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Abstract: The now-globally recognized concerns of AI’s environmental implications re-
sulted in a growing awareness of the need to reduce AI carbon footprints, as well as to carry
out AI processes responsibly and in an environmentally friendly manner. Benchmarking,
a critical step when evaluating AI solutions with machine learning models, particularly
with language models, has recently become a focal point of research aimed at reducing
AI carbon emissions. Contemporary approaches to AI model benchmarking, however, do
not enforce (nor do they assume) a model initial selection process. Consequently, modern
model benchmarking is no different from a “brute force” testing of all candidate mod-
els before the best-performing one could be deployed. Obviously, the latter approach
is inefficient and environmentally harmful. To address the carbon footprint challenges
associated with language model selection, this study presents an original benchmarking
approach with a model initial selection on a proxy evaluative task. The proposed approach,
referred to as Language Model-Dataset Fit (LMDFit) benchmarking, is devised to comple-
ment the standard model benchmarking process with a procedure that would eliminate
underperforming models from computationally extensive and, therefore, environmentally
unfriendly tests. The LMDFit approach draws parallels from the organizational personnel
selection process, where job candidates are first evaluated by conducting a number of basic
skill assessments before they would be hired, thus mitigating the consequences of hiring
unfit candidates for the organization. LMDFit benchmarking compares candidate model
performances on a target-task small dataset to disqualify less-relevant models from further
testing. A semantic similarity assessment of random texts is used as the proxy task for the
initial selection, and the approach is explicated in the context of various text classification
assignments. Extensive experiments across eight text classification tasks (both single- and
multi-class) from diverse domains are conducted with seven popular pre-trained language
models (both general-purpose and domain-specific). The results obtained demonstrate
the efficiency of the proposed LMDFit approach in terms of the overall benchmarking
time as well as estimated emissions (a 37% reduction, on average) in comparison to the
conventional benchmarking process.

Keywords: language model benchmarking; machine learning model selection; carbon
emission reduction
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1. Introduction
In the past few years, concerns surrounding the substantial energy consumption and

ever-increasing computational resource demands of artificial intelligence (AI) have rapidly
proliferated through mass media but also in scholarly publications [1,2]. Schwartz et al. [3]
introduced the terms of “Green AI” and “Red AI” to delineate studies dealing with the
environmental implications of AI, as opposed to those primarily centered on improving
the AI “accuracy”. A survey of Green AI publications by Verdecchia et al. [2] identified
popular research topics and categorized the reported studies. The top four (by the number
of studies) categories include reports on methodologies for monitoring carbon footprints,
assessments of the impact of model hyperparameter tuning, approaches to benchmarking
the carbon footprints of AI models, and analyses of the environmental effects of various
model deployment strategies. Notably, it was observed that within the realm of bench-
marking efforts, there had been few studies offering practical solutions for reducing AI
carbon footprints as such.

Benchmarking is a pivotal component in the evaluation of AI model performance [4].
It leverages designated metrics to facilitate comparisons among models, thereby identi-
fying the “best” or optimal performer for any given AI task [5]. The execution of model
comparison presents a formidable challenge, typically requiring iterative runs with all
candidate models for the specified task before the best model would be determined. This
exhaustive nature of the benchmarking process, although usually successful in establishing
the top performers, bears environmental implications of ever-larger carbon footprints,
as more and more models need to be compared. Strubell et al. [1] estimated CO2 emissions
generated from one AI model training on a GPU for a natural language processing (NLP)
task, including hyperparameter tuning and subsequent experiments. The authors revealed
that one-model emissions are on par with those produced by a car in half of its lifetime and
are seven times the average of a human’s emissions over a year.

Metaphorically, AI model selection can draw on similarities with the process of select-
ing qualified candidates from a pool of applicants for a job in an organization. The process
entails candidate screening, involving evaluative examinations [6], which may be in the
form of proxy measures for the real job duties. Paralleling the AI benchmarking process,
the personnel candidate selection shares a similar objective, namely identifying the candi-
dates most adept for the given task. Unlike the case of personnel recruitment, however,
conventional AI benchmarking typically skips the initial candidate selection part but ends
up with a costly task execution for all candidates. One possible solution to reduce the
environmental costs of AI model benchmarking would, then, be to complement the process
with a simplified evaluative procedure helping to forecast the models’ performances before
they are actually tested with the task at hand. To the authors’ best knowledge, there have
been only few, yet premature, attempts to develop a framework, methods, or metrics that
would allow one to vet AI models by predicting their performances at the stage preceding
full-scale experiments (e.g., see [7–10]). Hence, there is a need for additional efforts in this
research direction.

The goal of this study was, therefore, to develop an approach to AI model bench-
marking that would incorporate candidate model initial selection aimed at the reduction
of carbon emissions associated with the benchmarking process. To realize the metaphor
of human candidate selection in the benchmarking domain, the authors focused on text
classification, a fundamental task of NLP [11,12]. Also, this study exclusively dealt with
BERT-based language models, as they are increasingly and successfully used for text
classification in various contexts [13].

The projected original contribution of the presented study is twofold:
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• A new approach to model benchmarking called Language Model-Dataset Fit (LMDFit)
benchmarking is devised. The approach allows for substantially reducing carbon
emissions associated with model testing by implementing a candidate model initial
selection for a target dataset prior to model performance assessment. The efficiency of
the LMDFit approach was verified through extensive experiments in comparison with
the conventional benchmarking process. The application of the proposed approach
allowed for emission reductions in the range of 10 to 75% (37% on average), depending
on the classification task at hand.

• The mean and skewness vector of the semantic similarity score distribution is shown to
be a reliable group-predictor of language model classification performance for a given
dataset. Unlike the existing approaches to forecasting AI model performance, which
aim to rank candidate models for further experiments, the two-vector of text similarity
statistics can be used to categorize all candidate models as either “more fit” or “less
fit”. All “more-fit” models are then to be analyzed in benchmarking experiments that
may result in not as dramatic emission cuts as in the case when only a few top-ranked
models would be considered. On the other hand, this conservative approach is more
robust and secure, as it minimizes the risk of inadvertently cutting off relevant models
due to noise or bias in the data or statistics used for the initial categorization.

The rest of the paper is organized as follows. Section 2 surveys the related work.
Section 3 describes the resources used, and Section 4 explains the study’s methodology
and introduces the LMDFit benchmarking approach. Section 5 presents experiments,
while Section 6 discusses the experimental results obtained. Finally, Section 7 provides
conclusions and outlines plans for future work.

2. Related Work
This section gives an overview of recent studies focused on the computational cost

assessments and environmental impacts of AI, existing practices of language model bench-
marking, as well as the model performance prediction in NLP.

2.1. AI Costs and Environmental Impacts

While AI offers substantial benefits for addressing many global challenges across
diverse domains, its negative impact on the environment can no longer be ignored.
Schwartz et al. [3] reported that the computational costs of AI research attained an as-
tounding 300,000-times increase in the period from 2012 to 2019, doubling every month.
The authors uncovered that this surge should mainly be attributed to the research com-
munity’s focus on performance rather than on computational efficiency improvements.
The continually growing computing requirements of machine learning models constitute a
major predicament for tackling the AI carbon emission problem [14].

Acknowledging the environmental consequences of the broad introduction of machine
learning models in the industry but also in our daily lives, there is a growing interest in the
so-called “Green AI” research [2,3]. Strubell et al. [1] were among the early contributors,
followed by many others, who investigated the environmental impact of AI training.
Verdecchia et al. [2] classified the related publications by 14 topics (such as “monitoring”,
“estimation”, “emissions”, etc.) and three types of studies (such as “solution”, “observation”,
and “position”). While “model benchmarking” was found among the top three research
topics, only three of the 17 papers in this category offered practical solutions. Also, all
surveyed research on this topic appeared to be in the early, if not preliminary, stages.
Presently, therefore, there is a well-recognized need for additional efforts in the realm of
model benchmarking that would lead to practical solutions allowing one to mitigate the
environmental problems associated with AI (also, see [15]).
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2.2. Language Model Benchmarking

Benchmarking, a term defined differently across domains, usually presumes the
general concepts of measurement, comparison, identification of best practices, as well as
implementation and improvement [16]. In NLP, to provide for a fair comparison of machine
learning models, a number of benchmarking approaches have been proposed [17–19]. These
efforts have resulted in open standardized resources intended to support various NLP
downstream tasks, such as text classification, question–answering, summarization, and text
similarity assessment. Various metrics, such as accuracy [20], energy consumption [1],
justice [21], and fairness [22], have been used to compare model performance. Among the
models investigated, transformer-based pre-trained language models (PTLMs) [23] have
recently received a great deal of research attention. According to a survey conducted
by Casola et al. [24], the number of PTLM studies has especially grown in the past five
years. The authors identified the most frequently used PTLMs as BERT [20], RoBERTa [25],
DistilBERT [26], XLNet [27], and ALBERT [28]. Figure 1a outlines the developmental steps
all these transformer-based models undergo before they would be employed to solve a
downstream NLP task. Figure 1b then illustrates the model benchmarking process, where
various pre-trained models are compared to identify the best-performing one for the task
at hand. It is understood that model fine-tuning with its “redundant” retraining of all
candidate PTLMs is the major source of carbon emissions associated with benchmarking.
One way to make PTLM benchmarking “greener” is to try to predict each candidate model’s
performance, based on its pre-trained state, before actually fine-tuning it. In the following
subsection, recent studies in this direction are surveyed.

