
Citation: Li, Y.; Zhou, J.; Zheng, B.;

Shafiabady, N.; Chen, F. Reliable and

Faithful Generative Explainers for

Graph Neural Networks. Mach. Learn.

Knowl. Extr. 2024, 6, 2913–2929.

https://doi.org/10.3390/

make6040139

Academic Editor: Weiping Ding

Received: 22 October 2024

Revised: 30 November 2024

Accepted: 11 December 2024

Published: 18 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Reliable and Faithful Generative Explainers for Graph
Neural Networks †

Yiqiao Li 1,* , Jianlong Zhou 1 , Boyuan Zheng 1, Niusha Shafiabady 2 and Fang Chen 1

1 Data Science Institute, University of Technology Sydney, Sydney, NSW 2007, Australia;
jianlong.zhou@uts.edu.au (J.Z.); boyuan.zheng@uts.edu.au (B.Z.); fang.chen@uts.edu.au (F.C.)

2 Department of Information Technology, Australian Catholic University, North Sydney, NSW 2060, Australia;
niusha.shafiabady@acu.edu.au

* Correspondence: yiqiao.li@uts.edu.au
† This paper is an extended version of our paper published in the 32nd ACM International Conference on

Information and Knowledge Management, CIKM 2023, Birmingham, UK, 21–25 October 2023.

Abstract: Graph neural networks (GNNs) have been effectively implemented in a variety of real-
world applications, although their underlying work mechanisms remain a mystery. To unveil this
mystery and advocate for trustworthy decision-making, many GNN explainers have been proposed.
However, existing explainers often face significant challenges, such as the following: (1) explanations
being tied to specific instances; (2) limited generalisability to unseen graphs; (3) potential generation
of invalid graph structures; and (4) restrictions to particular tasks (e.g., node classification, graph
classification). To address these challenges, we propose a novel explainer, GAN-GNNExplainer,
which employs a generator to produce explanations and a discriminator to oversee the generation
process, enhancing the reliability of the outputs. Despite its advantages, GAN-GNNExplainer
still struggles with generating faithful explanations and underperforms on real-world datasets. To
overcome these shortcomings, we introduce ACGAN-GNNExplainer, an approach that improves
upon GAN-GNNExplainer by using a more robust discriminator that consistently monitors the
generation process, thereby producing explanations that are both reliable and faithful. Extensive
experiments on both synthetic and real-world graph datasets demonstrate the superiority of our
proposed methods over existing GNN explainers.

Keywords: graph neural networks; explanations; generative methods; faithful; reliable

1. Introduction

Graph neural networks (GNNs) have swiftly progressed as a powerful method for pro-
cessing graph-structured data, showing outstanding performance across various real-world
applications, including crime prediction [1], traffic flow estimation [2], event forecasting [3],
and medical diagnosis [4]. GNNs are proficient in capturing intricate node relationships
and extracting valuable features from graph data, making them an ideal option for tasks
that require graph-based analysis.

Although GNNs demonstrate strong performance, their lack of explainability reduces
their trustworthiness in key fields like healthcare and finance. The inherent black-box
characteristic of GNNs complicates the comprehension of their decision-making mech-
anisms, making it challenging to uncover the reasoning behind their predictions and to
detect potential biases. These challenges have restricted the wider adoption of GNNs in
vital sectors where interpretability and transparency are essential, including healthcare [5],
recommendation systems [6], and other areas.

To address this challenge, a multitude of GNN explainers have been proposed to shed
light on the decision-making process of GNNs. These methods provide explanations at
the node or graph level, helping to identify important graph structures and features that
contribute to the model’s predictions. Specifically, explaining GNN models is encouraged
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and even required to increase confidence in the GNN model’s predictions, guarantee the
security of real-world applications, and promote trustworthy artificial intelligence (AI) [7,8].

The explanation of GNN has attracted substantial scholarly interest, and many explain-
ers [9–13] have been proposed over the past few years. Although these methods provide
some useful explanations for complex GNN models, their practical application is hampered
by their inherent constraints: (1) the explanation scale is tied to a specific instance; (2) the
explanation cannot be easily generalised for unseen graphs; (3) the explanation may not be
a valid graph; (4) the explanation may be limited to a specific task (e.g., node classification,
graph classification, etc.). In particular, the seminal method GNNExplainer [9] limits itself
to local explanation and lacks generalisability. After that, XGNN [13], which trains a graph
generator to explain a class by displaying class-specific graph patterns, addressed the
limitation of the explanation scale. However, it still lacks generalisability, and worse, it
may generate some nonexisting important subgraphs. Recent Gem [12] has mitigated the
limitations faced by previous methods, while its precision in explaining different tasks can
vary significantly and lacks stability due to the inherent nature of the generation process.

To tackle the existing limitations, this paper introduces two novel GNN explainers,
GAN-GNNExplainer and ACGAN-GNNExplainer [14], respectively, which use the genera-
tive method to produce explanations for GNNs. Both of our methods consist of a generator
and a discriminator. Specifically, for GAN-GNNExplainer, the generator learns to produce
explanations for the input graph G, which requires an explanation. Meanwhile, the dis-
criminator distinguishes between “real” and generated explanations. The discriminator
provides feedback to the generator, refining the explanation process. Through repeated
interactions between the generator and discriminator, the generator eventually produces
explanations that closely resemble the desired “real” ones. As a result, the quality of
the explanations improves, leading to a significant boost in overall explanation accuracy.
GAN-GNNExplainer represents a notable advancement in the accuracy of explanations,
successfully addressing some limitations of current popular GNN explainers. However,
GAN-GNNExplainer has inadequate reliability on real-world datasets and lacks fidelity.

