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Abstract: Urban happiness prediction presents a complex challenge, due to the nonlinear
and multifaceted relationships among socio-economic, environmental, and infrastructural
factors. This study introduces an advanced hybrid model combining a gradient boosting
machine (GBM) and neural network (NN) to address these complexities. Unlike tradi-
tional approaches, this hybrid leverages a GBM to handle structured data features and an
NN to extract deeper nonlinear relationships. The model was evaluated against various
baseline machine learning and deep learning models, including a random forest, CNN,
LSTM, CatBoost, and TabNet, using metrics such as RMSE, MAE, R2, and MAPE. The
GBM + NN hybrid achieved superior performance, with the lowest RMSE of 0.3332, an
R2 of 0.9673, and an MAPE of 7.0082%. The model also revealed significant insights into
urban indicators, such as a 10% improvement in air quality correlating to a 5% increase in
happiness. These findings underscore the potential of hybrid models in urban analytics,
offering both predictive accuracy and actionable insights for urban planners.

Keywords: urban happiness prediction; Hybrid Machine Learning Models; gradient
boosting and neural networks; ensemble learning; urban analytics

1. Introduction
As cities grow in size and complexity, understanding and enhancing the well-being

of urban residents has become a crucial objective for planners and policymakers [1–3].
Urban happiness, or the general satisfaction of residents with their environment and living
conditions, is shaped by a variety of factors, including traffic density, noise levels, air quality,
green space availability, and the cost of living [4–6]. Predicting urban happiness based
on these variables poses significant challenges, due to the intricate and often nonlinear
interactions between them [7–9]. Consequently, advanced methods are needed to model
these relationships and generate accurate predictions.

Traditional machine learning (ML) models, such as regression-based approaches, often
fail to capture the complex interactions between urban factors. While decision trees and
other models provide better performance, they still face limitations when dealing with
highly nonlinear relationships [10,11]. Deep learning (DL) models, with their ability to
learn intricate patterns, have shown promise in similar tasks. However, they typically
require large datasets, and for tabular data, they may not always perform optimally with-
out significant tuning [12–14]. To address these challenges, gradient boosting machines
(GBM) have emerged as a tool for structured data by building an ensemble of decision
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trees, iteratively refining predictions by correcting errors from previous iterations. This
method effectively captures interactions between features and can handle both linear and
nonlinear relationships in the data. However, GBMs can still fall short when tasked with
recognizing more abstract patterns and the deeper relationships that neural networks excel
at identifying [15–17].

Neural networks (NN), particularly in the context of deep learning, are designed to
capture complex, nonlinear relationships through layers of neurons that progressively learn
from data [18]. This allows NNs to model highly abstract features and latent variables [19].
However, when applied to structured tabular data, standalone NNs can face difficulties in
efficiently learning from the data unless carefully tuned and paired with extensive feature
engineering [20]. Given the complementary strengths of these two methods, we propose a
GBM + NN hybrid model that combines the ensemble learning characteristics of GBMs
with the representational capabilities of neural networks.

In this hybrid approach, the GBM serves as the primary model for generating the
initial predictions by capturing interactions between urban variables. The neural network
is then employed as a meta-learner, refining these predictions by learning in-depth relation-
ships. This layered approach enables the model to handle structured data efficiently, while
uncovering implicit patterns that would be missed by standalone methods. This hybrid
GBM + NN model offers a novel solution for urban happiness prediction, leveraging the
power of both ensemble learning and deep feature extraction. It is particularly well-suited
to this task because it effectively captures both direct and indirect relationships between
diverse urban indicators, such as traffic density, air quality, green space, healthcare access,
and cost of living [21]. These factors, often interdependently, influence urban happiness in
complex ways, and the hybrid model’s ability to model both shallow and deep relationships
provides a more nuanced understanding of their impact.

The use of such hybrid models in urban analytics is still relatively unexplored,
with most previous studies relying either on traditional ML techniques or standalone
deep learning models. Many studies have focused on individual factors, such as air quality
or traffic congestion, and their impact on specific outcomes like health or economic pro-
ductivity [22,23]. While these studies offer valuable insights, they fall short of capturing
the multifaceted nature of urban happiness, which depends on a combination of environ-
mental, infrastructural, and socio-economic factors [24]. Furthermore, existing research has
primarily applied either machine learning or deep learning in isolation, without exploring
the potential of hybrid models that combine the strengths of both. This study addresses this
gap by developing a GBM + NN hybrid model that integrates the structured data handling
capabilities of GBM with the deep learning abilities of neural networks.