(a)

(b)

Figure 1. Pre-trained transformer-based model utilization (a) and the model benchmarking process (b).
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2.3. Language Model Performance Prediction

There have been several attempts to develop methods for forecasting the performance
of an NLP model on a downstream task that would not require fine-tuning the model.
Xia et al. [9] suggested forecasting the model’s “potential” performance based on its past
experimental records. The authors constructed several regression models to predict the
model evaluation score, using experimental parameter settings as the input. Ahuja et al. [7]
proposed a similar approach to estimate the performances of multilingual models for
different tasks and languages. Ye et al. [29], on the other hand, investigated the predictive
potential of fine-grained performance measures that would deal with not only holistic
aspects but also with task-specific performance. It should be noted, however, that all these
approaches require data from past experimental records to make predictions. In other
words, the proposed forecasting methods have a “hidden” component of extensive model
training to produce the records. The latter could hardly lead to significant emission cuts
and is not applicable in the case of new models or those with a short utilization history.

To address this predicament, Kadik, is et al. [10] suggested an alternative approach.
The authors considered an abductive natural language inference task (that is, a binary
classification task) that entails selecting the most probable hypothesis for a given set of
observations. The prediction problem was formulated as a ranking problem for an indicator
(metric) for model selection. The study deployed the cosine similarity score of the input
and hypothesis text vectors computed with pre-trained models, and labeled data were
used as “ground truth” to assess the obtained ranking of the pre-trained models. It was
found that there is a strong correlation between the text cosine similarity and the model
classification accuracy, and that the text similarity assessment would serve as a proxy task
for predicting the classification performance of pre-trained models. The methodology
proposed in [10], while appealing with its ground-breaking potential, requires labels
(hypotheses) to be compared with the input texts, which makes it impractical in the case of
unsupervised classification. Also, the authors did not go beyond the binary inference task,
did not investigate fine-tuned model performances, and focused on predictions in terms of
accuracy only. The latter metric can be inadequate when the classes are imbalanced [30].

Striving to exclude exhaustive model performance testing from classification exper-
iments, there have been several attempts to propose measures for forecasting a model’s
generalization capability. Jiang et al. [31] investigated the predictive potential of over
40 measures on more than 10,000 models developed for image classification. Although the
study produced no results that could be considered consistent in general, several com-
plexity measures were identified as promising for future research. Building on [31], Dziu-
gaite et al. [32] further examined various complexity measures through extensive experi-
ments and concluded that none is a reliable indicator of a model’s generalization capability.
Martin et al. [33] suggested to reckon a model’s expected performance based on metrics
assessing its internal structure. It was found that certain power-law-based metrics can be
used to detect poorly trained models, while some other metrics allow for a comparison
of models in terms of their generalization potential. In a recent study, Yang et al. [34]
developed an empirical spectral density metric and demonstrated its effectiveness for
attesting the model’s ability to generalize. It should be noted, however, that this and other
similar research works focused on establishing a model’s overall “qualifications” rather
than on what model would perform best in a given context. Numerous experiments [35,36]
have shown that the same model could perform very differently on different downstream
tasks. Therefore, it is hard to expect that any measure computed outside of a task-specific
performance assessment experiment would provide for a reliable predictor of a model’s
behavior with real-world data. Metrics should, thus, be proposed to complement and
improve (e.g., in terms of emissions), rather than to replace, benchmarking experiments.
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Motivated by [10], the presented work aimed to understand if text similarity as-
sessment would serve as a universal proxy assignment to forecast the performances of
pre-trained models for a specific text classification task. The next section describes data
and other resources collected to form an experimental basis for the proposed methodology
of model initial selection.

3. Resources Used
This section elaborates on the resources, including PTLMs and open datasets, and de-

scribes evaluation metrics used in the experiments.

3.1. Pre-Trained Language Models

Recently, there has been a dramatic surge in the applications of various PTLMs across
different domains [37]. A major reason for the still ongoing increase in the number of
pre-trained language models is the now well-established fact that when dealing with
downstream tasks, models pre-trained with general corpora perform worse than those
pre-trained with domain-specific data [35,38]. For instance, SciBERT, a model trained
on academic papers far outperformed the more general BERT model in solving science-
related NLP assignments [35]. The performance of a particular PTLM may, however, vary
depending on not only the task at hand but also the specific dataset it would need to process.
For this study’s experiments, seven popular BERT-based models, both general-purpose and
domain-specific, sourced from diverse domains were chosen (see Table 1). All these models
were originally pre-trained with English texts in uncased settings with a masked language
model (MLM) objective and 110 M parameters. Also, they all have 12 layers, a hidden layer
size of 768, 12 attention heads, and a vocabulary size of approximately 30,000 tokens.

Table 1. Pre-trained language models tested.

No. Name Huggingface * Address Pre-Training Approach Training Data

1 BERT [20] bert-base-uncased from scratch Wikipedia and Books Corpus
2 SciBERT [35] allenai/scibert_scivocab_uncased from scratch Scientific papers

3 LegalBERT [36] nlpaueb/legal-bert-base-uncased from scratch Legal text (court cases, contracts,
legislations, etc.)

4 FinancialBERT [39] ahmedrachid/FinancialBERT from scratch TRC2-financial corpus, Bloomberg news articles,
corporate reports, and earning call transcripts

5 PharmBERT [40] Lianglab/PharmBERT-uncased fine-tuned from BERT (1) DailyMed drug labels

6 Agriculture BERT recobo/agriculture-bert-uncased fine-tuned from SciBERT (2) National Agricultural Library (NAL)
documents and agricultural literature

7 Chemical BERT recobo/chemical-bert-uncased fine-tuned from SciBERT (2) Chemical industry domain documents and
Wikipedia chemistry documents

* https://huggingface.co/, accessed on 5 September 2024.

3.2. Datasets

Eight text classification datasets were selected for the experiments. The datasets are
publicly accessible, have previously been used in numerous studies, and are, therefore,
well documented. A synopsis of the datasets is given below (all data discussed are in a
textual format):

(a) Environmental claims (https://huggingface.co/datasets/climatebert/environmental_
claims, accessed on 5 March 2024). The set contains 2647 real-world environmental
claims mostly in the financial domain by listed companies [41]. The data were anno-
tated by 16 domain experts and have been used in studies, such as [42,43]. It is to
support the task of environmental claim detection, which is a sentence-level binary
classification task. The set includes both true claims (approximately 25%) and false
claims (approximately 75%) with an average word token count of 27.61 per sentence.

https://huggingface.co/
https://huggingface.co/datasets/climatebert/environmental_claims
https://huggingface.co/datasets/climatebert/environmental_claims


Mach. Learn. Knowl. Extr. 2025, 7, 3 7 of 25

(b) AGNews (https://huggingface.co/datasets/ag_news, accessed on 5 March 2024) is
a large collection of news articles. It serves to support the general task of text classi-
fication [44]. The news articles are categorized into four classes: “World”, “Sport”,
“Business”, and “Science/Technology”. The set comprises 120,000 training samples
and 7600 testing samples with equal representation for each class. The average word
token count across all articles is 43.93. This dataset has been widely used for bench-
marking purposes in NLP (e.g., see [45,46]).

(c) Financial phrase-bank (https://huggingface.co/datasets/financial_phrasebank, ac-
cessed on 5 March 2024). The dataset was created to support sentiment analysis in
the financial domain [47]. It contains phrases selected from financial news articles
and company press releases. The phrases were labeled by 16 human annotators as
“positive”, “negative”, or “neutral”. The data have been used by several research
groups (e.g., [48,49]). For the purposes of the presented study, a sample consisting
of phrases with an over 50% inter-annotator agreement was compiled from the data.
The sample includes 4,840 financial statements classified as “negative” (59.41% of
the total), “positive” (28.13%), or “neutral” (the rest). On average, one phrase in the
sample has 23.15 tokens.

