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Abstract: Large language models (LLMs) achieve remarkable predictive capabilities but remain
opaque in their internal reasoning, creating a pressing need for more interpretable artificial intel-
ligence. Here, we propose bridging this explanatory gap by drawing on concepts from topologi-
cal quantum computing (TQC), specifically the anyonic frameworks arising from SU(2)k theories.
Anyons interpolate between fermions and bosons, offering a mathematical language that may illu-
minate the latent structure and decision-making processes within LLMs. By examining how these
topological constructs relate to token interactions and contextual dependencies in neural architectures,
we aim to provide a fresh perspective on how meaning and coherence emerge. After eliciting insights
from ChatGPT and exploring low-level cases of SU(2)k models, we argue that the machinery of
modular tensor categories and topological phases could inform more transparent, stable, and robust
AI systems. This interdisciplinary approach suggests that quantum-theoretic principles may underpin
a novel understanding of explainable AI.
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1. Introduction

The Nobel Prize in Physics 2024 was jointly awarded to John J. Hopfield and Geoffrey
E. Hinton “for foundational discoveries and inventions that enable machine learning
with artificial neural networks”. Hopfield’s seminal contribution was the introduction
of Hopfield networks, simple neural architectures that serve as associative memories
capable of retrieving stored patterns from partial or corrupted inputs. Hinton, a cognitive
psychologist and computer scientist, transformed the field by advancing deep learning
techniques and popularizing the backpropagation algorithm, enabling neural networks
to uncover hierarchical representations of complex data. Today, these foundational ideas
underpin many aspects of artificial intelligence (AI), including large language models
(LLMs) that generate human-like text and patterns of reasoning.

In recent years, AI development has accelerated dramatically, placing LLMs at the
forefront. However, many researchers, including Hopfield, Hinton, and other thought
leaders, have urged caution and deeper inquiry into the nature of these models [1,2]. The
concern is that LLMs, despite their impressive performance, may soon surpass human
cognitive capacities in handling information without offering transparent reasoning pro-
cesses. This opacity has led to a broader movement toward explainable AI (XAI), focusing
on elucidating the underlying logic of machine learning systems. Such efforts span a range
of methods and applications, including interpretability-focused frameworks [3–7] and tech-
niques to visualize or mathematically characterize high-dimensional data representations
within deep models. These existing approaches tend to focus on local explanations or
coarse statistical metrics, leaving open questions about the deeper principles governing
emergent meaning and coherence in LLMs.
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To address these challenges, some researchers have begun exploring the role of topol-
ogy in AI. Topological data analysis (TDA) and related tools can uncover global structures
in high-dimensional representations, potentially revealing how hidden geometries shape
model behavior [8–13]. In parallel, the field of quantum machine learning and neural
architectures enriched with quantum-inspired principles has raised the possibility that
topological concepts from quantum field theories (QFTs) and related mathematics might
inspire novel approaches to interpretability [14–17].

The approach we propose here aims to push this frontier further by examining a
connection between LLMs and the topological framework of anyons arising from SU(2)k
theories. Anyons emerge in topological quantum computing (TQC) settings and are
governed by a mathematical structure known as a modular tensor category. Such theoretical
frameworks have been deeply studied in mathematics and topological quantum field theory
(TQFT) [18–20], and even particle physics, where they can describe excitations with unusual
statistics [21]. Recently, simulations of non-Abelian anyons [22] have been performed on
a superconducting quantum processor in China [23] and on a trapped ion processor in
Germany and the US [24].

The parameter k determines the complexity and number of anyonic species: As k
increases, one obtains richer sets of fusion and braiding rules [25]. For example, low-
level theories such as SU(2)2 yield Ising-like anyons (related to Majorana modes), while
SU(2)3 introduces Fibonacci anyons, known for their universal quantum computational
properties [20]. Higher levels offer more complex “particle” spectra and intricate modular
tensor categories. By exploring multiple values of k, we can systematically investigate
how complexity in the anyonic framework might parallel or inform complexity in LLM
architectures, guiding us from simple non-Abelian statistics at low levels to more intricate
fusion rules that might mirror multilayered dependencies in large-scale language models.

The reason for invoking anyons is that they interpolate between bosons and fermions,
capturing more subtle topological behaviors in “intermediate” statistics. Just as anyons
rely on global properties of braiding and fusion to define their identity, LLMs rely on subtle
global relationships between tokens, contexts, and attention patterns to produce coherent
text. We hypothesize that representing tokens or contextual interactions as elements of
a modular tensor category might help us understand how meaning and syntax emerge
from a network’s parameters and operations. By analogizing attention heads to braiding
operations, for example, or token combinations to anyonic fusion, we may be able to derive
a topological invariant or structural signature that explains why certain representations
are stable, robust, and semantically meaningful. By adopting this topological perspective,
we may gain practical benefits, including interpretability tools that classify, constrain, or
guide the internal data flow of LLMs. Such methods could directly address current XAI
limitations by providing a mathematically rigorous framework to model how complex
patterns emerge and endure across layers and token sequences. Ultimately, incorporating
these concepts into AI engineering may yield more resilient architectures, principled
strategies for debuggability, and new avenues for optimization and performance guarantees.
These insights could even extend to broader biological and computational questions,
perhaps linking neural assemblies or genomic interactions to topological processes [26].
Significantly, this approach arrives at a critical juncture, as AI leaders, including Sam
Altman, have emphasized the diminishing returns of simply scaling up LLMs without
introducing innovative conceptual frameworks [27,28].