To address these limitations, we introduce an enhanced method, ACGAN-GNNExplainer,
which leverages the Auxiliary Classifier Generative Adversarial Network (ACGAN) [15]
as its backbone to generate explanations for GNNs. Specifically, the input graph G, along
with its corresponding label f (G), determined by the target GNN model f , is fed into the
generator, which then learns to generate explanations. To ensure the validity and accuracy
of the generated subgraph, a discriminator is incorporated. The discriminator distinguishes
between “real” and generated explanations, assigns a prediction label to each explanation,
and provides feedback to the generator, overseeing the entire generation process. Extensive
experiments on both synthetic and real-world datasets demonstrate the effectiveness of our
method, showcasing its superiority over existing GNN explainers.

Key contributions of this paper include the following:

• We propose a novel explainer called GAN-GNNExplainer, specifically tailored for
GNN models. This approach employs a generator to generate explanations and is
supervised by a discriminator, ensuring reliable results throughout the procedure.

• Additionally, we introduce ACGAN-GNNExplainer, a more advanced explainer for
GNN models. It leverages both a generator and a discriminator, which consistently
oversees the procedure, leading to explanations that are both reliable and faithful.

• Our methods are comprehensively evaluated across various graph datasets, spanning
both synthetic and real-world data, and across multiple tasks, including node classifi-
cation and graph classification. The outcomes consistently highlight the advantages of
our approach over existing methods.

2. Related Work
2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [16] are composed of two main components:
a generator and a discriminator, both of which are trained concurrently in a competitive
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setup. The generator begins with random noise and learns to create synthetic samples that
closely resemble the real data distribution, while the discriminator distinguishes between
genuine data and synthetic outputs generated by the generator. During the training process,
the generator aims to produce increasingly realistic outputs, making it progressively more
difficult for the discriminator to differentiate them accurately. This adversarial mechanism
has allowed GANs to make remarkable advancements in multiple fields, including image
synthesis, data augmentation, and cross-modal tasks.

Over time, a variety of GAN extensions have been developed, addressing issues such
as training stability and mode collapse, while also improving the diversity and fidelity
of the generated outputs. These innovations involve alterations to network architectures,
loss functions, and optimisation strategies. For instance, conditional GANs (CGANs) [17]
introduce a conditioning mechanism, where additional information (such as class labels) is
provided to both the generator and discriminator, enabling the generation of class-specific
samples. This conditional setup allows for more targeted generation tasks, improving
sample diversity and applicability.

In another line of work, models such as InfoGAN [18] explore the disentanglement
of latent variables. By optimising the mutual information between a portion of the latent
variables and the generated samples, InfoGAN gains the ability to control distinct features
of the generated data, thereby improving interpretability. This introduces an additional
layer of control over the generation process, making it possible to manipulate distinct
attributes of the samples, such as object orientation or style.

Building on the idea of conditioning, the Auxiliary Classifier Generative Adversarial
Networks (ACGAN) [15] introduces an auxiliary classification objective to further enhance
the generative process. ACGAN incorporates class labels into the generation process, with
the discriminator tasked not only with distinguishing between real and synthetic data
but also with classifying the samples according to their respective categories. This dual
objective improves both the quality of the generated samples and their relevance to the
given class labels. As a result, ACGAN has found applications in scenarios requiring
fine-grained control over the generation process, such as in medical imaging [19] and other
domain-specific tasks [20].

These advancements have significantly expanded the scope and capability of GAN
models, making them versatile tools for a variety of practical applications, from creative
tasks like art generation to critical areas such as healthcare and security. The continu-
ous evolution of GAN architectures and techniques ensures their relevance in tackling
increasingly complex data generation challenges.

2.2. Graph Neural Networks

GNNs represent a robust class of deep learning models crafted to handle graph-
structured data, including social networks, citation networks, and molecular structures.
In contrast to traditional neural networks, which process information in vector or matrix
formats, GNNs work directly on graph data by collecting and integrating information from
adjacent nodes and edges. GNNs have demonstrated outstanding results across multiple
tasks, such as node classification [21], graph classification [22], and link prediction [23].

Beyond their strong theoretical grounding, GNNs are widely utilised in practical
settings. For instance, Wang et al. [24] introduced a homophily-based constraint to refine the
optimisation of region graphs for crime prediction. This method encourages neighbouring
region nodes in the graph to exhibit similar crime patterns, aligned with the diffusion
convolution framework. GNNs are also employed in traffic prediction [24] and medical
diagnosis [25], demonstrating their adaptability in real-world applications.

Similar to many other deep learning models, GNNs face a notable limitation: they are
frequently regarded as black-box systems, lacking explanations that are comprehensible to
humans. Without a thorough understanding and verification of the internal mechanisms of
GNNs, their application in critical areas involving fairness, privacy, and safety is hindered.
Hence, the development of explainable GNN models has become a crucial research area.
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2.3. Graph Neural Networks Explainers

Explaining the reasoning behind GNNs is a critical yet complex task, as it directly
contributes to improving the explainability, trustworthiness, and safety of these models. In
recent years, a range of methods have emerged to tackle this issue, leveraging the distinctive
structural and relational features of graphs to produce meaningful explanations. Below, we
outline several key approaches that have significantly advanced this area of research.

GNNExplainer [9] is one of the foundational methods developed for explaining GNNs,
focusing on identifying the critical substructures and node features that drive a model’s pre-
diction. This technique provides instance-specific explanations, offering insights into how
local patterns in the graph influence individual decisions. PGExplainer [11] extends this
by generating probabilistic explanations that generalise across multiple instances. Unlike
GNNExplainer, it operates at a model-wide level, making it adaptable to diverse scenarios.

Further advancing the field, the authors in [12] introduce a generative approach,
Gem, which can offer both local and global explanations. Its inductive nature allows
it to function without the need for retraining the GNN, providing greater flexibility in
real-time applications. OrphicX [26] builds on this concept by offering causal explanations,
concentrating on latent factors to deliver a more profound understanding of the cause-
and-effect dynamics influencing GNN predictions. However, despite their promising
contributions, both Gem and OrphicX encounter challenges when applied to real-world
datasets, particularly in maintaining the accuracy of their explanations. However, in our
paper, we seek to overcome these challenges by introducing novel explainers that can
provide high-fidelity explanations across both synthetic and real-world datasets.