(d) Rheology (https://huggingface.co/datasets/bluesky333/chemical_language_understanding_
benchmark, accessed on 5 March 2024) is a subset of the Chemical Language Un-
derstanding Benchmark collection [50]. The dataset is meant to support a sentence-
level classification task. It consists of 2017 single-labeled sentences from research
papers in the chemistry domain with a sentence average length of 39.67 tokens.
The sentences are organized into five classes exemplifying different polymer structures
and properties.

(e) Plant-chemical relationship corpus (http://gcancer.org/plant_chemical_corpus/, ac-
cessed on 5 March 2024). The data comprise 939 documents describing plant–chemical
relationships [51]. The relationships were annotated by experts with labels of either a
“positive” or “negative” containment of chemicals in the plants. The set has been used
in NLP research to support the named entity recognition task [52]. For the purposes
of this study, abstract sentences and plant and chemical element names of the set
were concatenated to form the input for the language models using the following
template: “Relation of {plant} and {chemical} on {sentence}”. The average length of
the concatenated text is 41.92 tokens.

(f) arXiv (https://www.kaggle.com/datasets/Cornell-University/arxiv, accessed on 5
March 2024). The arXiv collection is maintained by Cornell University. It includes
over 1.7 million scholarly articles publicly available on arXiv.org. The dataset has been
used in multiple text classification studies (e.g., see [53,54]). By design, it supports
multi-label classification, as each archived article can belong to more than one field of
study. The stored articles are supplemented with extensive metadata, such as versions,
titles, authors, categories, and abstracts. For the purposes of this study, a random sam-
ple of 51,774 article abstracts (https://www.kaggle.com/code/chhatrabikramshah1
23/researchpaperrecommendation/input?select=arxiv_data_210930-054931.csv, ac-
cessed on 5 March 2024) was utilized. The nine largest category names plus “Other”
were used as labels for the texts. The average token count is 194.50 per abstract in
the sample.

(g) The European Court of Human Rights (ECtHR) cases (https://huggingface.co/
datasets/ecthr_cases, accessed on 5 March 2024). This is a commonly used bench-
marking dataset for NLP in the legal domain (see [55] for a related study). The data
include facts from 11,000 ECtHR cases. The facts are multiple-labeled by designations

https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/financial_phrasebank
https://huggingface.co/datasets/bluesky333/chemical_language_understanding_benchmark
https://huggingface.co/datasets/bluesky333/chemical_language_understanding_benchmark
http://gcancer.org/plant_chemical_corpus/
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/code/chhatrabikramshah123/researchpaperrecommendation/input?select=arxiv_data_210930-054931.csv
https://www.kaggle.com/code/chhatrabikramshah123/researchpaperrecommendation/input?select=arxiv_data_210930-054931.csv
https://huggingface.co/datasets/ecthr_cases
https://huggingface.co/datasets/ecthr_cases
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of the European Convention of Human Rights (ECHR) articles they violate. There are
33 labels, and the average case size is 1918.76 word tokens.

(h) Ohsumed (http://disi.unitn.it/moschitti/corpora.htm, accessed on 5 March 2024)
dataset consists of abstracts of MEDLINE records on cardiovascular diseases reg-
istered in 1991. There are 34,389 abstracts in total, and the average abstract size is
115.75 tokens. The abstracts are multiple-labeled by 23 specific cardiovascular condi-
tions. The data are meant to support the multi-label multi-class text classification task,
and the dataset has been widely used in NLP research (e.g., see [56,57]).

3.3. Efficiency Measures

To assess the “efficiency” of the benchmarking process, two metrics typically used
in studies focused on AI carbon footprint (e.g., see [58,59]) were evaluated: computation
time and carbon emissions. Computation time quantifies the computing time differences,
while carbon emissions estimate the environmental impact of computing. The time metric
assumes the standard Unix time format, and the carbon emissions are calculated using the
CodeCarbon (https://pypi.org/project/codecarbon/, accessed on 5 March 2024) Python
package. The latter is an open-source software tool that allows for assessing CO2 emissions
based on the hardware energy consumption data and the regional carbon intensity values of
the computing location. In the experiments of this study, emissions are calculated, assuming
Japan’s carbon intensity of 482.0 gCO2/kWh (in the energy mix of 2020 with 74.5% fossil
fuels, 0.3% geothermal, 9.7% hydro, 4.6% nuclear, 9.7% solar, and 1.1% wind energy).

4. LMDFit and Model Initial Selection
This section provides an overview of the proposed approach, explains its underlying

assumptions, and details the model assessment methodology.

4.1. Overview

The approach proposed in this study draws inspiration from well-established theories
in the realm of personnel candidate selection, which is a perpetual challenge in human
decision-making. These theories include Human Capital Theory [60], Person–Organization
Fit [61], and Person–Job Fit [62]. Human Capital Theory views individuals’ learning
capacities as akin to profits of organizations [63]. Choosing the right candidate is, therefore,
important to maximize returns to the organization. The Person–Organization Fit theory,
on the other hand, scrutinizes the compatibility of individuals with the organizations they
would work for [61]. The Person–Job Fit theory then provides for an analysis of what
individual skills would fit the requirements and characteristics of a particular job [62].
All theories consider the personnel hiring process as a (more or less) linear succession of
organizational activities and decisions made, as summarized in Figure 2.

Figure 2. Personnel hiring process.

The proposed LMDFit approach aims to optimize the AI model benchmarking pro-
cess by minimizing both time spent and emissions produced. Metaphorically, PTLM Mi,
i = 1, . . . , N, where N is the number of candidate models for benchmarking, is thought
to correspond to an individual applying for a job. The dataset D is to “represent” the
organization, and (NLP) task Ti is to stand for a job within the organization. Model selec-

http://disi.unitn.it/moschitti/corpora.htm
https://pypi.org/project/codecarbon/
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tion is then organized in four steps, as illustrated in Figure 3a. More specifically, LMDFit
benchmarking assumes the following processes:

(a)

(b)

Figure 3. The LMDFit approach (a) vs. conventional model benchmarking (b).

1. Screening. This step entails recruiting pre-trained model candidates. The candidates
M are manually selected based on model specifications (including the language and
training corpora), utilization precedents, and other relevant information. The screen-
ing process is meant to gather potential candidates for benchmarking.

2. Selecting. The second step is to assess the fitness of each candidate-model Mi for the
target task Ti. All mobilized models are classified as either less-fit or more-fit based
on how they perform on a proxy evaluative task. The latter task is to assess “basic
skills”—the abilities to differentiate and to generalize texts—of the candidate-models.

3. Hiring. A (subjective) decision-making process for deciding which models should
be benchmarked. The fitness assessment results are used to reduce the number of
models to be tested.

4. Onboarding. In this study, it refers to the standard benchmarking process. On-
boarding, thus, also includes all “must-have” procedures before the models could be
deployed in comparison experiments, such as fine-tuning and inferencing.

Contrasting the conventional approach, LMDFit benchmarking focuses on candidate
models that are more likely, performance-wise, to succeed with the task at hand. The over-
head of the two additional steps—Selecting and Hiring (see Figure 3a)—is relatively low,
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as they do not require model fine-tuning or any processing of the whole dataset associated
with the target task. Model initial selection, i.e., “Selecting” of LMDFit is accomplished
while testing pre-trained candidate models on a limited (in terms of both complexity and
data involved) evaluative task. Based on their performance in the tests, all models are
categorized as either less-fit or more-fit. Only models of the latter category are then used
in computationally extensive benchmarking experiments. Details of the PTLM fitness
assessment procedure, including the proxy evaluative task, data and metrics used, and the
clustering algorithm, are presented in the next subsection.

4.2. Candidate Model Fitness Assessment
4.2.1. Assumptions

Text classification, a fundamental problem of NLP [11,12], is considered as the target
“job” of Onboarding (Figure 3a) in this research. The fitness of PTLMs for a specific task Ti is
proposed to estimate, computing the distribution of (semantic) similarity of texts intended
for classification. Distributional semantics assumes that linguistic meaning is reflected
in the distributional patterns of words in large corpora. According to the distributional
hypothesis, “a word is characterized by the company it keeps”; hence, linguistic items
with similar distributions have similar meanings [64,65]. The latter is the theoretical
foundation of vector-space models for the semantic processing of a text [66]. If two texts are
semantically similar, their embedding vectors should lie in a close proximity in the vector
space. Conversely, if they differ, their vectors should be more distant. This implies that
a model producing embeddings that better reflect the intrinsic semantic distinctions of a
given dataset is more “discriminative”.