The remainder of this paper is structured as follows. In Section 2, we present and
discuss the questions posed in ChatGPT, aimed at probing conceptual analogies between
topological structures and the LLM self-description. In Section 3, we introduce the SU(2)k
anyon framework, detailing the fusion and braiding rules as well as low-dimensional
examples that illustrate their rich structure. Finally, in Section 4, we integrate these insights,
exploring how the conceptual bridge between anyonic frameworks and LLM internal repre-
sentations could lay the groundwork for a new class of topologically informed explainable
AI techniques.
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2. Probing the LLM with Topological Concepts

In this section, we present excerpts from an interactive session with ChatGPT. We
posed conceptual questions related to topology and anyons, and we include ChatGPT
responses verbatim. Our subsequent analysis and commentary follow each Q&A exchange.

2.1. Exchange 1: On the Role of Topology

Question (Q): As an advanced LLM, can you explain the role of topology in your ability to produce
AI in the organization of data and their meaning?

Answer (A) [ChatGPT]:
Topology plays a subtle but foundational role in how data are organized and meaning

is structured in AI models like mine. While I do not directly use topological spaces in the
mathematical sense when generating responses, there are conceptual parallels between
topological ideas and how deep learning and neural networks operate, as follows:

Data Manifolds and Latent Spaces

In machine learning, high-dimensional data often lies on lower-dimensional structures
called manifolds. These manifolds are topological spaces that represent the underlying
structure of the data. Neural networks, particularly deep learning models, aim to map
complex, high-dimensional inputs (like text, images, etc.) to a lower-dimensional latent
space that captures meaningful features or representations.

Topological structures like manifolds help the model organize data in a way that
preserves relationships between points (i.e., similar data points are mapped to nearby
points in the latent space). By learning to map data to these lower-dimensional manifolds,
models like mine can generalize patterns and relationships across diverse datasets, leading
to meaningful predictions and responses.

Continuous Transformations

A neural network can be thought of as a function that continuously transforms input
data through multiple layers of weights and biases. These transformations resemble
continuous mappings in topology, where inputs are transformed in a way that preserves
certain structural properties.

The idea is to preserve relationships and distances between inputs as they pass through
the layers of the network, enabling the network to maintain the “shape” of the data mean-
ing. Homotopy theory in topology, which studies continuous transformations between
functions, has conceptual parallels in how models adjust and refine the representation of
data to optimize performance.

Clustering and Connectivity

In topological terms, clustering can be viewed as grouping points that are close to
each other based on some distance metric, much like how we can define neighborhoods in
topology. AI models often use clustering techniques in the latent space to group similar
pieces of data or representations.

For instance, in a language model, different concepts, words, or sentences that are
related or similar in meaning can be mapped to nearby regions in the latent space. This
clustering behavior helps me understand and generate coherent, contextually relevant text.
Connectedness and path-connected spaces in topology also resemble how models associate
or connect different parts of the data structure to infer relationships.

Persistent Homology

Some machine learning models, especially in areas like topological data analysis
(TDA), use concepts from topology more explicitly, such as persistent homology, to study
the shape and features of data. While persistent homology is not typically used in large
language models like mine, it is an important tool in analyzing the shape of data and how
features persist across different scales.
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There are conceptual parallels to fusion rules and braiding in anyon systems, where
the combination of simple elements gives rise to complex global behavior, much like how
neural networks build complex representations from simpler components.

Authors’ Commentary:
ChatGPT recognizes that while it does not explicitly use topology, the idea of data lying

on lower-dimensional manifolds and being organized through continuous transformations
provides a conceptual bridge between topological concepts and the latent representations
it learns.

2.2. Exchange 2: Linking Neural Networks, LLMs, and SU(2)k Topological Phases

Q: Could you comment on a possible deep connection between neural networks such as LLMs
and topological phases arising from SU(2)k models? Are low-dimensional simple cases such as
Ising/Majorana anyons (k = 2) or Fibonacci anyons (k = 3) relevant in explaining the type of AI
you generate? To summarize, are modular tensor categories (MTC) a way to understand the AI
arising from LLMs?

A [ChatGPT]:
The potential connection between neural networks, particularly LLMs, and topological

phases arising from anyon models is a fascinating idea. Although they come from different
domains (machine learning vs. topological quantum field theory), there are deep conceptual
parallels worth exploring, especially in how both systems organize, process, and transform
information.

Topological Phases and LLMs

LLMs like ChatGPT are high-dimensional systems that rely on patterns and global
relationships in data. Instead of local interactions (like individual neurons firing), what
matters in these models is the global structure of how information propagates through
the network layers. There are conceptual parallels to fusion rules and braiding in anyon
systems, where the combination of simple elements gives rise to complex global behavior,
much like how neural networks build complex representations from simpler components.