Our model improves prediction accuracy, while providing deeper insights into the
key factors influencing urban happiness. In doing so, we contribute to both the urban
analytics and machine learning fields by demonstrating the effectiveness of hybrid models
for complex prediction tasks. Our contributions are threefold: First, we introduce a novel
GBM + NN hybrid model that capitalizes on the strengths of both ensemble learning
and neural networks to improve the predictive accuracy of urban happiness models.
Second, we conducted a thorough performance evaluation, comparing the hybrid model
against traditional machine learning models such as random forests and standalone neural
networks. The results demonstrated the superiority of the hybrid model in terms of accuracy
and generalization. Finally, we provide an in-depth analysis of the factors contributing to
urban happiness, offering actionable insights that urban planners and policymakers can
use to enhance the quality of life in cities.

The remainder of this paper is structured as follows: Section 2 reviews existing re-
search on urban happiness prediction and the application of machine learning models
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in urban analytics. Section 3 discusses the architecture of the GBM + NN hybrid model.
Section 4 presents the research methodology, including dataset explanation, data prepro-
cessing, model development, and evaluation. Section 5 reports the experimental results and
compares the performance of the hybrid model with other techniques. Section 6 concludes
with a summary and suggestions for future research.

2. Literature Survey
The prediction of urban happiness has gained increased attention in the field of urban

analytics, due to its implications for public policy and urban planning [25]. Researchers
have long attempted to understand the factors influencing happiness, satisfaction, and over-
all well-being in urban settings [26]. Traditionally, studies in this area have relied on social
science methodologies, including surveys, statistical analysis, and econometric models.
However, the complexity of modern urban systems, combined with the growing availability
of large-scale urban data, has prompted a shift toward using ML and DL models to tackle
this problem [27]. This section reviews key developments in urban happiness prediction
and discusses the role of ML and DL models in urban analytics, particularly in relation to
urban well-being.

2.1. Urban Happiness Prediction: Traditional Approaches

Historically, urban happiness prediction was approached using conventional statistical
methods. Early research predominantly utilized multiple linear regression and other basic
econometric techniques to explore relationships between various urban indicators and hap-
piness outcomes [28]. In these studies, researchers typically focused on specific factors, such
as economic performance, health services, housing quality, or pollution levels, and their
direct influence on residents’ perceived happiness. One of the most widely recognized
frameworks is the gross national happiness (GNH) index, which incorporates subjective
well-being metrics to assess societal happiness across regions [29]. While this index primar-
ily focuses on national-level data, it has inspired urban-level studies, particularly those
focused on sustainability and livability. These traditional approaches, however, have often
been limited by their reliance on linear assumptions, which fail to capture the complex
interdependencies between environmental, social, and economic factors that contribute to
urban happiness [30]. Several urban happiness models based on survey data, such as those
used by the World Happiness Report, have provided insights into the effects of income,
health, and social support. However, these models face limitations in terms of scalability
and data availability, as they rely heavily on self-reported data, which may not fully capture
the dynamic, multifaceted nature of happiness in urban settings [31–33]. Additionally, these
models often assume a linear relationship between independent and dependent variables,
leading to oversimplified interpretations of the drivers of urban happiness.

2.2. Machine Learning in Urban Analytics: From Prediction to Insight

In recent years, machine learning has emerged as an effective tool in urban analytics,
offering new possibilities for predicting complex outcomes, including happiness and well-
being. ML models, particularly those that can capture non-linear relationships, have been
increasingly applied to urban datasets to address a variety of challenges, such as traffic
management, pollution control, and public health forecasting [34]. Decision-tree-based
models, such as random forest (RF) and GBM, have shown promise in capturing the
complex, non-linear interactions between various urban features and outcomes. These
models are well-suited to structured data, where the relationships between variables are
not straightforward. In the context of urban happiness prediction, decision trees have been
used to evaluate the impact of specific urban factors like air quality, green space, and noise
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levels on residents’ well-being. RFs provide an ensemble method that mitigates the risk
of overfitting, while improving prediction accuracy, which is essential when dealing with
highly interrelated urban factors [35]. GBMs, an extension of this approach, improve model
performance by iteratively adjusting the weak learners, reducing both bias and variance [36].
One prominent study using RFs explored the relationship between urban green spaces and
subjective well-being across multiple cities. The model successfully captured the complex
interactions between environmental and social variables, highlighting the importance of
non-linear ML models in urban analytics. However, while tree-based models are effective
at managing interactions between structured data, they are still limited in their ability to
capture implicit relationships in the data, which neural networks can provide [37].