Text similarity assessment or the ability to semantically differentiate between one
text and another can be realized with practically any PTLM. To that end, cosine similar-
ity, which is a popular text similarity measure, was used for the model initial selection.
The efficacy of cosine similarity has been demonstrated in numerous studies, confirming
its strong correlation with human judgment of semantic relatedness [67,68]. Furthermore,
unlike other relevant metrics, cosine similarity does not suffer from the so-called “curse of
dimensionality” phenomenon in high-dimensional embeddings spaces, where the discrimi-
nating power of many proximity measures, such as Euclidean and Manhattan distances,
diminishes [69]. Cosine similarity computes the cosine of the angle of two embedding
vectors that are “in-model” representations of words comprising the compared texts [70].
Two identical representations correspond to a cosine similarity of 1, and the smaller the
measure value (bounded by 0), the further apart the representations. Similar texts are
naturally expected to have close in-model representations and are, therefore, more difficult
to differentiate (e.g., assign different labels, etc.) with the model (also, see [10]).

For a random sample of texts, their cosine similarity is asymptotically Gaussian dis-
tributed [71]. Figure 4a exemplifies cosine similarity distributions obtained with three
different PTLMs on the same document collection. Similarity scores were computed
through a pairwise comparison of 200 documents randomly selected from the financial
phrase-bank collection (see Section 3.2). All three distributions are left-skewed, and the
asymmetry is more pronounced as the mean moves to the right. This phenomenon can be
attributed to two major factors: (1) the distributions are truncated owing to the restricted
range of the cosine similarity measure, and (2) some of the higher similarity scores may be
due to the insufficient number of dimensions of the model’s embedding space to quantify
fine-grain differences in the texts (see, for instance, ref. [72] for how dimensionality reduc-
tion affects the ability of cosine similarity to differentiate). It appears natural to expect that
models producing distributions with means closer to 1 would perform worse, on average,
when classifying the corresponding texts. At the same time, however, a distribution with
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pronounced left skewness would signal that the corresponding model would “overfit” by
differentiating similar texts, owing to a lack of generalization ability.

(a) (b)

Figure 4. Cosine similarity distributions obtained with three different models M1, M2, and M3 on the
same data (a). Categorization of the models into “less-fit” and “more-fit”, based on the two-vector
of cosine similarity mean and skewness (note that the dotted line is not to set any threshold or the
like) (b).

We, therefore, assume the cosine similarity calculation as the proxy evaluative task
performed on D to assess the fitness of candidate models M for the given classification
task. With each candidate model Mi, two statistics—the mean similarity score and the
similarity distribution skewness—are obtained by computing the cosine similarity for pairs
of documents in D. The two-vectors of the statistics are used to categorize the corresponding
models into either “less-fit” or “more-fit” classes in an unsupervised manner. Models
producing cosine similarity distributions further skewed to the left and with higher mean-
values are considered less-fit for the target classification task (for illustration, see Figure 4b).
As a result, the number of candidate models for computationally extensive benchmarking
(i.e., Onboarding) can be reduced, with only “more-fit” models being selected for the
final evaluation.

4.2.2. Sampling and Implementation Details

The dataset intended for benchmarking experiments, which include model fine-tuning,
can be very large. For the model initial selection, Dsample a (much) smaller subset of D is
created by sampling from the benchmarking data. As the cosine similarity statistic is known
to correlate with the text size, especially in the case of short documents [73], stratified quota
sampling [74] is performed to reduce the text size effects on model selection. The texts
are first grouped in 100 strata based on their size (in tokens), and Dsample is generated by
randomly selecting texts from the strata in equal proportions. To determine the optimal
sample size, experiments were conducted, monitoring fluctuations of the cosine similarity
mean and skewness statistics. The skewness was estimated, calculating the adjusted Fisher–
Pearson coefficient of skewness [75]. This allowed us to reduce the influence of data outliers
on the estimates obtained in the case of short texts. The arXiv, Ohsumed, and AGNews
datasets (see Section 3.2) and the BERT (general-purpose) and SciBERT (domain-specific)
PTLMs (see Table 1) were used in the experiments. Figure 5 presents the experimental
results obtained.
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Figure 5. The impact of sample size on the cosine similarity mean and skewness. Color bands show
95% confidence intervals around lines connecting the values obtained by averaging the corresponding
statistic over 10 samples of the same size.

As one can see from Figure 5, there are no major changes in the calculated values,
beginning from the sample size of 200 almost in all cases. Therefore, the size of Dsample was
set to 200 (which entails 19,900 text similarity comparisons per distribution computed) for
the model initial selection in all experiments conducted in this study.

Once created, the same Dsample is used to obtain similarity score distributions and the
mean and skewness statistics for all models recruited. k-means clustering [76] is performed
to group the obtained two-vectors into two classes. Per-class average skewness is then
calculated. The PTLMs of the class with an average skewness closer to 0 are labeled as
“more-fit” (while the other class models are labeled as “less-fit” and are typically excluded
from further consideration).

Algorithm 1 provides implementation details of the model initial selection procedure.
Key parameter settings and other model- and task-specific characteristics are given in the
next section.
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Algorithm 1: model initial selection
Data: model_candidates, dataset, sample_size
Result: more_ f it_models

function prepare_data(d: dataset, size: sample_size = 200):
dataset_strata← group_dataset(d, 100) ▷ Group dataset into 100 strata based
on token sizes

data← get_sample(dataset_strata, size) ▷ Random sampling to group_dataset
data← clean_punctuation(data)
return data

function compute_embeddings(text: text, model:model, tokenizer:tokenizer):
inputs← tokenizer(text)
return model(inputs).last_layer.mean

function get_embeddings(data:data, model:model, tokenizer:tokenizer)):
embeddings← empty list
foreach text ∈ data do

embeddings.append(compute_embeddings(text, model, tokenizer))
end
return embeddings

function calculate_similarity(pairs: pairs):
result← empty list
foreach pair in pairs do

similarity← cosine_similarity(pair)
append similarity to result

end
return result

# Step 1: Data preparation
d_sample← prepare_data(dataset, sample_size)

# Step 2: Fitness computation
results← empty list
foreach model ∈ model_candidates do

tokenizer ← tokenizer_from_pretrained(model)
embeddings_data← get_embeddings(text_data, model, tokenizer)
pairs← pair_every_permutation(embeddings_data)
results[model]← calculate_similarity(pairs)

end

# Step 3: Clustering into two groups
model_clusters← get_clusters(Clustering(n_clusters = 2), results)
avg_cluster_1← average_skewness(model_clusters, 0) ▷ Get skewness average of
models in Cluster 1

avg_cluster_2← average_skewness(model_clusters, 1) ▷ Get skewness average of
models in Cluster 2
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Algorithm 1: Cont.

if avg_cluster_1 > avg_cluster_2 then
more_ f it_models← get_models(model_clusters, 0) ▷ Cluster 1 as more-fit
models;

end
else

more_ f it_models← get_models(model_clusters, 1) ▷ Cluster 2 as more-fit
models;

end
return more_ f it_models

5. Experiments
This section presents comparison results of the LMDFit and conventional bench-

marking approaches obtained with seven popular PTLMs on eight open data collections.
Figure 3a portrays the design of the benchmarking experiments, while Section 3 provides
specifications of the PTLMs and data used.

A single NVIDIA GeForce RTX 4090 GPU was employed for all computations. The fine-
tuning process assumed retraining all layers of the tested models for three epochs (which
is a standard practice in benchmarking, e.g., see [20,77]). The initial model weights were
always the default weights of the given PTLM. The models were compared through a five-
fold cross-validation. The number of batches for training and evaluation was set to 64 by
default but was adjusted as necessary to accommodate memory constraints. In single-label
classification experiments, the learning rate was set to 2 × 10−5 to ensure steady updates of
the pre-trained weights. In multiple-label experiments, a learning rate of 5× 10−5 was used
to accelerate the learning process. In both cases, the weight decay parameter was set to
0.01 to prevent model overfitting. To construct embedding vectors, the inputs were formed,
assuming a maximum length of 512 tokens with truncation or padding, as necessary. All
models tested were deployed with their original tokenizers.

In the experiments, the models’ performance was assessed, using F1 micro and macro
scores (conventional benchmarking), as well as cosine similarity distribution skewness and
mean (LMDFit model initial selection).

5.1. Environmental Claims Collection

The onboarding (benchmarking) task of single-label binary classification was per-
formed with 2118 documents allocated for training and 529 documents for validation.
Table 2 lists metric values obtained in the experiments. Table 3 then compares the bench-
marking approaches in terms of computational time and emissions.

Table 2. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the environmental claims dataset (sorted by the cosine similarity mean value).