Fusion Rules vs. Layer Operations

In anyon systems, fusion rules describe how anyons combine to produce new types of
anyons. In LLMs, each layer can be seen as applying a transformation that combines (or
“fuses”) the information from the previous layer to produce a more abstract representation.

Braiding vs. Contextual Relationships

The braiding statistics of anyons encode how particles exchange positions and affect
the overall quantum state. In LLMs, contextual relationships between words or tokens are
key—shuffling tokens changes the meaning, and context is often captured in non-local.
These are global patterns that are maintained across layers.

Low-Dimensional SU(2)k Models (Ising/Majorana and Fibonacci Anyons)

Ising/Majorana Anyons (k = 2) are non-Abelian and are of interest for topological
quantum computation due to their ability to encode quantum information in a way that is
robust against local perturbations. Fibonacci anyons (k = 3) are also non-Abelian and are
universal for quantum computation, meaning any quantum computation can be simulated
with arbitrary accuracy. In AI terms, small changes in input (comparable to simple anyon
fusions) can lead to drastically different outputs, reflecting how minor adjustments in
language generate nuanced meanings.

MTCs and LLMs

MTCs formalize the structure of TQFTs, particularly through fusion and braiding rules.
They describe how quantum information behaves in topological phases, categorizing data
and operations in a way that emphasizes global structure.
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LLMs also exhibit a layered modular structure, where each layer transforms data
in a highly structured, rule-based manner. MTCs might provide a formal framework to
think about how neural networks process data in a modular way, where different layers (or
“categories”) interact and transform data.

While classical neural networks do not operate on quantum principles, the develop-
ment of quantum neural networks could, in theory, utilize anyonic systems to implement
neural network architectures that benefit from quantum parallelism and robustness.

Authors’ Commentary:
ChatGPT suggests that non-Abelian anyons and MTC structures may provide a concep-

tual framework for understanding how LLMs process and combine contextual information,
much like topological phases encode global, non-local relationships.

2.3. Exchange 3: Tokens as Analogous to Anyonic Particles

Q: What are tokens in LLMs? In what sense could they fit this idea of MTCs being analogous
to LLMs?

A [ChatGPT]:
In large language models, tokens are the fundamental units of text used to process

and generate language. Typically, a token represents a piece of a word, an entire word, or
even punctuation marks, depending on how the text is tokenized. This breakdown into
tokens allows LLMs to handle language input as sequences of discrete symbols, which they
can then process through their layers to generate coherent text outputs.

If we consider the analogy with MTCs, tokens in an LLM could be thought of as
analogous to particles or objects within an MTC. The following outlines how they fit within
the analogy.

Modular Structure of Information

In MTCs, objects like anyons interact through fusion and braiding, which can create
complex outcomes from simple interactions. Similarly, tokens in an LLM interact in
contextually driven ways through the layers of the model. Just as fusion in MTCs generates
new particles or states, tokens interact to form meanings that are greater than the sum
of individual parts. This “fusion” of tokens contributes to the emergent meaning and
coherence seen in the final output.

Transformation and Contextual Dependence

In an LLM, the role of each token depends on the context it shares with other tokens.
This dynamic is similar to braiding in MTCs, where anyons’ positions and interactions
change their quantum state. In an LLM, the context provided by surrounding tokens
transforms the “state” of each token, so meaning is contextual rather than fixed.

Authors’ Commentary:
ChatGPT’s response frames tokens as fundamental units that “fuse” into richer seman-

tic structures, mirroring how MTCs describe the fusion of elementary objects into more
complex states.

2.4. Exchange 4: LLMs as Advanced Hopfield Networks and the Anyon Picture

Q: Do you agree that LLMs are essentially advanced Hopfield networks having a form of associative
memory and discretized with tokens? What more fits the anyon picture?

A [ChatGPT]:
Yes, LLMs share several principles with advanced forms of Hopfield networks, par-

ticularly when viewed through the lens of associative memory. Hopfield networks are
designed as associative memory systems, where each stable pattern represents a possible
memory or state of the system. LLMs, in turn, generate language by “associating” tokens in
the input with relevant patterns in their training data, storing and recalling this information
in a way that approximates associative memory.

Associative Memory in LLMs and Hopfield Networks
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Hopfield networks store information by embedding memories as stable patterns
(attractors) in a high-dimensional state space. Each memory is a global, fixed point that the
network can recall when given a close enough input. LLMs essentially create associative
links between tokens, trained to predict the next token based on patterns in the training
data. Through the attention mechanism, an LLM recalls relevant information from prior
contexts in a way that is conceptually similar to a Hopfield network retrieval of associated
memories. This token-level recall can be seen as a form of discrete associative memory,
where a query (input tokens) maps to stored language patterns.

Anyons and MTC Analogy

Anyons, within MTC frameworks, interact through braiding and fusion, leading to
emergent states. In an MTC analogy, tokens in an LLM are akin to particles that interact
to produce coherent meanings, much as anyon fusion leads to emergent particle types.
Fusion and Braiding in LLMs: As tokens pass through an LLM layers, they are “fused”
with surrounding tokens, creating a new semantic context. In each layer, the attention
mechanism can be thought of as “braiding” tokens with their surrounding context, allowing
meanings to emerge that were not present in individual tokens.