In addition to these methods, reinforcement learning has also been explored as a tool
for explaining GNNs. For instance, XGNN [13] is a model-level explainer that employs a
graph generator to discover patterns enhancing the model’s predictive capabilities, thereby
uncovering important graph structures. Another notable approach, RC-Explainer [27], em-
ploys causal analysis combined with a reinforcement learning framework to uncover causal
dependencies in GNN predictions. Moreover, RG-Explainer [28] further enhances this by
using reinforcement learning to generate explanations that generalise well in inductive
settings, showcasing robust performance across diverse applications.

In parallel, another line of research focuses on generating counterfactual explanations,
which offer alternative scenarios to explain the model’s behaviour. CF-GNNExplainer [29]
stands out for producing counterfactual explanations for a majority of GNN instances,
thereby highlighting the key features that would change the outcome of a prediction.
Similarly, RCExplainer [30] generates robust counterfactual explanations, while ReFine [31]
adopts a multi-grained strategy, incorporating pretraining and fine-tuning to improve the
precision and detail of its explanations.

3. Method
3.1. Problem Formulation

Interpretation and explanation are crucial for gaining insights into the inner workings
of GNNs. While interpretation aims to uncover the model’s decision-making process,
emphasising the transparency and traceability of decisions, explanation supports GNN
predictions by providing a logical and coherent rationale for the observed outcomes.

In this paper, we focus on identifying the subgraphs that significantly influence GNN
predictions. A graph is represented as G = (V, A, X, L), where V denotes the set of nodes,
A ∈ 0, 1 is the adjacency matrix with Aij = 1 indicating an edge between nodes i and j,
and Aij = 0 otherwise. X is the feature matrix of graph G, and L represents the class label.
Let f denote the GNN model, such that f (G)→ Y.

We define E( f (G), G) → Gs as the explanation generated by a GNN explainer. Ide-
ally, when this explanation is provided as input to the GNN model f , it should yield
the same prediction Y, implying f (G) = f (E( f (G), G)). Furthermore, the explanation
E( f (G), G)→ Gs should represent a valid subgraph of the original graph G, meaning
Gs ⊆ G.
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3.2. Obtaining Causal Real Explanations

The objective of this paper is to uncover the underlying rationale behind the predic-
tions made by the target GNN model f . Instead of delving into the inner workings of f ,
we treat it as a black box, focusing on identifying the subgraphs that significantly affect
its predictions. To achieve this, we employ a generative model capable of autonomously
generating relevant subgraphs or explanations. For the generative model to produce precise
explanations, it requires training with “real” or ground-truth data. However, such data are
often unavailable in practice. To address this limitation, we utilise Granger causality [32], a
widely adopted method to assess whether one variable exerts a causal influence on another,
enabling the generation of meaningful and reliable explanations.

In our experiments, individual edges are selectively masked, and their influence
on the target predictions of the GNN model is assessed. By comparing the prediction
probabilities of the original and masked graphs, we quantify the impact of each edge
on the prediction of the model by assigning weights based on the observed differences.
These weights are then used to rank the edges, with the most critical ones representing
the most significant explanations (i.e., important subgraphs). However, it is important
to note that directly applying Granger causality to explain a GNN model f can be both
computationally expensive and limited in terms of generalisation. Our approach addresses
this by using a parameterised explainer that identifies shared patterns across similar graphs.
Once these patterns are learned, the explainer can be transferred to other graphs, leading
to enhancements in both efficiency and scalability.

3.3. GAN-GNNExplainer

In this paper, we introduce GAN-GNNExplainer, a GAN-based explanation method
for GNNs that leverages the generative capabilities of GANs. The model comprises two
components: a generator (G1) and a discriminator (D1), as illustrated in Figure 1.

Figure 1. The framework of GAN-GNNExplainer. The ⊙ symbol represents element-wise multiplica-
tion. The framework has two stages: Training and Testing. During the Training Phase, the goal is
to optimise the generator and discriminator components of the GAN-GNNExplainer model. After
successful training, the Testing Phase uses the trained generator to produce explanations for test data.

Unlike the typical way of training a GAN where random noise z is fed into the
generator G, in our model, we feed G with the original graph G which is the graph we want
to explain. Doing so ensures that the generator G provides a corresponding explanation
to the original input graph G. In addition, the generator G trained under this mechanism
can be easily generalised to unseen graphs without significant retraining and thus can
save computational cost. For our G, we employ an encoder–decoder network where the
encoder projects the original input graph G into a compact hidden representation and
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then the decoder reconstructs the explanation from the compact hidden representation.
In our case, the reconstructed explanation is a mask indicating the significance of each
edge. When we conduct experiments on synthetic datasets, we have a six-layer encoder
and a two-layer decoder; when we experiment with real-world datasets, we keep the
decoder complexity but slightly increase the complexity of the encoder. Thus, we end with
a seven-layer decoder.

In principle, G1 can generate both valid and invalid explanations, which may conflict
with the goal of accurately explaining a GNN. To regulate the generation process, a dis-
criminator D1 is introduced. D1 acts as a graph classifier, receiving both the “real” and
generated explanations generated by the explainer. Its role is to differentiate between the
“real” and generated explanations, ensuring that the generator produces reliable outputs.

To train G1 and D1, we first need to obtain the “real” explanations. This is performed
through a preprocessing step in our framework (Figure 1), where Granger causality gener-
ates the “real” explanations as ground truth for training the discriminator. Details of this
process can be found in Section 3.2. Once the input graph G and corresponding subgraph
are identified, the model is trained to generate a weighted mask that emphasises the impor-
tant edges and nodes in G that play a key role in the decision-making process of the GNN
model f . By applying this weighted mask to the adjacency matrix, we extract the relevant
explanations or key subgraphs. These explanations are essential for understanding the
reasoning behind the complex predictions made by the GNN model.