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit

BERT 0.712 −0.335 0.892 0.858
SciBERT 0.740 −0.445 0.898 0.871
PharmBERT 0.748 −0.512 0.887 0.855
FinancialBERT 0.774 −0.323 0.890 0.857
Chemical BERT 0.832 −0.659 0.853 0.810
Agriculture BERT 0.841 −0.422 0.911 0.887

le
ss

-fi
t

LegalBERT 0.880 −3.082 0.855 0.819

* Best results are shown in bold.
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Table 3. The computing time and the environmental impact associated with the LMDFit and conven-
tional benchmarking approaches for the environmental claims data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time(s) Emissions (g)

Fitness assessment 51.2 1.1 - -
Clustering and Hiring 2.1 <0.1 - -
Benchmarking 1419.7 47.8 1646.3 55.5

Total 1473.0 48.8 1646.3 55.5

5.2. AGNews

The benchmarking task is a single-label four-class classification. In each fold of model
fine-tuning, approximately 102,000 documents were used for training and the rest for
validation. Table 4 gives the model initial selection and benchmarking metric values
obtained, while Table 5 compares the two approaches in terms of the computational time
and carbon emissions.

Table 4. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the AGNews dataset (sorted by the cosine similarity mean value).

No Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit BERT 0.681 −0.141 0.948 0.948

PharmBERT 0.779 −0.397 0.945 0.945

le
ss

-fi
t

SciBERT 0.777 −0.589 0.943 0.943
FinancialBERT 0.800 −0.635 0.928 0.928
Agriculture BERT 0.853 −0.622 0.943 0.943
Chemical BERT 0.887 −1.017 0.932 0.932
LegalBERT 0.887 −0.879 0.942 0.942

* Best results are shown in bold.

Table 5. The computing time and the environmental impact associated with the LMDFit and conven-
tional benchmarking approaches for the AGNews data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 55.3 1.2 - -
Clustering and Hiring 2.0 <0.1 - -
Benchmarking 27,599.1 1851.8 97,620.6 6569.1

Total 27,656.4 1853.0 97,620.6 6569.1

5.3. Financial Phrase-Bank

Model fine-tuning for this single-label three-class classification task was carried out
with 3876 sentences reserved for training and 970 sentences for validation in each fold.
Tables 6 and 7 show results of the model initial selection and benchmarking experiments.
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Table 6. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the financial phrase-bank dataset (sorted by the cosine similarity mean value.

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit BERT 0.713 −0.164 0.840 0.825

FinancialBERT 0.749 −0.129 0.841 0.824
PharmBERT 0.752 −0.240 0.835 0.810
Agriculture BERT 0.817 −0.162 0.844 0.830

le
ss

-fi
t SciBERT 0.762 −0.825 0.840 0.823

Chemical BERT 0.815 −0.490 0.729 0.592
LegalBERT 0.881 −0.809 0.731 0.576

* Best results are shown in bold.

Table 7. The computing time and the environmental impact associated with the LMDFit and conven-
tional benchmarking approaches for the financial phrase-bank data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 52.3 1.1 - -
Clustering and Hiring 2.1 <0.1 - -
Benchmarking 1431.2 63.4 2487.5 109.9

Total 1485.6 64.5 2487.5 109.9

5.4. Rheology Dataset

The single-label five-class classification task of the Rheology corpus was performed with
1612 documents used for training and 403 for validation in each fold. Tables 8 and 9 provide
summaries of the model initial selection and benchmarking experiments with these data.

Table 8. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the Rheology dataset (sorted by the cosine similarity mean value).

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit PharmBERT 0.798 −0.608 0.577 0.387

Chemical BERT 0.831 −0.515 0.563 0.397
Agriculture
BERT 0.838 −0.520 0.639 0.573

le
ss

-fi
t BERT 0.779 −0.668 0.539 0.358

SciBERT 0.783 −0.768 0.589 0.491
FinancialBERT 0.818 −0.766 0.543 0.357
LegalBERT 0.902 −0.692 0.472 0.291

* Best results are shown in bold.

Table 9. The computing time and the environmental impact associated with the LMDFit and conven-
tional benchmarking approaches for the Rheology data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 55.0 1.2 - -
Clustering and Hiring 1.9 <0.1 - -
Benchmarking 753.6 28.8 1784.6 68.0

Total 810.5 30.0 1784.6 68.0

5.5. Plant–Chemical Relationship Corpus

The benchmarking task for the plant–chemical relationship data is a single-label binary
classification. The fine-tuning process was accomplished with 752 documents for training
and 187 for validation in each fold. Tables 10 and 11 provide results of the model initial
selection and benchmarking experiments.
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Table 10. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the plant–chemical relationship corpus (sorted by the cosine similarity mean value.

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit

SciBERT 0.737 −0.425 0.816 0.812
BERT 0.786 −0.508 0.784 0.781
FinancialBERT 0.824 −0.342 0.756 0.754
Agriculture BERT 0.827 −0.555 0.840 0.837
Chemical BERT 0.854 −0.230 0.769 0.766
LegalBERT 0.893 −0.544 0.707 0.697

le
ss

-fi
t

PharmBERT 0.784 −1.711 0.803 0.801

* Best results are shown in bold.

Table 11. The computing time and the environmental impact associated with the LMDFit and
conventional benchmarking approaches for the plant–chemical relationship data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 54.7 1.2 - -
Clustering and Hiring 2.0 <0.1 - -
Benchmarking 1376.7 46.2 1614.9 54.3

Total 1433.4 47.4 1614.9 54.3

5.6. arXiv Documents

The benchmarking task for the arXiv data is multiple-label 10-class text classification.
Model fine-tuning was conducted with 41,419 abstracts reserved for training and 10,355 for
validation in each fold. Table 12 lists the averaged metric values obtained in the experiments,
while Table 13 compares the two benchmarking approaches in terms of computational time
and environmental impact.

Table 12. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the arXiv collection (sorted by the cosine similarity mean value).

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit

SciBERT 0.804 −0.494 0.807 0.605
PharmBERT 0.847 −0.717 0.794 0.562
FinancialBERT 0.866 −0.586 0.790 0.553
Agriculture BERT 0.891 −0.465 0.808 0.600
Chemical BERT 0.911 −0.652 0.779 0.522
LegalBERT 0.932 −0.561 0.786 0.536

le
ss

-fi
t

BERT 0.835 −0.946 0.793 0.553

* Best results are shown in bold.

Table 13. The computing time and the environmental impact associated with the LMDFit and
conventional benchmarking approaches for the arXiv data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 59.9 1.3 - -
Clustering and Hiring 1.9 <0.1 - -
Benchmarking 55,153.1 3612.0 64,373.6 4214.6

Total 55,214.9 3613.3 64,373.6 4214.6
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5.7. ECtHR Cases

The benchmarking task for this data collection is multiple-label 33-class text classifica-
tion. The fine-tuning process was performed with 8800 documents allocated for training
and 2200 for validation in each fold. Tables 14 and 15 detail results obtained in the model
initial selection and benchmarking experiments on these data.

Table 14. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the ECtHR documents (sorted by the cosine similarity mean value).

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit

BERT 0.816 −0.496 0.702 0.190
SciBERT 0.854 −1.088 0.701 0.212
PharmBERT 0.861 −0.787 0.702 0.200
FinancialBERT 0.872 −1.126 0.691 0.202
LegalBERT 0.885 −0.728 0.717 0.205
Agriculture BERT 0.908 −1.274 0.700 0.219

le
ss

-fi
t

Chemical BERT 0.929 −4.083 0.662 0.163

* Best results are shown in bold.

Table 15. The computing time and the environmental impact associated with the LMDFit and
conventional benchmarking approaches for the ECtHR data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 147.1 3.5 - -
Clustering and Hiring 2.2 <0.1 - -
Benchmarking 18,906.3 924.5 22,104.4 1080.0

Total 19,055.6 928.0 22,104.4 1080.0

5.8. Ohsumed Collection

The fine-tuning process for the multiple-label 23-class classification task of the
Ohsumed data was conducted using 27,511 documents for training and the remainder for
validation in each fold. Model selection statistics computed in the experiments with the
data are listed in Tables 16 and 17.

Table 16. Values of the LMDFit and conventional benchmarking metrics averaged in 5-fold cross-
validation on the Ohsumed document collection (sorted by the cosine similarity mean value).

Model
LMDFit Metrics Conventional Metrics *

Mean Skewness F1 Micro F1 Macro

m
or

e-
fit SciBERT 0.699 −0.109 0.783 0.746

Agriculture BERT 0.802 −0.124 0.776 0.739

le
ss

-fi
t

PharmBERT 0.764 −0.609 0.764 0.725
BERT 0.792 −0.822 0.753 0.700
FinancialBERT 0.824 −0.708 0.733 0.677
LegalBERT 0.881 −0.834 0.732 0.663
Chemical BERT 0.882 −0.654 0.715 0.652

* Best results are shown in bold.
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Table 17. The computing time and the environmental impact associated with the LMDFit and
conventional benchmarking approaches for the Ohsumed data.