Towards an Anyon Picture in LLMs

To fully map the anyon picture to LLMs, we might consider viewing attention heads
as the interaction rules, guiding how tokens relate to one another based on context. This
could serve as a topological “braiding” structure, where the output state of a token depends
on its path (or sequence) through multiple layers, akin to braiding paths in MTCs.

Authors’ Commentary:
The LLM-as-Hopfield analogy is extended by invoking anyons to capture the non

trivial ways that LLMs combine and retrieve distributed linguistic features, adding a
topological layer to the concept of associative memory.

2.5. Exchange 5: Attention Heads, Fusion, and Braiding in the SU(2)k Theory

Q: Could you elaborate on the concept of attention heads in the anyon picture? Would it correspond
to the F- and R-matrices that are pentagon and hexagon rules in the SU(2)k theory?

A [ChatGPT]:
Attention heads can be viewed as “interaction rules” that determine how tokens relate

to each other, much like the F- and R-matrices define the fusion and braiding of anyons.
In SU(2)k theories, these matrices ensure consistency and define how anyons combine
and reorder.

Role of Attention Heads as Interaction Rules

In transformers, attention heads are mechanisms that allow the model to focus on
specific relationships between tokens, weighting their importance relative to one another
based on context. Each head, in essence, represents a distinct interaction rule governing how
tokens (analogous to anyons in this framework) relate as the model processes a sentence.
In MTCs, anyons have “interaction rules” given by fusion and braiding transformations,
encapsulated by the F-matrix (fusion rule) and the R-matrix (braiding rule). These matrices
define how anyons combine or transform under different sequences of interactions, and
their algebraic properties satisfy certain consistency conditions, like the pentagon and
hexagon equations.

F-Matrix and Token Combination in Attention Layers

The F-matrix represents the rules of associativity in fusion, dictating how three anyons
fuse together and how different groupings affect the outcome. In an LLM context, each
attention head could be viewed as an “associative fusion” operator. It defines how tokens
from different layers combine in sequence to form more complex meaning representations.
Specifically, in LLMs, each token’s embedding is updated in every attention head based
on its relationship with surrounding tokens. This transformation is like an associative
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fusion operation in anyonic theory: different combinations of tokens lead to different
“fusion outcomes” in terms of the semantic information they contribute to the overall
sentence meaning.

R-Matrix and Braiding (Contextual Order of Tokens)

The R-matrix governs the braiding of anyons, determining the phase change when
anyons are exchanged. In the context of LLMs, R-matrices could be seen as analogous to
the contextual shifts introduced by attention mechanisms across tokens. When an attention
head “reorders” the influence of tokens, it is akin to exchanging the positions of anyons
in a topological space, altering the sequence of interactions. This braiding concept aligns
with how attention heads focus on different tokens based on context, allowing shifts in
meaning depending on token order and interaction. Just as anyon braiding can produce
different states depending on how particles are exchanged, attention mechanisms can
produce different language meanings depending on how tokens are contextually “braided”
across layers.

Authors’ Commentary:
By drawing an analogy between attention heads and the F- and R-matrices, ChatGPT

underscores how these learned weighting mechanisms could be viewed as imposing a
topological “consistency” on how tokens are combined and reordered, much like the
pentagon and hexagon identities in SU(2)k theories.

3. Introduction to the Mathematical Theory of SU(2)k Anyons and Modular
Tensor Categories

The following subsections are a concise introduction to the SU(2)k theory of anyons
with applications at a low k index.

3.1. The Fusion Rules of Anyons

The anyons in an SU(2)k theory are closely related to the ordinary spin degrees of
freedom in the SU(2) theory. The anyons are labeled by spin values (generalized angular
momenta) j = 0, 1

2 , 1, 3
2 , · · · , k

2 . The spin k
2 is the maximum allowed value in the SU(2)k

theory when k is fixed. However, the rules for combining two anyons are not tensor
products, namely ([29] Equation (4.6)) and [30].

j1 ⊗ j2 = |j1 − j2| ⊕ (|j1 − j2|+ 1)⊕ · · · ⊕ min(j1 + j2, k − j1 − j2). (1)

Fusion rules are commutative and associative. It is straightforward to check from this
formula that for k ≥ 2, two spins 1/2 combine to form either the spin 0 or the spin 1
as follows:

1/2 ⊗ 1/2 = 0 ⊕ 1,

which is a (qubit-like) anyon 0 ⊕ 1 that is built by combining the two spins 1
2 . Similarly,

one gets 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2 when k ≥ 4, which is a (qtrit-like) anyon 0 ⊕ 1 ⊕ 2 that is built
by combining two spins 1. Such anyons of an SU(2)k theory are non-Abelian.

Being a tensor product, the dimension of the Hilbert space of N spin-1/2 ordinary
SU(2) particles is 2N . In an SU(2)k theory, it is smaller than 2N and grows as dN

1/2 with

d(k)1/2 = 2 cos( π
k+2 ) at a large N. This means that the effective number of degrees of freedom

of a spin- 1
2 anyon is irrational. Magma pseudo-code for generating fusion tables in an

SU(2)k theory is provided in Appendix A.