2.3. Deep Learning in Urban Analytics: Unlocking Complex Patterns

In addition to tree-based models, DL techniques have been applied in urban analytics
to model more complex, non-linear relationships between features. Neural networks, par-
ticularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
have become popular for their ability to handle large datasets and extract high-level feature
representations [38]. In the realm of urban analytics, DL models have been employed in a
wide range of applications. For example, CNNs have been utilized in studies involving
spatial data, such as predicting air quality and noise levels across urban regions. These
models excel at capturing spatial correlations by learning from structured grid data. Like-
wise, RNNs and their variants, such as long short-term memory (LSTM) networks, have
been used to model temporal dependencies, such as predicting traffic congestion or energy
consumption patterns [39]. Furthermore, recent studies have demonstrated the power
of DL in capturing intricate patterns in urban data. For instance, the integration of DL
models with environmental and energy datasets has been shown to enhance prediction
accuracy significantly, such as in the work by [40], which highlighted the potential of DL
techniques in sustainability analysis. However, the use of deep learning models in urban
happiness prediction has been relatively limited. In studies where DL models have been
applied, such as predicting well-being based on social media data or sensor networks, the
results demonstrated the capacity of these models to uncover hidden patterns in the data.
Nevertheless, these models often require extensive computational resources, and their
performance can be sensitive to hyperparameter settings and model architectures, making
them less accessible for many urban datasets [41].

2.4. Hybrid Models: The Rise of GBMs and Neural Networks

Recent developments in machine learning have seen the emergence of hybrid models
that combine ensemble methods like GBMs with DL techniques. These hybrid approaches
aim to take advantage of the strengths of both model types: the GBM’s ability to han-
dle structured, tabular data and the neural networks’ power in learning deep, abstract
relationships [42]. In the context of urban analytics, hybrid models have been applied to
tasks such as urban traffic flow prediction and pollution level forecasting, where they have
consistently outperformed standalone models [43]. For example, hybrid models combining
GBMs with RNNs have been employed to predict air quality across cities, demonstrating
improved accuracy and robustness compared to traditional models. Such approaches have
mainly focused on a single or limited number of features.

The application of GBM + NN hybrid models for predicting urban happiness remains
an underexplored area. This study builds on the growing trend in hybrid models by
applying a GBM + NN hybrid approach to predict urban happiness, filling a critical gap
in the current research landscape. The combination of GBMs’ ability to handle structured
features and neural networks’ ability to extract implicit patterns offers a promising solution
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to the complex task of urban happiness prediction. Although significant strides have been
made in applying machine learning to urban analytics, there remain several gaps in the
literature, particularly in the prediction of urban happiness. First, much of the existing
research on urban happiness relied on traditional statistical models that are limited in their
ability to capture nonlinear interactions between urban features. Second, while machine
learning models such as decision trees and deep learning models have been applied to a
variety of urban analytics tasks, they have rarely been combined in the context of happiness
prediction. Therefore, hybrid models that combine ensemble methods with deep learning,
such as the proposed GBM + NN hybrid model, offer a novel opportunity to enhance the
prediction accuracy and provide insights into the relationships between urban features and
happiness outcomes.

3. Integration of a Gradient Boosting Machine (GBM) and Neural
Network (NN)

The proposed hybrid model leverages the complementary strengths of a GBM and
NN. The GBM excels at capturing structured, tabular data and modeling nonlinear feature
interactions through its iterative boosting approach. It identifies patterns and corrects
residual errors at each stage. However, it may struggle to model latent relationships
within the data. The NN, on the other hand, is particularly adept at learning implicit
representations from data, due to its multi-layered architecture. This allows it to further
refine the results by capturing nuanced relationships overlooked by the GBM.