Task
LMDFit Conventional

Time (s) Emissions (g) Time (s) Emissions (g)

Fitness assessment 61.1 1.4 - -
Clustering and Hiring 2.1 <0.1 - -
Benchmarking 9136.3 593.3 37,039.9 2431.6

Total 9199.5 594.7 37,039.9 2431.6

6. Discussion
It should be noted first that the proposed LMDFit approach demonstrated superior

efficiency, compared to conventional benchmarking, in terms of computational time (a 36%
decrease on average, see Table 18) and associated carbon footprint (a 37% reduction on
average). Also, the best-performing models passed the model initial selection of the LMDFit
benchmarking in all considered cases, which confirms the consistency of the proposed
approach. As one can see from Table 18, the emission cuts achieved are strongly correlated
with the reductions in computational time and depend on the number of models that did
not pass the LMDFit test of model initial selection. While one might argue that in some
cases, “less-fit” models would be “common-sense” recognized and manually disqualified
at the stage of model requirement (e.g., the case of Chemical BERT for the ECtHR data),
there are many other cases where this choice is not obvious or even impossible to make
without testing the candidate models (e.g., the case of Agriculture BERT, which is the best
performer on the ECtHR data).

Table 18. Benchmarking efficiency improvements with LMDFit.

Dataset
Number of Models

Not Selected
for Onboarding

Computational Time
Decrease (%)

Emission
Reduction (%)

Environmental claims 1 10.5 11.8
AGNews 5 71.7 71.8
Financial phrase-bank 3 40.3 41.2
Rheology 4 54.6 55.9
Plant–chemical relationship 1 11.2 12.6
arXiv 1 14.2 14.3
ECtHR 1 13.8 14.1
Ohsumed 5 75.2 75.5

Average 2.6 36.4 37.1

It should also be noted that while the LMDFit “more-fit” cluster of models always
contained the best-performing PTLM, the statistics used for the clustering do not provide
for a reliable ranking of the models performance-wise (see Table 19). This fact invalidates
straightforward attempts to further refine the structure of this cluster by repeating the clus-
tering procedure (or by increasing the number of clusters). Furthermore, when examining
cases where all or some of the tested models show rather close results (e.g. the case of
AGNews, see Table 4 for details), one should not “blindly” rely on the k-means analysis.
A more flexible, manual decision-making procedure based on a visual analysis would be
used to expand (or narrow down) the “more-fit” cluster. For instance, consider Figure 6,
which depicts the results of the LMDFit model initial selection for the AGNews corpus.
As SciBERT appears to be not too far, in terms of both cosine similarity mean and skewness,
from PharmBERT, one might want to also examine the former model in the benchmarking
experiments. Such decisions, however, should be made, taking into account the domain of
the data and how it would correspond to the domain of the specific PTLM.
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Table 19. Correlation of the LMDFit metrics with F1 micro and macro scores obtained in the experiments.

Dataset

F1 Micro F1 Macro

Spearman Pearson Spearman Pearson

Cosine Similarity Cosine Similarity Cosine Similarity Cosine Similarity
Mean Skewness Mean Skewness Mean Skewness Mean Skewness

Environmental claims 0.32 0.64 0.50 0.64 0.32 0.64 0.46 0.58
AGNews 0.61 0.86 0.47 0.63 0.67 0.88 0.47 0.63
Financial phrase-bank 0.32 0.71 0.75 0.55 0.43 0.68 0.77 0.56
Rheology 0.07 0.21 0.48 0.43 0.11 0.36 0.30 0.35
Plant–chemical relationship 0.57 0.39 0.69 0.23 0.57 0.39 0.69 0.23
arXiv 0.57 0.43 0.58 0.39 0.71 0.39 0.60 0.45
ECtHR 0.89 0.86 0.53 0.92 0.04 0.07 0.24 0.75
Ohsumed 0.89 0.75 0.88 0.76 0.89 0.75 0.89 0.79

Average 0.53 0.61 0.61 0.57 0.47 0.52 0.55 0.54

Figure 6. Model initial selection results for the AGNews classification task.

Unlike the existing approaches to predicting language model performance, LMDFit
benchmarking does not endeavor to rank candidate-models (e.g., [10], which also evaluates
PTLMs using cosine similarity) or make any specific extrapolations (e.g., [7,29]). Exper-
iments conducted in this study demonstrate that model performance predictions made
based solely on the cosine similarity statistics are noisy but still effective when analyzed
in terms of the clusters they beget. On the other hand, to the authors’ best knowledge, all
existing approaches to forecasting language model performance require additional infor-
mation, such as data labels [10] or a model’s past application records [7,9]. Furthermore,
the existing approaches do not provide specific guidelines on which (of the tested) models
should be selected for benchmarking. Contrastingly, the LMDFit approach allows for
automatically disqualifying less-fit models from the benchmarking process based on an
analysis of nothing else but a relatively small sample of data. All this makes the proposed
approach not only unique but also a better choice in practical settings, where researchers
seldom have access to PTLM historical records or any additional information about the
data to be processed.
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Reviewing the model initial selection procedure, an important observation is that
its results may be unreliable when the number of tested models is small. The authors
would, therefore, recommend exercising an explorative rather than conservative strategy
in deciding models for a specific classification task. The latter would hardly lead to a
significant increase in emissions as the model initial selection overhead is close to negligible
(typically, much less than 1% of the benchmarking emissions; see the corresponding data of
Section 5).

A limitation of the presented study is that LMDFit benchmarking was examined
exclusively for BERT-architecture PTLMs in a text classification context and with a single set
of hyperparameters. While BERT language models are among the most used at present [78],
in specialized domains and on downstream text classification tasks [79], additional research
is needed to scrutinize the proposed approach in more diverse NLP scenarios. However,
this is outside the scope of this particular paper.

It is understood that the CO2 emission estimates reported in this paper are specific
to the regional carbon intensity values of Japan, the country where the experiments were
conducted. The estimates are based on the average values for the regional energy grid,
as determined by the CodeCarbon tool. These estimates may not generalize to regions with
different energy mixes and carbon intensities. Future studies could conduct sensitivity
analyses across multiple regions to better understand the variability of emission estimates
under different energy scenarios.

7. Conclusions
The goal of the presented study was to devise an efficient benchmarking approach for

BERT language models recruited to perform downstream classification tasks. By analogy
with personnel selection in an organization, it is proposed to incorporate model initial
selection into the benchmarking process. LMDFit, the developed approach, first examines
all candidate-models on a simple text similarity assessment task. Based on the results
of this examination, only those models that are expected to perform better on the given
data are selected for the full-scale performance evaluation. LMDFit benchmarking was
tested on eight different datasets and with seven popular BERT language models and
was found to work effectively and efficiently in all experiments. The proposed approach
consistently selected the best-performing model for the given data, yet it was 36% faster
and 37% greener (in terms of carbon footprints associated with the computations) than the
conventional benchmarking, on average.

Thus, the presented study contributes to the development of Green AI by providing
a set of tools (in the form of open-source code) and the benchmarking methodology for
text classification with BERT language models. Also, the study demonstrates that the
distribution of cosine similarity computed with word embedding vectors of texts sampled
from a corpus can be used as a fitness metric for BERT language models deemed suitable for
classification tasks on this corpus. Cosine similarity mean and skewness, the two statistics
of the distribution, are shown to reflect the classification capability of the model intended
for the given task.

The authors would like to conclude the paper by acknowledging the limitations of
this study, particularly in the range of models considered and the theoretical verifica-
tion of the model initial selection test. Future research is warranted to deal with these
two issues, as well as to further reduce carbon footprints associated with the AI model
benchmarking process.