In a GAN framework, the generator (G) and discriminator (D) engage in a minimax
game, competing against each other. The generator learns to mimic the underlying distri-
bution of training data and generates “fake” samples that deceive the discriminator into
treating them as real. The objective of this minimax game is defined in Equation (1):

min
G

max
D

EGgt∼p
(Ggt)

[logD(Ggt)] +EG∼p(G)
[log(1−D(G(G)))], (1)

where G represents the original graph requiring explanation and Ggt refers to its ground-
truth explanation (e.g., the significant subgraph).

When we simply adopt Equation (1) as our objective function to train our G1 and D1
simultaneously, we empirically observe that the accuracy of the final explanation is not
optimistic. We suppose it is because Equation (1) does not explicitly encode the information
of the accuracy of the explanation from a target GNN model. To address this issue and
improve the precision of the explanation, we then explicitly incorporate the accuracy of the
explanation into our objective function and obtain an improved GAN-based loss function
defined in Equation (2):

min
G1

max
D1

EGgt∼p
(Ggt)

[logD1(Ggt)]

+EG∼p(G)
[log(1−D1(G1(G)))]

+ λ
1
N

N

∑
i=1

( f (G)− f (G1(G)))2,

(2)

where f denotes a pre-trained target GNN model, N represents the count of node set of G,
and G is the input graph we aim to explain, while Ggt is its corresponding ground-truth
explanation (e.g., the important subgraph). The parameter λ is a trade-off hyperparameter
that balances the influence of the GAN model and the explanation accuracy derived
from the pre-trained target GNN f . If λ is set to zero, Equation (2) becomes identical to
Equation (1).

As highlighted in Section 1, GAN-GNNExplainer represents a notable advancement
in the field of GNN explainability, effectively addressing some of the limitations found
in existing popular GNN explainers. Nonetheless, there are still several challenges that
warrant further exploration, particularly its limited reliability on real-world datasets and
insufficient fidelity.
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Therefore, we focus on developing an enhanced model in Section 3.4, ACGAN-
GNNExplainer, which incorporates the predicted labels from the target GNN into the
explanation generation process. This enhancement is designed to improve its performance
on real-world datasets, making the explanations both more reliable and more faithful.

3.4. ACGAN-GNNExplainer

To address the limitations of GAN-GNNExplainer, we introduce ACGAN-GNNExplainer,
which also comprises a generator (G2) and a discriminator (D2). Similarly, G2 generates ex-
planations, while D2 oversees the generation process. The detailed framework of ACGAN-
GNNExplainer is shown in Figure 2.

Figure 2. The framework of ACGAN-GNNExplainer. The symbol ⊙ denotes element-wise multi-
plication. The framework consists of two phases: the Training Phase and the Testing Phase. During
the Training Phase, both the generator and discriminator of the ACGAN-GNNExplainer model
are trained. Once training is complete, the Testing Phase uses the trained generator to produce
explanations for the test data.

In ACGAN-GNNExplainer, the generator G2 is provided with both the original graph
G and the predicted label Y, which is generated by the target GNN model f . This method
ensures that the explanation produced by G2 is crucial for understanding the predictions
made by f , as it directly relates to the input graph G. Moreover, the generator G2, trained
using this method, can generalise to unseen graphs without requiring significant retraining,
thereby reducing computational costs.

The generator follows an encoder–decoder architecture, where the encoder compresses
the input graph G into a compact hidden representation, and the decoder reconstructs the
explanation from this latent space. In this context, the explanation takes the form of a mask
matrix that highlights the importance of each edge.

Conceptually, the discriminator D2 oversees the generation process of G2. It is pro-
vided with both the “real” and generated explanations from G2, determining whether
the explanation is “real” or generated while classifying it. This classification feedback
encourages G2 to improve explanation accuracy and faithfulness. Preprocessing of training
graphs is necessary to obtain “real” explanations, guiding D2 during the training phase in
the ACGAN-GNNExplainer framework.

The generator G2 produces explanations or subgraphs Gs ⊆ G based on two key
inputs: the original graph G and the predicted label Y, expressed as Gs ← G2(G, Y). Simul-
taneously, the discriminator D2 evaluates both the origin probability P(S | G) (whether
“real” or generated) and the probability of class classification P(Y | G), where Y represents
the predicted label of the graph G, denoted as f (G)→ Y. The loss function of the discrim-
inator consists of two components: the likelihood of the correct source LS, as defined in
Equation (3), and the likelihood of the correct class LY, as defined in Equation (4):

LS = E[log P(S = real | G)] +E[log P(S = generated | Gs)], (3)
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LY = E[log P(Y = L | G)] +E[log P(Y = L | Gs)]. (4)

where G means the original graph that requires an explanation, and L means its class label.
The discriminator D2 and generator G2 engage in a minimax game, competing with

each other. The primary goal ofD2 is to maximise the probability of correctly distinguishing
between “real” and generated graphs (LS) while also accurately predicting the class label
(LY) for all graphs. This leads to a combined objective of maximising (LS + LY).

Conversely, the generator G2 seeks to minimise the ability ofD2 to distinguish between
“real” and generated graphs while simultaneously maximising its capacity to classify them
correctly. This results in a combined objective of maximising (−LS +LY). Therefore, based
on Equations (3) and (4), the objective functions for D2 and G2 are given in Equation (5)
and Equation (6), respectively:

L(D2)
=−EGgt∼P(Ggt) logD2(Ggt)

−EG∼P(G) log[1−D2(G2(G, L))]

−EGgt∼P(Ggt)P(Y | Ggt)

−EG∼P(G) log(P(Y | G2(G, L)),

(5)

L(G2)
=−EG∼P(G) logD2(G2(G, L))

−EG∼P(G) log P(Y | G2(G, L)),
(6)

where G represents the original graph that requires an explanation, while Ggt signifies its
corresponding actual explanation (e.g., the “real” important subgraph).