In the proposed model, the GBM operates as the primary learner, generating an initial
prediction by iteratively improving its performance on structured data features. These
predictions, while accurate in capturing general feature relationships, may leave unexplored
residuals, representing errors or overlooked complexities. The NN is then employed as
a meta-learner to process these residuals and uncover implicit patterns. This two-stage
process ensures that the predictive capacity of the model benefits from both structured
feature interactions (from the GBM) and deeper, hierarchical feature extraction (from the
NN). The details of the hybrid models are explained in the following subsections.

3.1. Gradient Boosting Machine (GBM)

A gradient boosting machine (GBM) is a supervised learning algorithm based on
ensemble methods that builds models sequentially to optimize a specific objective function.
At each step, the algorithm aims to minimize the prediction error by iteratively fitting weak
learners, typically decision trees, to the residual errors of the current model. This iterative
process is designed to improve the performance of the model incrementally, as described
in detail by [44]. The objective of the GBM is to minimize a specified loss function by
combining weak learners in an additive fashion. The process begins with the initialization
of the model. The initial model F0(x) is defined to minimize the empirical risk, which is
expressed as (1).

F0(x) = arg min
c

N

∑
i=1

L(yi, c) (1)

In this equation, yi represents the target value for the i-th data point, while c is a
constant used to initialize the model. The loss function L measures the difference between
the predicted and actual values, such as the squared error for regression tasks. The total
number of data points in the dataset is denoted by N. This initialization step ensures that the
model begins with a baseline prediction that minimizes the overall empirical risk. Following
initialization, the GBM constructs an additive model by iteratively combining weak learners
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hm(x) with the current model Fm−1(x). This additive structure is mathematically expressed
as (2).

FM(x) = F0(x) +
M

∑
m=1

ν · hm(x) (2)

Here, M represents the total number of iterations or weak learners, and ν is the learning
rate, which controls the contribution of each weak learner to the final model. The function
hm(x) represents the weak learner fitted at the m-th iteration, and Fm−1(x) denotes the
model from the previous iteration. At each iteration, pseudo-residuals rim are computed to
guide the learning process. These pseudo-residuals are derived as the negative gradient of
the loss function with respect to the predictions of the current model Fm−1(x), as shown in
the (3).

rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

(3)

In this context, rim represents the pseudo-residual for the i-th data point at the m-th
iteration. The variable F(xi) refers to the predicted value for the i-th data point produced
by the current model. The weak learner hm(x) is subsequently fitted to these residuals by
minimizing the squared error, which is formalized as (4).

hm(x) = arg min
h

N

∑
i=1

(rim − h(xi))
2 (4)

Here, hm(x) is the function that best fits the pseudo-residuals rim for all data points
xi in the dataset. This step identifies the weak learner that minimizes the squared error
between the pseudo-residuals and the model’s predictions. Once the weak learner hm(x)
has been fitted, the model is updated by incorporating the weak learner’s contribution into
the existing model. The update rule is given by (5).

Fm(x) = Fm−1(x) + ν · hm(x) (5)

In this equation, Fm(x) represents the updated model at the m-th iteration, and ν is
the learning rate that scales the contribution of the weak learner hm(x). This iterative
process continues until a predefined number of iterations M is reached or the loss function
L converges to a satisfactory level. The overall objective of the GBM is to minimize the loss
function L over all data points, which is expressed as (6).

min
F

N

∑
i=1

L(yi, F(xi)) (6)

Through this process, the GBM ensures incremental improvement by addressing
the residual errors at each step. By combining the contributions of all weak learners,
the algorithm produces a final model that effectively minimizes the loss function.

3.2. Neural Networks (NN)

Neural networks (NN) consist of layers of neurons, where each layer transforms the
input using a set of weights and biases. Each neuron applies a non-linear activation function
to its input. The forward pass in a neural network for layer l is given by the transformation
presented in (7).

z(l) = W(l)a(l−1) + b(l) (7)

In Equation (7), z(l) represents the pre-activation output of layer l, where W(l) ∈
Rml×ml−1 is the weight matrix connecting the neurons of the current layer l to the previous
layer l − 1. The term a(l−1) ∈ Rml−1 is the activation vector from the previous layer,
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and b(l) ∈ Rml is the bias vector for the current layer. Here, ml−1 and ml denote the
number of neurons in layers l − 1 and l, respectively. The activation function σ introduces
non-linearity into the neural network and is applied to the pre-activation vector z(l), as
presented in (8).

a(l) = σ(z(l)) (8)

Here, a(l) ∈ Rml represents the activation vector of layer l after applying the activation
function σ. Common choices for σ include ReLU (σ(z) = max(0, z)), sigmoid (σ(z) =

1
1+e−z ), and tanh (σ(z) = ez−e−z

ez+e−z ). These activation functions allow the network to model
non-linear relationships in the data. For regression tasks, the loss function is typically
defined as the mean squared error (MSE), which quantifies the difference between the
predicted output ŷ and the true target y. The MSE is given as presented in (9).