Mach. Learn. Knowl. Extr. 2025, 7, 3 22 of 25

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, writing—original draft preparation, visualization, A.R.; writing—review and editing,
M.K., U.S. and V.K.; supervision, V.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partly supported by the SDGs Global Leadership Program from the Japan
International Cooperation Agency (JICA).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All code and data of this study are available online at https://github.
com/Just108/LMD-Fit (accessed on 24 October 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. arXiv 2019, arXiv:1906.02243.
2. Verdecchia, R.; Sallou, J.; Cruz, L. A systematic review of Green AI. WIREs Data Min. Knowl. Discov. 2023, 13, e1507. [CrossRef]
3. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [CrossRef]
4. Li, B.; Qi, P.; Liu, B.; Di, S.; Liu, J.; Pei, J.; Yi, J.; Zhou, B. Trustworthy AI: From Principles to Practices. ACM Comput. Surv. 2023,

55, 1–46. [CrossRef]
5. Blagec, K.; Dorffner, G.; Moradi, M.; Samwald, M. A critical analysis of metrics used for measuring progress in artificial

intelligence. arXiv 2021, arXiv:2008.02577.
6. Klotz, A.C.; da Motta Veiga, S.P.; Buckley, M.R.; Gavin, M.B. The role of trustworthiness in recruitment and selection: A review

and guide for future research. J. Organ. Behav. 2013, 34, S104–S119. [CrossRef]
7. Ahuja, K.; Dandapat, S.; Sitaram, S.; Choudhury, M. Beyond Static Models and Test Sets: Benchmarking the Potential of

Pre-trained Models Across Tasks and Languages. arXiv 2022, arXiv:2205.06356.
8. Ahuja, K.; Kumar, S.; Dandapat, S.; Choudhury, M. Multi task learning for zero shot performance prediction of multilingual

models. arXiv 2022, arXiv:2205.06130.
9. Xia, M.; Anastasopoulos, A.; Xu, R.; Yang, Y.; Neubig, G. Predicting performance for natural language processing tasks. arXiv

2020, arXiv:2005.00870.
10. Kadik, is, E.; Vaibhav, S.; Klinger, R. Embarrassingly simple performance prediction for abductive natural language inference. In

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Langua, Online, 10–15 July 2022. [CrossRef]

11. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning.
ACM Trans. Intell. Syst. Technol. 2022, 13, 1–41. [CrossRef]

12. Altınel, B.; Ganiz, M.C. Semantic text classification: A survey of past and recent advances. Inf. Process. Manag. 2018, 54, 1129–1153.
[CrossRef]

13. Garrido-Merchan, E.C.; Gozalo-Brizuela, R.; Gonzalez-Carvajal, S. Comparing BERT against traditional machine learning models
in text classification. J. Comput. Cogn. Eng. 2023, 2, 352–356. [CrossRef]

14. Ferro, M.; Silva, G.D.; de Paula, F.B.; Vieira, V.; Schulze, B. Towards a sustainable artificial intelligence: A case study of energy
efficiency in decision tree algorithms. Concurr. Comput. Pract. Exp. 2023, 35, e6815. [CrossRef]

15. Gutiérrez, M.; Moraga, M.Á.; García, F. Analysing the energy impact of different optimisations for machine learning models.
In Proceedings of the 2022 International Conference on ICT for Sustainability (ICT4S), Plovdiv, Bulgaria, 13–17 June 2022;
IEEE: New York, NY, USA, 2022; pp. 46–52. [CrossRef]

16. Gurumurthy, A.; Kodali, R. Benchmarking the Benchmarking Models. Benchmarking Int. J. 2008, 15, 257–291. [CrossRef]
17. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A multi-task benchmark and analysis platform for natural

language understanding. arXiv 2018, arXiv:1804.07461.
18. Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. Superglue: A stickier benchmark

for general-purpose language understanding systems. Adv. Neural Inf. Process. Syst. 2019, 32, 3266–3280.
19. Liang, Y.; Duan, N.; Gong, Y.; Wu, N.; Guo, F.; Qi, W.; Gong, M.; Shou, L.; Jiang, D.; Cao, G.; et al. XGLUE: A new benchmark

dataset for cross-lingual pre-training, understanding and generation. arXiv 2020, arXiv:2004.01401.
20. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
21. Lundgard, A. Measuring justice in machine learning. arXiv 2020, arXiv:2009.10050.

https://github.com/Just108/LMD-Fit
https://github.com/Just108/LMD-Fit
http://doi.org/10.1002/widm.1507
http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.1145/3555803
http://dx.doi.org/10.1002/job.1891
http://dx.doi.org/10.18653/v1/2022.naacl-main.441
http://dx.doi.org/10.1145/3495162
http://dx.doi.org/10.1016/j.ipm.2018.08.001
http://dx.doi.org/10.47852/bonviewJCCE3202838
http://dx.doi.org/10.1002/cpe.6815
http://dx.doi.org/10.1109/ICT4S55073.2022.00016
http://dx.doi.org/10.1108/14635770810876593


Mach. Learn. Knowl. Extr. 2025, 7, 3 23 of 25

22. Caton, S.; Haas, C. Fairness in machine learning: A survey. ACM Comput. Surv. 2020, 56, 1–38. [CrossRef]
23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.
24. Casola, S.; Lauriola, I.; Lavelli, A. Pre-trained transformers: An empirical comparison. Mach. Learn. Appl. 2022, 9, 100334.

[CrossRef]
25. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
26. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,

arXiv:1910.01108.
27. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language

understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 5753–5763.
28. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language

representations. arXiv 2019, arXiv:1909.11942.
29. Ye, Z.; Liu, P.; Fu, J.; Neubig, G. Towards more fine-grained and reliable NLP performance prediction. arXiv 2021, arXiv:2102.05486.
30. Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric.

PLoS ONE 2017, 12, e0177678. [CrossRef] [PubMed]
31. Jiang, Y.; Neyshabur, B.; Mobahi, H.; Krishnan, D.; Bengio, S. Fantastic Generalization Measures and Where to Find Them. arXiv

2019, arXiv:1912.02178.
32. Dziugaite, G.K.; Drouin, A.; Neal, B.; Rajkumar, N.; Caballero, E.; Wang, L.; Mitliagkas, I.; Roy, D.M. In search of robust measures

of generalization. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20, Red
Hook, NY, USA, 6–12 December 2020.

33. Martin, C.H.; Peng, T.; Mahoney, M.W. Predicting trends in the quality of state-of-the-art neural networks without access to
training or testing data. Nat. Commun. 2021, 12, 4122. [CrossRef]

34. Yang, Y.; Theisen, R.; Hodgkinson, L.; Gonzalez, J.E.; Ramchandran, K.; Martin, C.H.; Mahoney, M.W. Test Accuracy vs.
Generalization Gap: Model Selection in NLP without Accessing Training or Testing Data. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; ACM: New York, NY,
USA, 2023; pp. 3011–3021. [CrossRef]

35. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676.
36. Chalkidis, I.; Fergadiotis, M.; Malakasiotis, P.; Aletras, N.; Androutsopoulos, I. LEGAL-BERT: The muppets straight out of law

school. arXiv 2020, arXiv:2010.02559.
37. Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present

and future. AI Open 2021, 2, 225–250. [CrossRef]
38. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef] [PubMed]
39. Hazourli, A. FinancialBERT—A Pretrained Language Model for Financial Text Mining. 2022. Available online: https://

huggingface.co/ahmedrachid/FinancialBERT (accessed on 23 October 2024). [CrossRef]
40. ValizadehAslani, T.; Shi, Y.; Ren, P.; Wang, J.; Zhang, Y.; Hu, M.; Zhao, L.; Liang, H. PharmBERT: A domain-specific BERT model

for drug labels. Briefings Bioinform. 2023, 24, bbad226. [CrossRef] [PubMed]
41. Stammbach, D.; Webersinke, N.; Bingler, J.A.; Kraus, M.; Leippold, M. A Dataset for Detecting Real-World Environmental Claims.

arXiv 2022, arXiv:2209.00507. [CrossRef]
42. Webersinke, N.; Kraus, M.; Bingler, J.A.; Leippold, M. Climatebert: A pretrained language model for climate-related text. arXiv

2021, arXiv:2110.12010. [CrossRef]
43. Schimanski, T.; Bingler, J.; Hyslop, C.; Kraus, M.; Leippold, M. Climatebert-netzero: Detecting and assessing net zero and

reduction targets. arXiv 2023, arXiv:2310.08096.
44. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. Adv. Neural Inf. Process. Syst. 2015,

28, 649–657.
45. Li, Z.; Xu, J.; Zeng, J.; Li, L.; Zheng, X.; Zhang, Q.; Chang, K.W.; Hsieh, C.J. Searching for an effective defender: Benchmarking

defense against adversarial word substitution. arXiv 2021, arXiv:2108.12777.
46. Xiong, Y.; Feng, Y.; Wu, H.; Kamigaito, H.; Okumura, M. Fusing label embedding into bert: An efficient improvement for text

classification. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online, 1–6
August 2021; pp. 1743–1750.

47. Malo, P.; Sinha, A.; Korhonen, P.; Wallenius, J.; Takala, P. Good debt or bad debt: Detecting semantic orientations in economic
texts. J. Assoc. Inf. Sci. Technol. 2014, 65, 782–796. [CrossRef]

http://dx.doi.org/10.1145/3616865
http://dx.doi.org/10.1016/j.mlwa.2022.100334
http://dx.doi.org/10.1371/journal.pone.0177678
http://www.ncbi.nlm.nih.gov/pubmed/28574989
http://dx.doi.org/10.1038/s41467-021-24025-8
http://dx.doi.org/10.1145/3580305.3599518
http://dx.doi.org/10.1016/j.aiopen.2021.08.002
http://dx.doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/pubmed/31501885
https://huggingface.co/ahmedrachid/FinancialBERT
https://huggingface.co/ahmedrachid/FinancialBERT
http://dx.doi.org/10.13140/RG.2.2.34032.12803.
http://dx.doi.org/10.1093/bib/bbad226
http://www.ncbi.nlm.nih.gov/pubmed/37317617
http://dx.doi.org/10.2139/ssrn.4207369
http://dx.doi.org/10.2139/ssrn.4229146
http://dx.doi.org/10.1002/asi.23062


Mach. Learn. Knowl. Extr. 2025, 7, 3 24 of 25

48. Soong, G.H.; Tan, C.C. Sentiment Analysis on 10-K Financial Reports using Machine Learning Approaches. In Proceedings of the
2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 6 November
2021; IEEE: New York, NY, USA, 2021; pp. 124–129.