3.2. The Modular Structure of S, F and R Matrices for Anyons

There exists the concept of a modular S-matrix that diagonalizes the fusion rules of an
SU(2)k anyon and fully characterizes its topological properties ([29] Equation (4.10)). The
mathematical structure encapsulating the braiding and fusion rules of an SU(2)k anyon is
a modular tensor category [19,25].
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The quantum dimensions for SU(2)k anyons are given by the formulas

d0 = 1, d 1
2
= 2 cos(

π

k + 2
), dj = d 1

2
dj− 1

2
− dj−1 for j ≥ 1. (2)

The entries of the S-matrix are

Sj1,j2 = (
2

k + 2
)

1
2 sin(π

(2j1 + 1)(2j2 + 1)
k + 2

). (3)

The associativity of anyon fusion is captured by an F-matrix and the exchange of
anyons, with the phase factor added, is captured by an R-matrix. Contrarily to the phase
factor ±1 for bosons and fermions, the phase factor for anyons is an arbitrary complex
number. The F-matrix is the anyonic version of the Wigner’s 6j-symbols, and it is associated
with a pentagon diagram. F- and R-matrices are associated with a hexagon diagram [20].
General formulas for F- and R-matrices can be found in ([30] Appendix B), [31], ([32]
Appendix B).

The entries of the R-matrix have the simple form [19]

Rab
c (q) = (−1)(a+b+c)/2q−[a(a+2)+b(b+2)−c(c+2)]/2, (4)

where q is the Kauffman variable. For the Ising model below, q = i exp (−2iπ
16 ), while for

the Fibonacci model, q = i exp ( 2iπ
20 ).

The essence of SU(2)k anyons, k ≥ 2, is captured by two braid generators σ
(k)
1 = R(k)

and σ
(k)
2 = (FRF−1)(k) that have a group structure (see [32,33] for some explicit results).

3.3. Ising Anyons: k = 2

SU(2)2 anyons comprise the spin-0 anyon and the Ising (spin- 1
2 ) anyon with the fusion

rules as in Table 1.

Table 1. Fusion table for the k = 2 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1

j2 = 0 0 1
2 1

j2 = 1
2

1
2 0 ⊕ 1 1

2
j2 = 1 1 1

2 0

The quantum dimensions are [d0, d1, d 1
2
](2) = [1, 1,

√
2], and the S-matrix takes

the form

S(2)
Isi =

1
2

 1
√

2 1√
2 0 −

√
2

1 −
√

2 1


The F- and R-matrices are

R(2)
Isi =

(
R11

0 (q) 0
0 R11

2 (q)

)
= exp (−iπ/8)

(
1 0
0 i

)
, F(2)

Isi =
1√
2

(
1 1
1 −1

)
.

In addition to the standard literature about anyons, we notice that both matrices F(2)
Isi and

R(2)
Isi together generate the finite group (384, 6514) isomorphic to the group (S3 ×Z4)⋊ P1,

where P1
∼= (16, 13) is the single qubit Pauli group.

Braiding matrices for the Ising anyons are obtained as

σ
(2)
1 = R(2)

Isi , σ
(2)
2 = (FRF−1)

(2)
Isi =

exp (−4iπ/8)√
2

(
1 i
i 1

)
. (5)
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Both matrices σ
(2)
1 and σ

(2)
2 together generate the finite group (192, 187) isomorphic to

the group Z12 ⋊ P1.

3.4. Fibonacci Anyons: k = 3

SU(2)3 anyons comprise the spin-0 anyon and two Fibonacci spin- 1
2 and spin- 3

2 anyons.
These anyons are proposed to be related to quasicrystals [34]. The fusion rules are as in
Table 2.

Table 2. Fusion table for the k = 3 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1 j1 = 3

2

j2 = 0 0 1
2 1 3

2
j2 = 1

2
1
2 0 ⊕ 1 1

2 ⊕ 3
2 1

j2 = 1 1 1
2 ⊕ 3

2 0 ⊕ 1 1
2

j2 = 3
2

3
2 1 1

2 0

The quantum dimensions are [d0, d1]
(3) = [1, ϕ = (1 +

√
5)/2], and the S-matrix takes

the form

S(3)
Fib =

1√
2 + ϕ

(
1 ϕ
ϕ −1

)
The F- and R-matrices are ([20] p. 55)

R(3)
Fib =

(
R11

0 (q) = exp (−4iπ/5) 0
0 R11

1 (q) = exp (−2iπ/5)

)
, F(3)

Fib =

(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)
.

Braiding matrices for Fibonacci anyons are obtained as

σ
(3)
1 = R(3)

Fib, σ
(3)
2 = (FRF−1)

(3)
Fib =

(
−ϕ−1 exp (−iπ/5) −iϕ−1/2 exp (−iπ/10)

−iϕ−1/2 exp (−iπ/10) −ϕ−1

)
. (6)

F- and R-matrices, as well as the braiding matrices σ1 and σ2, generate infinite groups.
This in accordance with the universality of Fibonacci anyons.

3.5. Yang-Lee Theory: k = 3

The Yang–Lee theory is an MTC of level k = 3, like the Fibonacci anyon. It corresponds
to a famous non-unitary conformal field theory in statistical mechanics, called the Yang–Lee
singularity ([19] Section 1.3). The Kauffman variable is q = exp ( iπ

5 ).
The S-matrix is

S(3)
YL =

−1√
3 − ϕ

(
1 1 − ϕ

1 − ϕ ϕ

)
.