L(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (9)

In (9), L(y, ŷ) represents the MSE loss, where N is the total number of samples, yi is the
true value for the i-th sample, and ŷi is the corresponding predicted value. Backpropagation
is used to compute the gradients of the loss function L with respect to the weights W(l) of
the neural network. The gradient for layer l is calculated as presented in (10).

∂L
∂W(l)

=
∂L

∂a(L)
· ∂a(L)

∂z(L)
· · · · · ∂a(l+1)

∂z(l+1)
· ∂z(l+1)

∂W(l)
(10)

Here, ∂L
∂W(l) represents the gradient of the loss function L with respect to the weight

matrix W(l). The chain rule of differentiation is applied iteratively from the output layer L
back to the target layer l, propagating the error signals through the network. The weights
are then updated using the gradient descent optimization algorithm presented in (11).

W(l) ←W(l) − η
∂L

∂W(l)
(11)

In (11), η denotes the learning rate, a hyperparameter that determines the step size for
weight updates. By iteratively updating the weights W(l) in the direction that reduces L,
the neural network learns to generalize from the training data.

3.3. Integration of the GBM and NN

As presented in the Figure 1, the diagram represents the integration of a GBM and NN
for predicting urban happiness. This integration leverages the strengths of both models to
enhance the predictive accuracy and capture complex interactions within datasets.

In the GBM model, training begins by sequentially constructing an ensemble of deci-
sion trees, where each tree corrects the errors made by the previous trees. The objective
is to minimize a specified loss function by adding weak learners iteratively. The trained
GBM model generates predictions denoted as ŷGBM = GBM(x). These predictions are rep-
resented in the diagram as GBM predictions. Next, residuals are calculated by computing
the difference between the actual target values yi and the GBM predictions ŷGBM,i. This
residual is denoted as ri = yi − ŷGBM,i. The residuals represent the errors or differences
between the predicted and actual values, which the neural network will learn to model.
The neural network is designed to capture complex patterns and relationships that the
GBM model might have missed. The NN model generates predictions based on the GBM
predictions, denoted as ŷNN = NN(ŷGBM). These are represented in the diagram as NN
predictions. Finally, the final prediction is obtained by combining the predictions from the
GBM model and the NN model. This is denoted as ŷ f inal = ŷGBM + ŷNN .
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Figure 1. Integration of a GBM and NN for Urban Happiness Prediction.

3.4. Collaborative Working Mechanism of the Proposed Model

The proposed model leverages the complementary strengths of a gradient boosting
machine (GBM) and neural network (NN) to enhance the predictive accuracy. The GBM
captures structured feature interactions in tabular data, while the NN models the complex,
latent patterns left unexplained by the GBM. This section details the mathematical and
computational workflow of the hybrid model, using the case of urban happiness prediction
as an illustrative example.

The dataset includes urban indicators as features: air quality index (AQI), green
space area (GS), traffic density (TD), healthcare index (HI), and cost of living index (CLI).
The target variable (y) represents the urban happiness score. For this example, the dataset
as presented in (12) is used.

X =

50 20 3 70 150
40 25 2 80 140
30 15 4 60 160

, y =

8.5
7.8
9.0

. (12)

The GBM initializes the predictions by taking the mean of the target variable, which
serves as the starting point for subsequent refinements. The initial prediction is calculated
as F0(x) = ȳ, as presented in (13).

ȳ =
1
3
(8.5 + 7.8 + 9.0) = 8.43. (13)

Residuals are then computed to quantify the differences between the actual values
and the initial predictions, as expressed as (14).

r1 = y− F0(x) (14)

For the given data, the residuals are presented in (15).

r1 =

8.5
7.8
9.0

−
8.43

8.43
8.43

 =

 0.07
−0.63
0.57

 (15)

A weak learner, in this case, a decision tree, is trained to predict the residuals. Assume
the tree splits based on the AQI feature. The weak learner is defined as (16).

h1(x) = 0.1 · (AQI − ¯AQI) (16)
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where ¯AQI is the mean of the AQI values, computed as (17).