Using the objective functions from Equations (5) and (6) to train D2 and G2, we
observe that the fidelity of the generated explanations is unsatisfactory. This may be
because the generator loss L(G2), as defined in Equation (6), does not explicitly consider
fidelity information from the target GNN model f . To resolve this and improve both
fidelity and accuracy, we incorporate fidelity directly into the generator’s objective function.
Consequently, we derive an enhanced loss function for G2, as shown in Equation (7):

L(G2)
=−EG∼P(G) logD2(G2(G, L))

−EG∼p(G) log P(Y | G2(G, L))

+ λLFid,

(7)

LFid =
1
N

N

∑
i=1
|| f (G)− f (G2(G))||2, (8)

where LFid represents the loss function component associated with fidelity. f symbolizes a
pre-trained target GNN model, N signifies the count of node set of G, and G represents the
original graph intended for explanation. Correspondingly, Ggt stands for the explanation
ground truth associated with it (e.g., the real important subgraph). Within this framework,
λ is a trade-off hyperparameter responsible for adjusting the relative significance of the
ACGAN model and the explanation accuracy obtained from the pre-trained target GNN f .
Setting λ to zero results in Equation (7) being precisely equivalent to Equation (6).

4. Experiments

In this section, we thoroughly evaluate the performance of our proposed methods,
GAN-GNNExplainer (see Section 4.2) and ACGAN-GNNExplainer (see Section 4.3). We
begin by describing the datasets used in our experiments and outlining the implementation
details in Section 4.1. Next, we present a comparative analysis of our methods against
other state-of-the-art GNN explainers, assessing their effectiveness on both synthetic and
real-world datasets.
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4.1. Experimental Settings

Datasets. We focus on two commonly used synthetic node classification datasets,
BA-Shapes and Tree-Cycles [9], as well as two real-world graph classification datasets,
Mutagenicity [33] and NCI1 [34]. Detailed descriptions of datasets are provided in Table 1.

The BA-Shapes dataset comprises a Barabasi–Albert (BA) graph with 300 nodes. It
incorporates 80 “house”-structured network motifs randomly attached to nodes within the
base graph. Nodes are classified into four categories based on their structural roles: those
at the top, middle, and bottom of houses and those not part of any house.

The Tree-Cycles dataset originates from an initial eight-level balanced binary tree. It
incorporates 80 six-node cycle motifs attached randomly to nodes within the base graph.
Nodes are divided into two classes based on whether they belong to the tree or the cycle.

The Mutagenicity datasets consist of 4337 molecule graphs representing atoms as
nodes and chemical bonds as edges. These graphs are categorised into two classes, nonmu-
tagenic and mutagenic, indicating their effects on the Gram-negative bacterium Salmonella
Typhimurium. Specifically, carbon rings containing NH2 or NO2 groups are known to
be mutagenic. However, carbon rings are present in both mutagenic and nonmutagenic
graphs, rendering them nondiscriminative.

NCI1 is a curated subset of chemical compounds evaluated for their efficacy against
non-small-cell lung cancer. It encompasses over 4000 compounds, each tagged with a class
label indicating positive or negative activity. Each compound is depicted as an undirected
graph, with nodes representing atoms, edges denoting chemical bonds, and node labels
indicating atom types.

Table 1. Details of synthetic and real-world datasets.

Node Classification Graph Classification

BA-Shapes Tree-Cycles Mutagenicity NCI1

# of graphs 1 1 4337 4110
# of edges 4110 1950 266,894 132,753
# of nodes 700 871 131,488 122,747
# of labels 4 2 2 2

Baseline approaches. With the rising adoption of GNNs in various real-world appli-
cations, the need for explainability has gained significant attention, as it plays a crucial
role in enhancing model transparency and building user trust. In this context, we selected
three prominent GNN explanation methods for comparison: GNNExplainer [9], Gem [12],
and OrphicX [26]. For these methods, we utilised their official implementations to ensure
consistency in evaluation.

Different top edges (K or R). After calculating the importance (or weight) of each edge in
the input graph G, selecting an appropriate number of edges for the explanation is crucial.
Choosing too few edges may result in incomplete explanations, while selecting too many
can introduce noise. To address this, we define a top K for synthetic datasets and a top ratio
(R) for real-world datasets to determine the number of edges to include in the explanation.
We evaluate the stability of our method by experimenting with different values of K and R.
Specifically, we use K = {5, 6, 7, 8, 9} for the BA-Shapes dataset, K = {6, 7, 8, 9, 10} for the
Tree-Cycles dataset, and R = {0.5, 0.6, 0.7, 0.8, 0.9} for the real-world datasets.

Data split. To ensure consistency and fairness in our experiments, we split the data
into three subsets: 80% for training, 10% for validation, and 10% for testing. The testing
data are kept completely separate and unused until the final evaluation stage.

Evaluation metrics. An effective GNN explainer should produce concise explanations
or subgraphs while preserving the model’s predictive accuracy when these explanations
are input back into the target GNN. Therefore, it is essential to assess the performance
of the explainer using multiple evaluation metrics [35]. In our experiments, we evaluate
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the accuracy of the GAN-GNNExplainer and assess both the accuracy and fidelity of
the ACGAN-GNNExplainer.

Specifically, we generate explanations for the test set using GNNExplainer [9], Gem [12],
OrphicX [26], GAN-GNNExplainer, and ACGAN-GNNExplainer. These explanations are
then fed into the pre-trained target GNN model f to evaluate the accuracy, which is formally
defined in Equation (9):

ACCexp =
| f (G) = f (Gs)|

|T| , (9)

where G represents the original graph requiring explanation and Gs refers to its correspond-
ing explanation (such as the significant subgraph). The term | f (G) = f (Gs)| denotes the
number of instances where the predictions of the target GNN model f on both G and Gs

are identical, while |T| is the total number of instances.
Furthermore, fidelity assesses how accurately the generated explanations capture

the key subgraphs of the original input graph. In our experiments, we utilise the metrics
Fidelity+ and Fidelity− [36] to evaluate the fidelity of the explanations.