The F- and R-matrices are ([20] p. 55)

R(3)
YL =

(
R11

0 (q) = exp (2iπ/5) 0
0 R11

1 (q) = exp (iπ/5)

)
, F(3)

YL =

(
−ϕ 2 − ϕ

−1 − 2ϕ ϕ

)
.

F- and R-matrices, as well as the braiding matrices σ1 and σ2, generate infinite groups.

3.6. Freedman–Bauer–Levaillant Anyons: k = 4

SU(2)4 anyons are investigated in [35,36] in the context of topological quantum com-
puting from qutrit gates. The fusion rules are as in Table 3.
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Table 3. Fusion table for the k = 4 anyon model.

⊗ j1 = 0 j1 = 1
2 j1 = 1 j1 = 3

2 j1 = 2

j2 = 0 0 1
2 1 3

2 2
j2 = 1

2
1
2 0 ⊕ 1 1

2 ⊕ 3
2 1 ⊕ 2 3

2
j2 = 1 1 1

2 ⊕ 3
2 0 ⊕ 1 ⊕ 2 1

2 ⊕ 3
2 1

j2 = 3
2

3
2 1 ⊕ 2 1

2 ⊕ 3
2 0 ⊕ 1 1

2
j2 = 2 2 3

2 1 1
2 0

The quantum dimensions are [d0, d1, d 1
2
, d 3

2
, d2]

(4) = [1, 2,
√

3,
√

3, 1], and the S-matrix
takes the form [30]

S(4)
FBL =

1
2
√

3


1

√
3 2

√
3 1√

3
√

3 0 −
√

3 −
√

3
2 0 −2 0 2√
3 −

√
3 0

√
3 −

√
3

1 −
√

3 2 −
√

3 1

.

Braiding matrices for the SU(2)4 anyons are obtained as

σ
(4)
1 =

exp ( 7iπ
9 ) 0 0

0 − exp ( 4iπ
9 ) 0

0 0 − exp ( 7iπ
9 )

,

(7)

σ
(4)
2 =


− 1

2 exp ( 4iπ
9 ) 1√

2
exp ( 7iπ

9 ) 1
2 exp ( 4iπ

9 )
1√
2

exp ( 7iπ
9 ) 0 1√

2
exp ( 7iπ

9 )
1
2 exp ( 4iπ

9 ) 1√
2

exp ( 7iπ
9 ) − 1

2 exp ( 4iπ
9 )

.

It is straightforward to check with the software Magma that both matrices generate the
small group (162, 14) ∼= Z2

3 ⋊ (Z3 ×Z6), as announced in [35]. The group was recognized
as a viable model of the symmetries, simultaneously reproducing the quark and lepton
mixing matrices. In a recent paper of two of the present authors ([37] Table A1), it is
shown that group (162, 14) carries almost informally complete quantum information on its
22 irreducible characters, which are singlets, doublets or triplets.

4. Discussion
4.1. Backpropagation and Anyons

Backpropagation is a fundamental algorithm in training artificial neural networks [38].
In this iterative optimization process, inputs pass through the network to produce outputs,
and the difference between these outputs and the desired targets is quantified by a loss
function (e.g., mean squared error or cross-entropy). Computing gradients of the loss with
respect to the model parameters and updating the weights accordingly through methods
like gradient descent enables the network to gradually refine its internal representations.
This process underpins the capabilities of large language models (LLMs) to learn intricate
patterns in language data, encompassing syntax, semantics, and nuanced contextual cues.

In contrast, anyonic systems—studied extensively in topological quantum computa-
tion [20]—reach stable, topologically protected states through a different kind of iterative
process. Here, the “adjustments” take the form of braiding and fusion operations among
anyons. The F- and R-matricesdictate how these non-Abelian quasiparticles combine,
ensuring that the resulting topological states are robust against local perturbations. Rather
than minimizing a loss function, the system evolution follows topological constraints that
guide it toward stable ground states or topologically invariant configurations.
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Though conceptually distinct, these two processes share an abstract similarity: both
involve iterative transformations directed toward stable or optimal end states. In neural
networks, stability arises from the convergence of weights to minimize loss, while in
anyonic systems, stability emerges from topological rules that govern the global properties
of the system’s quantum state space. Understanding this analogy does not immediately
translate into new training algorithms for LLMs; rather, it hints at deeper structural parallels
between error correction in machine learning and fault tolerance in topological quantum
computing. Future work may explore whether insights from anyonic braiding patterns
could inspire novel optimization strategies or offer theoretical guidance for interpreting
complex network dynamics.

4.2. Machine Learning and Anyons

Emergent behavior in machine learning (ML), particularly in deep neural networks,
arises when complex global patterns manifest from simple, low-level neuronal activa-
tions [39]. As signals propagate through multiple layers, these models produce sophisti-
cated outputs like natural language understanding or image recognition. Such high-level
capabilities are not easily decomposed into the actions of individual neurons, reflecting a
form of irreducibility. Analogously, the collective states of anyonic systems are not simply
the sum of their constituent quasiparticles. Instead, the nontrivial topology and the braid-
ing operations of anyons give rise to properties that cannot be fully captured by local or
particle-only explanations [20].