49. Leippold, M. Sentiment spin: Attacking financial sentiment with GPT-3. Financ. Res. Lett. 2023, 55, 103957. [CrossRef]
50. Kim, Y.; Ko, H.; Lee, J.; Heo, H.Y.; Yang, J.; Lee, S.; Lee, K.h. Chemical Language Understanding Benchmark. In Proceedings of the

61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track); Sitaram, S., Beigman Klebanov, B.,
Williams, J.D., Eds.; Association for Computational Linguistic: Toronto, ON, Canada, 2023; pp. 404–411. [CrossRef]

51. Cho, H.; Kim, B.; Choi, W.; Lee, D.; Lee, H. Plant phenotype relationship corpus for biomedical relationships between plants and
phenotypes. Sci. Data 2022, 9, 235. [CrossRef]

52. Choi, W.; Kim, B.; Cho, H.; Lee, D.; Lee, H. A corpus for plant-chemical relationships in the biomedical domain. BMC Bioinform.
2016, 17, 1–15. [CrossRef]

53. Scharpf, P.; Schubotz, M.; Youssef, A.; Hamborg, F.; Meuschke, N.; Gipp, B. Classification and clustering of arxiv documents,
sections, and abstracts, comparing encodings of natural and mathematical language. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries in 2020, Online, 1–5 August 2020; pp. 137–146.

54. Patadia, D.; Kejriwal, S.; Mehta, P.; Joshi, A.R. Zero-shot approach for news and scholarly article classification. In Proceedings
of the 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3), Mumbai, India, 3–4
December 2021; IEEE: New York, NY, USA, 2021; pp. 1–5.

55. Chalkidis, I.; Jana, A.; Hartung, D.; Bommarito, M.; Androutsopoulos, I.; Katz, D.M.; Aletras, N. LexGLUE: A benchmark dataset
for legal language understanding in English. arXiv 2021, arXiv:2110.00976. [CrossRef]

56. Peng, Y.; Wu, W.; Ren, J.; Yu, X. Novel GCN Model Using Dense Connection and Attention Mechanism for Text Classification.
Neural Process. Lett. 2024, 56, 1–17. [CrossRef]

57. Burkhardt, S.; Kramer, S. Online multi-label dependency topic models for text classification. Mach. Learn. 2018, 107, 859–886.
[CrossRef]

58. Schilter, O.; Schwaller, P.; Laino, T. Balancing computational chemistry’s potential with its environmental impact. Green Chem.
2024, 26, 8669–8679. [CrossRef]

59. Martínez, F.S.; Parada, R.; Casas-Roma, J. CO2 impact on convolutional network model training for autonomous driving through
behavioral cloning. Adv. Eng. Inform. 2023, 56, 101968. [CrossRef]

60. Becker, G.S. Human capital and the economy. Proc. Am. Philos. Soc. 1992, 136, 85–92.
61. Morley, M.J. Person-organization fit. J. Manag. Psychol. 2007, 22, 109–117. [CrossRef]
62. Edwards, J.R. Person-Job Fit: A Conceptual Integration, Literature Review, and Methodological Critique; John Wiley & Sons: Hoboken,

NJ, USA, 1991.
63. Nafukho, F.M.; Hairston, N.; Brooks, K. Human capital theory: Implications for human resource development. Hum. Resour. Dev.

Int. 2004, 7, 545–551. [CrossRef]
64. Harris, Z. Distributional Structure; Taylor & Francis Group: Abingdon, UK, 1954.
65. Firth, J.R. A synopsis of linguistic theory, 1930 ± 1955’ Studies in Linguistic Analysis. In Special Volume of the Philological Society;

Blackwell: Oxford, UK, 1957.
66. Turney, P.D.; Pantel, P. From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. 2010, 37, 141–188.

[CrossRef]
67. Hill, F.; Reichart, R.; Korhonen, A. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Comput. Linguist.

2015, 41, 665–695. [CrossRef]
68. Gao, T.; Yao, X.; Chen, D. Simcse: Simple contrastive learning of sentence embeddings. arXiv 2021, arXiv:2104.08821.
69. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the surprising behavior of distance metrics in high dimensional space. In

Proceedings of the Database Theory—ICDT 2001: 8th International Conference, London, UK, 4–6 January 2001; proceedings 8;
Springer: Berlin/Heidelberg, Germany, 2001; pp. 420–434.

70. Huang, A. Similarity measures for text document clustering. In Proceedings of the Sixth New Zealand Computer Science
Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, 14–18 April 2008; Volume 4, pp. 9–56.

71. Spruill, M. Asymptotic distribution of coordinates on high dimensional spheres. Electron. Commun. Probab. 2007, 12, 234–247.
[CrossRef]

72. Paukkeri, M.S.; Kivimäki, I.; Tirunagari, S.; Oja, E.; Honkela, T. Effect of dimensionality reduction on different distance measures
in document clustering. In Proceedings of the Neural Information Processing: 18th International Conference, ICONIP 2011,
Shanghai, China, 13–17 November 2011; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2011; pp. 167–176.

73. Wijewickrema, M.; Petras, V.; Dias, N. Selecting a text similarity measure for a content-based recommender system: A comparison
in two corpora. Electron. Libr. 2019, 37, 506–527. [CrossRef]

74. Parsons, V.L. Stratified Sampling. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017;
pp. 1–11. [CrossRef]

http://dx.doi.org/10.1016/j.frl.2023.103957
http://dx.doi.org/10.18653/v1/2023.acl-industry.39
http://dx.doi.org/10.1038/s41597-022-01350-1
http://dx.doi.org/10.1186/s12859-016-1249-5
http://dx.doi.org/10.2139/ssrn.3936759
http://dx.doi.org/10.1007/s11063-024-11599-9
http://dx.doi.org/10.1007/s10994-017-5689-6
http://dx.doi.org/10.1039/D4GC01745E
http://dx.doi.org/10.1016/j.aei.2023.101968
http://dx.doi.org/10.1108/02683940710726375
http://dx.doi.org/10.1080/1367886042000299843
http://dx.doi.org/10.1613/jair.2934
http://dx.doi.org/10.1162/COLI_a_00237
http://dx.doi.org/10.1214/ECP.v12-1294
http://dx.doi.org/10.1108/EL-08-2018-0165
http://dx.doi.org/10.1002/9781118445112.stat05999.pub2


Mach. Learn. Knowl. Extr. 2025, 7, 3 25 of 25

75. Doane, D.P.; Seward, L.E. Measuring skewness: A forgotten statistic? J. Stat. Educ. 2011, 19, 2. [CrossRef]
76. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
77. Yu, H.; Gao, C.; Li, X.; Zhang, L. Ancient Chinese Poetry Collation Based on BERT. Procedia Comput. Sci. 2024, 242, 1171–1178.

[CrossRef]
78. Raiaan, M.A.K.; Mukta, M.S.H.; Fatema, K.; Fahad, N.M.; Sakib, S.; Mim, M.M.J.; Ahmad, J.; Ali, M.E.; Azam, S. A review on

large Language Models: Architectures, applications, taxonomies, open issues and challenges. IEEE Access 2024, 12, 26839–26874.
[CrossRef]

79. Gasparetto, A.; Marcuzzo, M.; Zangari, A.; Albarelli, A. A survey on text classification algorithms: From text to predictions.
Information 2022, 13, 83. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/10691898.2011.11889611
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/j.procs.2024.08.179
http://dx.doi.org/10.1109/ACCESS.2024.3365742
http://dx.doi.org/10.3390/info13020083

	Introduction
	Related Work
	AI Costs and Environmental Impacts
	Language Model Benchmarking
	Language Model Performance Prediction

	Resources Used
	Pre-Trained Language Models
	Datasets
	Efficiency Measures

	LMDFit and Model Initial Selection
	Overview
	Candidate Model Fitness Assessment
	Assumptions
	Sampling and Implementation Details


	Experiments
	Environmental Claims Collection
	AGNews
	Financial Phrase-Bank
	Rheology Dataset
	Plant–Chemical Relationship Corpus
	arXiv Documents
	ECtHR Cases
	Ohsumed Collection

	Discussion
	Conclusions
	References