Fidelity+ measures the change in prediction accuracy when the key input features are
excluded, comparing the original predictions with those generated using the modified graph.
Conversely, Fidelity− evaluates the variation in prediction accuracy when the important fea-
tures are retained and nonessential structures are removed. Together, Fidelity+ and Fidelity−

offer a comprehensive assessment of how well the explanations capture the model’s behaviour
and the significance of various input features. The mathematical definitions of Fidelity+ and
Fidelity− are provided in Equation (10) and Equation (11), respectively:

Fid+ =
1
N

N

∑
i=1

( f (Gi)Li − f (G1−s
i )Li ), (10)

Fid− =
1
N

N

∑
i=1

( f (Gi)Li − f (Gs
i )Li ), (11)

where N represents the total number of samples and Li denotes the class label for instance
i. The terms f (Gi)Li and f (Gi1−s)Li refer to the prediction probabilities for class Li based
on the original graph Gi and the occluded graph G1−s

i , respectively. The occluded graph
is created by removing the important features (explanations) identified by the explainers
from the original graph. A higher Fidelity+ value is preferred, indicating a more critical
explanation. On the other hand, f (Gis)Li refers to the prediction probability for class
Li using the explanation graph Gs

i , which contains the crucial structures identified by
the explainers. A lower Fidelity− value is desirable as it reflects a more complete and
sufficient explanation.

In summary, the accuracy of the explanation (ACCexp) evaluates how well the gener-
ated explanations reflect the model’s predictions, while Fidelity+ and Fidelity− measure
the necessity and sufficiency of these explanations, respectively. By comparing the accuracy
and fidelity metrics across different explainers, we can gain meaningful insights into the
effectiveness and suitability of each method.

4.2. Evaluation GAN-GNNExplainer
4.2.1. Results on Synthetic Datasets

We commence our experimental analysis by evaluating our proposed method on two
well-known synthetic datasets: BA-Shapes and Tree-Cycles [9]. Comprehensive details
about these datasets are provided in Section 4.1. To assess the effectiveness of our GAN-
GNNExplainer, we compare its performance with that of existing explainers, namely,
GNNExplainer and Gem. The accuracy results for different values of K are presented in
Table 2 for the BA-Shapes dataset and Table 3 for the Tree-Cycles dataset, respectively.

After analysing the results for the BA-Shapes dataset, as presented in Table 2, we
find that our GAN-GNNExplainer consistently obtains the most accurate explanations
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in most cases. Although GNNExplainer, Gem, and GAN-GNNExplainer demonstrate
strong performance on synthetic datasets, GAN-GNNExplainer incorporates several key
enhancements that further improve its effectiveness. Moreover, on the Tree-Cycles dataset,
as shown in Table 3, GAN-GNNExplainer significantly outperforms the baselines.

It is worth noting that in our experiments on the relatively simple dataset, BA-Shapes,
our model GAN-GNNExplainer demonstrates improved accuracy as K increases, effectively
leveraging the additional information. This distinction becomes particularly important
when applied to more complex datasets. Although our model may require more informa-
tion to achieve optimal performance in such cases, it has the potential to surpass Gem by
delivering higher accuracy.

Table 2. Explanation accuracy on the BA-Shapes dataset. The presented outcomes encompass
averages from five runs. Note that the best-performing results have been emphasised in bold.

K (Edges) 5 6 7 8 9

GNNExplainer 0.7941 0.8824 0.9118 0.9118 0.9118
Gem 0.9412 0.9412 0.9412 0.9412 0.9412

GAN-GNNExplainer 0.6764 0.9706 0.9706 0.9706 0.9412

Table 3. Explanation accuracy on the Tree-Cycles dataset. The presented outcomes encompass
averages from five runs. Note that the best-performing results have been emphasised in bold.

K (Edges) 6 7 8 9 10

GNNExplainer 0.2000 0.5429 0.7143 0.8571 0.9429
Gem 0.7142 0.8285 0.5714 0.8285 0.9428

GAN-GNNExplainer 0.9429 0.9715 0.9429 1.0000 1.0000

4.2.2. Results on Real-World Datasets

This subsection reports the experimental results with real-world datasets. The quanti-
tative evaluation is shown in Tables 4 and 5. As shown in the table, the reported results
successfully demonstrate that the proposed GAN-GNNExplainer can generate explanations
with consistently high accuracy across all datasets compared with other explainers.

In the case of the Mutagenicity datasets, our proposed method outperformed Gem
only when R = 0.7. However, for the NCI1 datasets, our method showed better accuracy
compared to Gem across most R values. The results of the real-world datasets align with
those of the BA-Shapes dataset, suggesting that when dealing with complex data, additional
information is necessary to generate accurate explanations. Furthermore, our findings
indicate that our approach has the potential to achieve higher accuracy than Gem when
provided with more information.

Table 4. Explanation accuracy on the Mutagenicity dataset. The presented outcomes encompass
averages from five runs. Note that the best-performing results have been emphasised in bold.

R (Edge Ratio) 0.5 0.6 0.7 0.8 0.9

GNNExplainer 0.6175 0.5968 0.6313 0.6935 0.7811
Gem 0.5737 0.6014 0.6590 0.7235 0.7903

GAN-GNNExplainer 0.5914 0.5956 0.6929 0.7215 0.7598

Table 5. Explanation accuracy on the NCI1 dataset. The presented outcomes encompass averages
from five runs. Note that the best-performing results have been emphasised in bold.

R (Edge Ratio) 0.5 0.6 0.7 0.8 0.9

GNNExplainer 0.5961 0.6107 0.6788 0.7616 0.8127
Gem 0.5645 0.6083 0.6837 0.7518 0.8321

GAN-GNNExplainer 0.6375 0.6496 0.7105 0.7616 0.7762



Mach. Learn. Knowl. Extr. 2024, 6 2924

4.3. Evaluation ACGAN-GNNExplainer
4.3.1. Results on Synthetic Datasets

Firstly, we conduct experiments on synthetic datasets, including BA-Shapes and Tree-
Cycles. We evaluate the performance of explanations provided by GNNExplainer, Gem,
OrphicX, and ACGAN-GNNExplainer (our model). The performance of explanations for
synthetic datasets with various K settings is detailed in Tables 6 and 7.

