; Kim, D.W.; Lee, J. MixER: Mixup-Based Experience Replay for Online Class-Incremental Learning. IEEE
Access 2024, 12, 41801–41814. [CrossRef]

39. Buzzega, P.; Boschini, M.; Porrello, A.; Calderara, S. Rethinking experience replay: A bag of tricks for continual learning. In
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 2180–2187.

40. Faber, K.; Sniezynski, B.; Corizzo, R. Distributed Continual Intrusion Detection: A Collaborative Replay Framework. In
Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 3255–3263.

41. Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual Learning with Deep Generative Replay. In Proceedings of the NeurIPS; Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2017; Volume 30.

42. Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. VLAD: Task-agnostic VAE-based lifelong anomaly detection. Neural Netw.
2023, 165, 248–273. [CrossRef] [PubMed]

43. Rahman, M.S.; Coull, S.; Wright, M. On the Limitations of Continual Learning for Malware Classification. arXiv 2022,
arXiv:2208.06568.

44. Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. Lifelong Learning for Anomaly Detection: New Challenges, Perspectives,
and Insights. arXiv 2023, arXiv:2303.07557. [CrossRef]

45. Fayek, H.M.; Cavedon, L.; Wu, H.R. Progressive learning: A deep learning framework for continual learning. Neural Netw. 2020,
128, 345–357. [CrossRef]

46. Faber, K.; Zurek, D.; Pietron, M.; Japkowicz, N.; Vergari, A.; Corizzo, R. From MNIST to ImageNet and back: Benchmarking
continual curriculum learning. Mach. Learn. 2024, 113, 8137–8164. [CrossRef]

47. Kesgin, H.T.; Amasyali, M.F. Cyclical curriculum learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 12864–12872. [CrossRef]
48. Carrier, T. Detecting obfuscated malware using memory feature engineering. In Proceedings of the ICISSP, Virtual, 11–13 February

2022; pp. 177–188.
49. Issakhani, M.; Victor, P.; Tekeoglu, A.; Lashkari, A.H. PDF Malware Detection based on Stacking Learning. In Proceedings of the

ICISSP, Virtual, 9–11 February 2022; pp. 562–570.
50. Lashkari, A.H.; Kadir, A.F.A.; Taheri, L.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark android

malware datasets and classification. In Proceedings of the 2018 International Carnahan Conference on Security Technology
(ICCST), Madrid, Spain, 22–25 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

51. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104.

52. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; IEEE: Piscataway, NJ, USA; pp. 413–422.

53. Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support vector method for novelty detection. In Advances
in Neural Information Processing Systems; MIT Press: Denver, CO, USA, 2000; pp. 582–588.

54. Li, Z.; Zhao, Y.; Botta, N.; Ionescu, C.; Hu, X. COPOD: Copula-Based Outlier Detection. In Proceedings of the 2020 IEEE
International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1118–1123. [CrossRef]

55. Goldstein, M.; Score, A.D.H.b.O. A fast Unsupervised Anomaly Detection Algorithm. In Proceedings of the KI-2012: Poster and
Demo Track, Saarbrücken, Germany, 24–27 September 2012; pp. 59–63.

56. Kriegel, H.; Schubert, M.; Zimek, A. Angle-based outlier detection in high-dimensional data. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 444–452. [CrossRef]

57. Gehring, J.; Miao, Y.; Metze, F.; Waibel, A. Extracting deep bottleneck features using stacked auto-encoders. In Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 3377–3381.

http://dx.doi.org/10.1038/s41467-020-17866-2
http://dx.doi.org/10.1016/j.neucom.2023.127204
http://dx.doi.org/10.1007/s10489-024-05488-w
http://dx.doi.org/10.1109/ACCESS.2024.3378606
http://dx.doi.org/10.1016/j.neunet.2023.05.032
http://www.ncbi.nlm.nih.gov/pubmed/37307668
http://dx.doi.org/10.1109/ACCESS.2024.3377690
http://dx.doi.org/10.1016/j.neunet.2020.05.011
http://dx.doi.org/10.1007/s10994-024-06524-z
http://dx.doi.org/10.1109/TNNLS.2023.3265331
http://dx.doi.org/10.1109/ICDM50108.2020.00135
http://dx.doi.org/10.1145/1401890.1401946

Mach. Learn. Knowl. Extr. 2024, 6 2854

58. Díaz-Rodríguez, N.; Lomonaco, V.; Filliat, D.; Maltoni, D. Don’t forget, there is more than forgetting: New metrics for Continual
Learning. arXiv 2018, arXiv:1810.13166.

59. Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019, 20, 1–7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background
	Malware Detection
	Continual Learning

	Methodology
	Experience Replay Strategies
	Scenarios

	Experiments
	Datasets
	Strategies
	Anomaly Detection Models
	Model Evaluation
	Results and Discussion

	Conclusions
	Model Hyperparameters
	Qualitative Analysis
	Ablation Experiments

	References