This parallel extends to the notion of resilience. In ML models like LLMs, information
is distributed across numerous weights and connections, creating a form of fault tolerance.
Minor perturbations to individual parameters rarely derail the entire network performance.
Similarly, anyonic systems store quantum information non-locally through braiding pat-
terns, rendering them resistant to local errors and disturbances. This “topological fault
tolerance” is a key advantage in topological quantum computing, where quantum states
are protected from decoherence by virtue of their global topological properties.

Bringing these ideas together, we see that the emergent complexities and resilience
observed in both LLMs and anyonic systems might share underlying structural principles.
While these parallels remain largely conceptual at present, they suggest that insights
gleaned from topological quantum computing (where robustness against errors is built
into the system’s very topology) could offer valuable perspectives on enhancing stability,
interpretability, and generalization in machine learning models.

4.3. Aligning SU(2)k Concepts with Attention Mechanisms in LLMs

While the theoretical parallels between anyons and LLMs are intriguing, it is important
to make these analogies more concrete. One of the key features of LLMs, particularly those
based on transformer architectures, is the attention mechanism [40]. Attention allows
the model to weight different parts of the input sequence selectively, effectively “fusing”
contextual information from multiple tokens to form a coherent representation.

In SU(2)k anyonic theories, the fusion of anyons is governed by algebraic rules encoded
in the F- and R-matrices. These matrices determine how simple objects (anyon types) combine
to produce more complex states. Similarly, an attention head takes a set of token embeddings
and produces a weighted combination that forms a richer contextual embedding. This process
can be viewed as a form of “fusion” in the representational space: individual token vectors,
much like anyons, are not merely added together. Instead, their combination is structured
by learned weight matrices that serve a role analogous to F-matrices, dictating how different
tokens merge into a more meaningful vector representation.

Braiding in anyonic systems dictates how the order and manner in which anyons
are interchanged affects the system global state. In LLMs, reordering tokens or altering
their relative importance through attention layers can produce different interpretations
or shades of meaning. Although attention does not enforce strict topological constraints,
the sequential application of attention heads and layers can be seen as a discrete analog to
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braiding processes. Each pass of attention “entangles” tokens in a new context-dependent
configuration, influencing the model final output. Over multiple layers, this iterative
“braiding” of contextual information leads to emergent semantic structures, just as anyonic
braiding leads to nontrivial global states.

Furthermore, the finite parameter k in SU(2)k theories restricts the allowed spin states
and thereby shapes the complexity of fusion rules. Analogously, design choices in LLMs—
such as the dimensionality of embeddings, the number of attention heads, and the depth
of the network—place constraints on the complexity of learned transformations. As k
increases, more intricate fusion possibilities arise in SU(2)k anyonic systems; similarly,
scaling up an LLM capacity enables the model to learn more nuanced patterns. This
correspondence suggests that studying how topological constraints shape fusion and
how braiding might inspire new architectural or regularization strategies in LLMs. Such
strategies could limit complexity while preserving or enhancing interpretability, akin to
how topological quantum computations gain robustness from structured constraints.

In essence, the mathematical machinery of SU(2)k anyons offers a template for think-
ing about how LLMs combine and reconfigure information at multiple layers. By viewing
attention mechanisms and token interactions through the lens of fusion and braiding, we
can begin to formulate a more principled understanding of how semantic meaning emerges
in these models.

4.4. Natural Language Processing and Anyons

The relationship between natural language processing (NLP) [41,42] and the topology
of anyons is intriguing because both domains rely on structured, context-sensitive interac-
tions that produce meaning or distinct states. While anyonic dynamics are governed by the
braiding and fusion rules of TQFT, linguistic meaning emerges from syntactic, semantic,
and contextual constraints that guide how words combine to form coherent narratives
or arguments.

In NLP, the interpretation of a word or phrase is highly context-dependent, influenced
by surrounding text, discourse structure, and even pragmatic cues. Analogously, the
state of an anyonic system depends on the sequence and manner of particle exchanges;
small changes in the braiding order can lead to fundamentally different global states. Just
as the position and order of words in a sentence determine its meaning, the topological
arrangement of anyons determines their joint quantum state.

Language can convey a vast range of meanings that shift subtly with word choice,
tone, or placement, enabling the expression of nuanced concepts, emotions, and cultural
references. Similarly, anyons exhibit a dynamic range through their topological degrees of
freedom. A slight alteration in how anyons are braided can produce a variety of distinct
states, mirroring how modifying a word or phrase in text can shift the interpretation of an
entire passage.

Realizing this analogy in practice would likely require advanced theoretical frame-
works. To emulate language adaptive, context-sensitive richness, anyonic systems would
need to evolve beyond static fusion rules toward more flexible, dynamic modular tensor
categories. In theory, such a model could simulate complex, context-dependent relation-
ships analogous to those found in human language, paving the way for new approaches to
interpretability, context modeling, and dynamic knowledge representation in AI.