Table 6. The results of explanations on BA-Shapes dataset: ACCexp(↑), Fid+(↑), Fid−(↓). The presented
outcomes encompass averages from five runs. Note that the best-performing results have been empha-
sised in bold. In this table, “Our Method” refers to our proposed method ACGAN-GNNExplainer.

K Metrics GNNExplainer Gem OrphicX Our Method

5
Accexp 0.7941 0.9412 0.7353 0.7941
Fid+ 0.7059 0.5588 0.7941 0.6471
Fid− 0.1471 0.000 0.2059 0.1471

6
Accexp 0.8824 0.9706 0.7353 0.8529
Fid+ 0.6765 0.5588 0.7941 0.5882
Fid− 0.0588 −0.0294 0.2059 0.0882

7
Accexp 0.9118 0.9706 0.8529 0.9706
Fid+ 0.7059 0.5882 0.7941 0.6176
Fid− 0.0294 −0.0294 0.0882 −0.0294

8
Accexp 0.9412 0.9706 0.8824 0.9706
Fid+ 0.7353 0.5882 0.7941 0.6471
Fid− 0.000 −0.0294 0.0588 −0.0294

9
Accexp 0.9118 0.9706 0.8824 1.000
Fid+ 0.7353 0.5882 0.7941 0.6471
Fid− 0.0294 −0.0294 0.0588 −0.0588

Table 7. The results of explanations on Tree-Cycles dataset: ACCexp(↑), Fid+(↑), Fid−(↓). The pre-
sented outcomes encompass averages from five runs. Note that the best-performing results have been
emphasised in bold. In this table, “Our Method” refers to our proposed method ACGAN-GNNExplainer.

K Metrics GNNExplainer Gem OrphicX Our Method

6
Accexp 0.1714 0.7143 0.9714 0.9714
Fid+ 0.9143 0.9714 0.9429 0.9714
Fid− 0.8000 0.2571 0.0000 0.0000

7
Accexp 0.5143 0.8286 0.9714 1.0000
Fid+ 0.9429 0.9714 0.9429 0.9714
Fid− 0.4571 0.1429 0.0000 0.0286

8
Accexp 0.8000 0.7143 1.0000 0.9429
Fid+ 0.9714 0.9714 0.9429 0.9714
Fid− 0.1714 0.2571 0.0286 0.0286

9
Accexp 0.9143 0.8571 1.0000 0.9143
Fid+ 0.9714 0.9714 0.9429 0.9714
Fid− 0.0571 0.1143 0.0286 0.0571

10
Accexp 0.9143 0.8857 1.0000 0.9714
Fid+ 0.9714 0.9714 0.9429 0.9714
Fid− 0.0571 0.0857 0.0286 0.0000

As shown in Table 6, none of the models consistently outperforms the others across
all metrics for the BA-Shapes dataset. However, with increasing values of K, ACGAN-
GNNExplainer exhibits progressively stronger explanation accuracy (ACCexp) and demon-
strates enhanced performance in terms of Fidelity−. In contrast, OrphicX consistently
achieves higher Fidelity+ values across various K, indicating its effectiveness in identifying
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essential subgraphs. Nevertheless, its lower performance in ACCexp and Fidelity− suggests
that it struggles to deliver comprehensive and accurate explanations.

The results in Table 7 show that all methods perform comparably well on the Tree-
Cycles dataset across various K values. However, none of them consistently surpasses
others across all evaluation metrics, following the observed pattern in the BA-Shapes dataset
(see Table 6). Notably, in the range of K = {6, 7}, our method (ACGAN-GNNExplainer)
stands out as the most effective option, exhibiting the highest fidelity across all K values;
while OrphicX surpasses ACGAN-GNNExplainer in terms of Fidelity− and explanation
accuracy (ACCexp) when K falls within the range of {8, 9, 10}, ACGAN-GNNExplainer
continues to demonstrate solid performance.

Overall, all GNN explainers perform well on synthetic datasets, which is largely
attributed to the relative simplicity of these datasets compared to real-world scenarios.
Notably, ACGAN-GNNExplainer consistently outperforms other methods in many cases.
Even when it does not outperform its competitors, ACGAN-GNNExplainer remains highly
competitive. To provide a more comprehensive evaluation, we extend our analysis to
real-world datasets in Section 4.3.2 for a more in-depth assessment.

4.3.2. Results on Real-World Datasets

To further validate our method, we conducted experiments on two widely used real-
world datasets: Mutagenicity [33] and NCI1 [34]. The results of these experiments are
presented in Table 8 for the Mutagenicity dataset and Table 9 for the NCI1 dataset.

Table 8. The results of explanations on Mutagenicity dataset: ACCexp(↑), Fid+(↑), Fid−(↓). The
presented outcomes encompass averages from five runs alongside their corresponding standard
deviations. Note that the best-performing results have been emphasised in bold. In this table, “Our
Method” refers to our proposed method ACGAN-GNNExplainer.