¯AQI =
50 + 40 + 30

3
= 40. (17)

Using this formula, the weak learner predictions are presented in (18).

h1(x1) = 0.1 · (50− 40) = 1.0, h1(x2) = 0.1 · (40− 40) = 0.0, h1(x3) = 0.1 · (30− 40) = −1.0. (18)

The GBM then updates its predictions using the formula as presented in (19).

F1(x) = F0(x) + ν · h1(x), (19)

where ν is the learning rate set to 0.1. After updating, the predictions are presented in (20).

F1(x) =

8.43
8.43
8.43

+ 0.1 ·

 1.0
0.0
−1.0

 =

8.53
8.43
8.33

. (20)

This iterative process is repeated for multiple rounds, refining the predictions further.
After M iterations, the final GBM predictions are obtained as presented in (21).

ŷGBM =

8.6
7.7
9.1

. (21)

Residuals from the GBM predictions are calculated to capture the unexplained vari-
ance, using (22).

r = y− ŷGBM. (22)

For the given dataset, these residuals are presented in (23).

r =

8.5
7.8
9.0

−
8.6

7.7
9.1

 =

−0.1
0.1
−0.1

. (23)

These residuals are passed to the NN for further modeling. The NN takes the GBM
predictions as input and applies a transformation through its layers. The architecture of
the NN includes a single hidden layer with weights W = [0.3], bias b = [0.2], and ReLU
activation, defined as presented in (24).

σ(z) = max(0, z). (24)

The input to the NN is given by (25).

NN Input = ŷGBM =

8.6
7.7
9.1

 (25)

The NN computes the transformation of (26).

z = W · ŷGBM + b, (26)

resulting in (27).

z1 = 0.3 · 8.6 + 0.2 = 2.78, z2 = 0.3 · 7.7 + 0.2 = 2.51, z3 = 0.3 · 9.1 + 0.2 = 2.93. (27)
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Applying the ReLU activation yields the output as presented in (28).

ŷNN =

2.78
2.51
2.93

. (28)

The NN minimizes the residual error using the loss function as presented in (29).

LNN =
1
n

n

∑
i=1

(ri − ŷNN,i)
2. (29)

Through optimization, the NN adjusts its weights and biases to reduce this error.
The final hybrid prediction is obtained by combining the outputs of GBM and NN, ex-
pressed as in (30).

ŷfinal = ŷGBM + ŷNN. (30)

For the given data, the combined predictions are presented in (31).

ŷfinal,1 = 8.6 + 2.78 = 11.38, ŷfinal,2 = 7.7 + 2.51 = 10.21, ŷfinal,3 = 9.1 + 2.93 = 12.03. (31)

Therefore, the final predictions are presented in (32).

ŷfinal =

11.38
10.21
12.03

. (32)

This collaborative mechanism allows the proposed model to harness the GBM’s ability
to model structured interactions and the NN’s capacity to capture implicit relationships.
By addressing both macro-level feature dependencies and micro-level residual complexities,
the proposed model achieves superior predictive performance, particularly for challenging
datasets such as urban happiness prediction.

4. Research Methodology
This research adopted a hybrid methodological framework that intricately blended

descriptive and predictive analyses to systematically address the objectives. The method-
ology was structured to validate the integrity and accuracy of the findings through a
thorough examination of the factors contributing to urban happiness. The process encap-
sulated the complete life cycle of the research, from data collection to the derivation of
actionable insights.