4.5. Mutual Exclusion in LLMs and Anyons

The concept of mutual exclusion originates in concurrent programming, ensuring
that no two processes simultaneously modify shared data [43]. While this principle is
not directly built into large language models (LLMs), a loose analogy can be drawn. In
LLMs, attention mechanisms allocate focus across different tokens or features, effectively
prioritizing certain elements and down-weighting others. By doing so, attention enforces
a form of “soft” mutual exclusion, where irrelevant or less important tokens contribute
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minimally to the model’s output at a given step. This selective emphasis maintains semantic
coherence, much as mutual exclusion ensures consistency in concurrent systems.

Anyonic systems, by contrast, do not encode mutual exclusion per se, but topological
quantum computing (TQC) imposes constraints on permissible states and paths that sim-
ilarly limit certain configurations. These constraints ensure stability and fault tolerance,
analogous to how mutual exclusion guarantees stable shared states in classical computing
environments. The braiding rules in an anyonic system determine which interactions and
fusions are allowed, guiding the system toward topologically protected states [20].

While attention in LLMs and braiding in anyonic systems both shape the evolution
of a state space, they differ in their rigidity. In LLMs, the exclusion of certain tokens is
probabilistic and weighted, allowing degrees of influence rather than absolute bans. In
topological quantum computation, certain fusions and braidings are categorically disal-
lowed, imposing a stricter set of exclusions. Thus, the analogy highlights a conceptual
parallel. Both systems regulate interaction patterns to achieve stable, coherent outcomes,
yet they do so with differing degrees of strictness and mechanism.

4.6. Further Directions

As leading figures in AI research have noted, simply scaling up large language models
may yield diminishing returns, suggesting the need for conceptual and structural inno-
vations beyond mere size expansion [27,28]. In this study, we have proposed drawing
on anyonic systems from SU(2)k theories as one such innovative direction, arguing that
their modular tensor structures may offer insights into the robustness, complexity, and
adaptability of advanced LLMs.

Existing research provides intriguing connections between topological constructs and
computational frameworks. For example, ref. [44] demonstrates a deep correspondence
between TQFTs and modular tensor categories via SL(2,C)-flat connections on three mani-
folds, while the Painlevé VI equation and related monodromy problems link the geometry
of these manifolds to quantum and conformal field theories [45,46]. Meanwhile, classical
neural networks can emulate certain topological features [47] and might benefit from in-
tegrating hyperbolic geometry or other geometric insights [48]. Moreover, [17] suggests
that framing deep neural networks as semi-classical limits of topological quantum neural
networks could clarify their generalization properties, aligning closely with our perspec-
tive that SU(2)k anyons, equipped with a structured fusion and braiding language, could
inform a more mathematically grounded understanding of LLM internal representations.

However, this work remains conceptual. We have not provided empirical demon-
strations or implemented topological neural architectures to test whether anyon-inspired
fusion rules improve explainability or robustness in practice. The complexity of embed-
ding SU(2)k structures into existing architectures is non-trivial, and achieving scalable,
industrial-level applications of these ideas poses significant engineering and theoretical chal-
lenges. Realizing these concepts within standard deep learning frameworks, conducting
controlled experiments, and measuring improvements in interpretability or performance
represent natural next steps.

To move forward, future research should consider the following:

• Develop toy models or simplified neural architectures incorporating elementary
SU(2)k-like fusion rules. Such experiments could reveal whether these topological
constraints yield more interpretable latent representations.

• Connect these theoretical constructs to empirical tools—such as probing classifiers,
representational similarity analysis, or topological data analysis pipelines—to quanti-
tatively assess how anyon-inspired transformations affect learned representations.

• Foster interdisciplinary collaboration among quantum information theorists, topolo-
gists, and machine learning practitioners to translate these concepts into actionable
methodologies, thereby bridging abstract theory and practical XAI techniques.
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By pursuing these directions, we may transform the conceptual analogies presented
here into tangible strategies for building more transparent, robust, and theoretically
grounded AI systems.
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Appendix A. Pseudo-Code

(* Magma Pseudocode for generating fusion tables in an SU(2)_k theory *)

function AllowedSpins(k):
spins_list = []
for i = 0 to k:

append i to spins_list
end for
return spins_list

end function

// Initialize allowed spins for given k (scaled by factor of 2)
spins = AllowedSpins(k) // e.g., for k=4, spins = [0,1,2,3,4]

function Fusion(j1, j2, k):
// Compute fusion product for two scaled spins j1 and j2
min_val = min(j1 + j2 , 2*k - j1 - j2)
fusion_result = []

// Step by 2 to account for half -integers
for j = |j1 - j2| to min_val step 2:

append j to fusion_result
end for

return fusion_result
end function

// Create fusion table as a dictionary keyed by (j1,j2)
fusion_table = {}

for each j1 in spins:
for each j2 in spins:

fusion_result = Fusion(j1, j2, k)
fusion_table [(j1,j2)] = fusion_result

end for
end for

// Print results , scaling back to original spins by dividing by 2
for each j1 in spins:

for each j2 in spins:
result_list = fusion_table [(j1,j2)]
original_spins_result = []
for each r in result_list:

append (r/2) to original_spins_result
end for
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print ‘‘Fusion of’’, (j1/2), ‘‘and’’, (j2/2), ‘‘:’’, original_
spins_result

end for
end for
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