R Metrics GNNExplainer Gem OrphicX Our Method

0.5
Accexp 0.6175 0.5737 0.4539 0.6175
Fid+ 0.3618 0.3018 0.2419 0.3963
Fid− 0.2535 0.2972 0.4171 0.2535

0.6
Accexp 0.5968 0.6014 0.5599 0.6037
Fid+ 0.3825 0.3295 0.2949 0.3828
Fid− 0.2742 0.2696 0.3111 0.2673

0.7
Accexp 0.6313 0.659 0.6244 0.7074
Fid+ 0.3963 0.2857 0.2995 0.3986
Fid− 0.2396 0.212 0.2465 0.1636

0.8
Accexp 0.6935 0.7235 0.7097 0.7673
Fid+ 0.3641 0.2581 0.3157 0.3602
Fid− 0.1774 0.1475 0.1613 0.1037

0.9
Accexp 0.7811 0.7903 0.8111 0.7903
Fid+ 0.3641 0.212 0.2949 0.3871
Fid− 0.0899 0.0806 0.0599 0.0806

As shown in Table 8, ACGAN-GNNExplainer demonstrates superior performance in
both fidelity and explanation accuracy (ACCexp) across most settings where R ranges from
0.5 to 0.8. Although OrphicX slightly surpasses ACGAN-GNNExplainer in explanation
accuracy (ACCexp) when R = 0.9, it falls behind in terms of fidelity. In practical applications
of GNN explanations, maintaining high fidelity without sacrificing accuracy is critical,
and from this perspective, our method has a clear advantage. Similarly, Table 9 shows
that ACGAN-GNNExplainer consistently outperforms its competitors in both fidelity and
accuracy across different values of R.
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Table 9. The results of explanations on NCI1 dataset: ACCexp(↑), Fid+(↑), Fid−(↓). The presented
outcomes encompass averages from five runs alongside their corresponding standard deviations.
Note that the best-performing results have been emphasised in bold. In this table, “Our Method”
refers to our proposed method ACGAN-GNNExplainer.

R Metrics GNNExplainer Gem OrphicX Our Method

0.5
Accexp 0.5961 0.5645 0.562 0.6569
Fid+ 0.3358 0.3796 0.3114 0.4015
Fid− 0.2749 0.3066 0.309 0.2141

0.6
Accexp 0.6107 0.6083 0.6496 0.6496
Fid+ 0.3625 0.4307 0.3431 0.4523
Fid− 0.2603 0.2628 0.3236 0.2214

0.7
Accexp 0.6788 0.6837 0.6083 0.6861
Fid+ 0.3844 0.4282 0.3382 0.4453
Fid− 0.1922 0.1873 0.2628 0.1849

0.8
Accexp 0.7616 0.7518 0.708 0.7932
Fid+ 0.3747 0.4404 0.3698 0.4672
Fid− 0.1095 0.1192 0.163 0.0779

0.9
Accexp 0.8127 0.8321 0.8102 0.8446
Fid+ 0.3236 0.3212 0.3139 0.3942
Fid− 0.0584 0.0389 0.0608 0.0254

ACGAN-GNNExplainer consistently achieves higher Fidelity+ scores, reflecting its
ability to capture the most important subgraphs. Moreover, the lower Fidelity− scores,
compared to other methods, emphasise the sufficiency of our explanations by capturing
the critical information necessary for accurate predictions while minimising irrelevant
noise. Furthermore, ACGAN-GNNExplainer consistently outperforms others in expla-
nation accuracy, demonstrating its ability to effectively capture the reasoning behind the
predictions of the GNN model. Overall, these results highlight the effectiveness of ACGAN-
GNNExplainer in generating faithful and reliable explanations.

5. Discussion

Merits of our methods. Our approaches present several key advantages:

• They effectively capture the underlying patterns in graphs, naturally providing expla-
nations at the desired scale.

• Once trained, they can generate explanations for previously unseen graphs without
requiring retraining.

• They consistently produce valid and meaningful subgraphs, facilitated by the continu-
ous supervision of the discriminator.

• They exhibit robust performance across diverse tasks, such as node classification and
graph classification.

Limitations of GAN-GNNExplainer. Despite the advancements of GAN-GNNExplainer
in enhancing the explainability of GNNs, several limitations persist in GAN-GNNExplainer:

• Effects of reliability of real-world datasets on performance: Real-world graph datasets
are often affected by nuisance factors, such as noise in node features and graph
structures. This consequently affects the performance of GAN-GNNExplainer.

• Absence of fidelity considerations: Although fidelity is crucial for faithful explanations,
the design objective of GAN-GNNExplainer is to balance accuracy and explainability,
with fidelity not explicitly optimised as a core criterion.

These challenges can be mitigated by incorporating an enhanced discriminator to
ensure reliability and introducing a fidelity-specific loss term during training to improve
fidelity. In our ACGAN-GNNExplainer, we have effectively resolved this limitation.
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Future work. Although ACGAN-GNNExplainer has mitigated some of these limitations
and achieved competitive performance in terms of both accuracy and fidelity, it still has
areas that warrant further refinement:

• Preprocessing overhead: The preprocessing step required to distill real explanations
for training data imposes significant computational overhead and time constraints.

• High demand for training graphs: The method also requires a substantial number of
training graphs to achieve effective performance.

By addressing these limitations, we can enhance the capabilities and applicability of
ACGAN-GNNExplainer, contributing to more robust and equitable interpretability solu-
tions for graph-based models across various domains. Future research should focus on
refining the model architecture to reduce reliance on ground-truth data, thereby streamlin-
ing the preprocessing stage and improving efficiency. Additionally, exploring techniques
for efficient data augmentation or semi-supervised learning could help alleviate the need
for extensive training data.

6. Conclusions

Understanding the internal mechanisms of GNNs is essential for increasing confi-
dence in their predictions, ensuring the dependability of their use in practical applications,
and fostering the development of trustworthy GNN models. To achieve these goals, a
variety of methods have been proposed in recent years. Although these approaches exhibit
notable effectiveness in certain aspects, many encounter challenges in delivering strong
performance on real-world datasets.

To address this limitation, we propose two approaches in this paper. First, we introduce
a novel explainer named GAN-GNNExplainer for GNN models. This method employs a
generator to produce explanations and a discriminator to oversee the generation process,
ensuring the reliability of the explanations. However, GAN-GNNExplainer has limitations
in generating faithful explanations and does not perform well on real-world datasets.

To overcome the limitations of GAN-GNNExplainer, we introduce ACGAN-
GNNExplainer, an advanced explainer for GNN models. This approach also utilises
a generator to create explanations but employs a discriminator that consistently monitors
the generation process, resulting in explanations that are both reliable and faithful.

To evaluate the effectiveness of our proposed methods, we conduct comprehensive
experiments on both synthetic and real-world graph datasets. We compare the fidelity and
accuracy of our approaches against other well-known GNN explainers. The results clearly
demonstrate that ACGAN-GNNExplainer excels in producing high-fidelity and accurate
explanations, particularly when applied to real-world datasets.
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