4.1. Data Collection and Preprocessing

At the outset, the City Happiness Index dataset was procured, comprising extensive
data attributes such as decibel levels, traffic density, and green space area, among others.
This dataset was fully developed, originated, and exclusively created by Emirhan Bulut at
kaggle.com, aceesed on 14 July 2024. It contains essential features and measurements from
diverse cities worldwide, emphasizing factors that influence each city’s overall happiness
score [45]. Preprocessing was a critical initial step, where the raw data underwent rigorous
cleaning and normalization to ensure uniformity and accuracy in the subsequent analyses.
The pseudocode provided in Algorithm 1 delineates the algorithmic steps involved in this
phase, ensuring systematic execution of these tasks.

kaggle.com
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Algorithm 1 Data Collection and Preprocessing Pipeline

Require: Draw: Raw City Happiness Index Dataset, F : Set of Features f1, f2, . . . , fn, where
n denotes the number of features

Ensure: Dpreprocessed: Preprocessed Dataset
1: Load Draw
2: for each feature fi ∈ F do
3: Handle missing values using f (missing)

i ← M( fi), whereM represents the chosen
imputation strategy

4: Normalize feature fi to obtain f (norm)
i ← fi−µ( fi)

σ( fi)
, where µ( fi) and σ( fi) denote the

mean and standard deviation of fi

5: Perform feature engineering to derive f (engineered)
i ← Φ( fi), where Φ represents the

transformation or extraction function applied to feature fi
6: end for
7: Store the resulting preprocessed dataset Dpreprocessed

The success of any machine learning model significantly hinges on the quality of
the data used and the effectiveness of the preprocessing techniques applied. This section
provides a detailed overview of the dataset utilized in this study, covering its composition,
sources, and key features. Additionally, it elaborates on the preprocessing methods applied
to prepare the data, including the handling of missing values, feature scaling, and encoding
categorical features, which are essential steps to ensure that a model performs effectively.

4.1.1. Dataset Overview

The dataset used in this study encompasses urban-level indicators from multiple
cities across various months and years, capturing both environmental and socio-economic
factors that influence urban happiness. Specifically, the data include the following features.
The City , Month, and Year serve as identifiers for each data record, enabling temporal
and geographical analysis of urban happiness. The Decibel Level represents the average
noise pollution levels measured in decibels, reflecting the noise exposure experienced by
city residents. The Traffic Density is a categorical variable representing traffic conditions,
such as low, medium, or high, which has a direct impact on mobility and quality of life.
The Green Space Area measures the amount of green space available per capita, in square
meters, contributing to the residents’ physical and mental well-being. The Air Quality
Index (AQI) is a numerical value indicating the air quality level, where higher values
represent more polluted environments. The target variable in this dataset is the Happiness
Score, which represents the overall happiness of residents based on surveys and various
metrics, scaled from negative to positive values. Additionally, the dataset includes a Cost of
Living Index, which serves as an indicator of the relative cost required to maintain a certain
standard of living in each city, and the Healthcare Index, a numerical index reflecting the
quality and accessibility of healthcare services available to residents. The dataset consists of
545 rows, each representing a unique city, month, and year combination, thereby providing
a comprehensive temporal and geographical overview of urban well-being indicators.
The diversity of features allows the hybrid model to capture complex relationships between
socio-economic, environmental, and urban infrastructure variables, enabling an in-depth
analysis of the factors influencing urban happiness. Detailed information of the dataset is
presented in Table 1.
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Table 1. Data attributes and their descriptions.

Attribute Description Data Type Range Example Values

City Name of the city. Object N/A New York, Los Angeles,
Chicago

Month Month of the year. Object N/A January, February, March

Year Year of observation. Integer 2024 (single value) 2024

Decibel_Level Noise level measured in decibels. Integer 55–70 70, 65, 60

Traffic_Density Describes traffic conditions in the city. Object High, Medium, Low High, Medium

Green_Space_Area Percentage of urban area covered by green spaces. Integer 30–50 35, 40, 30

Air_Quality_Index Air quality index (lower is better). Integer 40–65 40, 50, 60

Happiness_Score Happiness score on a scale of 0–10. Float 6.5–7.2 6.5, 6.8, 7.0

Cost_of_Living_Index Cost of living index (higher means more expensive). Integer 85–110 100, 90, 85

Healthcare_Index Index measuring healthcare quality (0–100). Integer 70–85 80, 75, 70

4.1.2. Data Cleaning and Handling Missing Values

The initial step in the data preparation involved data cleaning to ensure the reliability
of the dataset, which included the identification and handling of missing values. Let the
dataset be represented by a matrix X ∈ Rn×m, where n is the number of instances and m is
the number of features. Missing values in features like Air Quality Index, Green Space Area,
and Healthcare Index were treated to avoid biased or incomplete model training, which could
have resulted in unreliable parameter estimates. For continuous numerical features, such
as Decibel Level, Air Quality Index, and Cost of Living Index, missing values were imputed
using the arithmetic mean of the observed values, as presented in (33)

Ximputed,j =
1
|Ij| ∑

i∈Ij

Xij (33)

where Ij denotes the set of indices without missing values for feature j, and Xij represents
the value of the j-th feature for the i-th instance. This imputation technique preserves
the central tendency of the data, ensuring that the statistical properties of the feature are
maintained and the impact on variance is minimized.

For categorical features such as Traffic Density, missing values were imputed using the
mode of the observed values, as presented in (34).

Ximputed,j = argmax
v∈{Xij}i∈Ij

count(v) (34)

where count(v) represents the frequency of occurrence of category v. This strategy en-
sured that the categorical distribution remained unbiased, avoiding the introduction of
artificial variability.

4.1.3. Feature Scaling

Feature scaling was applied to the numerical features in X to standardize them to a
common scale, which is essential when different features have varying magnitudes and
units. Let Xnum represent the subset of numerical features in X. The StandardScaler from
scikit-learn was used to transform each numerical feature Xj, as presented in (35).

Xscaled,ij =
Xij − µj

σj
(35)

where µj is the mean of feature j, as presented in (36).

µj =
1
n

n

∑
i=1

Xij (36)
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and σj is the standard deviation of feature j, as presented in (37).

σj =

√
1
n

n

∑
i=1

(Xij − µj)2 (37)

This transformation ensures that each feature has a mean of zero and a standard
deviation of one, as presented in (38).

E[Xscaled,j] = 0, Var(Xscaled,j) = 1 (38)

This standardization is critical for the gradient-based optimization algorithms used in
neural networks, which are sensitive to the scale of the input features.

4.1.4. Encoding Categorical Variables

Categorical features such as Traffic Density, denoted by Xcat, were encoded using one-
hot encoding to transform them into a binary representation suitable for machine learning
models. Let Xcat contain k unique categories, denoted as {c1, c2, . . . , ck}. One-hot encoding
was performed by creating k new binary columns Z = [z1, z2, . . . , zk], where

zij =

1, if instance i belongs to category cj

0, otherwise

This encoding ensured that no ordinal relationships were implied among the cate-
gories, preventing the model from assuming any unintended ranking or ordering.

The final dataset Xfinal was formed by concatenating the scaled numerical features
Xscaled and the encoded categorical features Z as presented in (39).

Xfinal = [Xscaled, Z] (39)

This ensured that both numerical and categorical features were appropriately repre-
sented in the feature space for model training.

4.1.5. Splitting the Dataset

The processed dataset Xfinal was split into training and testing sets to evaluate the
model’s performance. Let D = (Xfinal, y) represent the entire dataset, where y is the target
vector (Happiness Score). The dataset was partitioned as presented in (40).

Dtrain, Dtest = split(D, ratio = 0.8 : 0.2) (40)

where Dtrain = (Xtrain, ytrain) contains 80% of the instances and Dtest = (Xtest, ytest) contains
20%. The split was stratified based on the target variable y to maintain a consistent
distribution of Happiness Score across both sets, minimizing any potential bias during
model evaluation.

4.1.6. Feature Engineering

Feature engineering was performed to improve the model’s capacity to learn from
complex relationships within the data. Polynomial features were generated for specific
numerical variables to capture potential interactions between features, which are critical for
modeling non-linear relationships. For two numerical features, X1 and X2, an interaction
term was created, as presented in (41).

Xinteraction = X1 × X2 (41)
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This polynomial transformation allowed the model to represent relationships of higher
order, providing a richer hypothesis space for learning complex patterns that contribute to
urban happiness.

Additionally, temporal features such as Month and Year were transformed into cyclical
features to account for periodicity. For a temporal variable Month, the transformation was
carried out using sine and cosine functions, as presented in (42).

Monthsin = sin
(

2π ·Month
12

)
, Monthcos = cos

(
2π ·Month

12

)
(42)

This transformation ensured that the cyclical nature of the data was preserved, thereby
allowing the model to understand that the end of the year and the beginning are adjacent.

The final dataset used for modeling consisted of scaled numerical features, one-hot
encoded categorical features, polynomial interaction terms, and cyclical temporal features.
This comprehensive feature space was designed to enable the GBM + NN hybrid model to
effectively leverage both ensemble learning and deep learning capabilities for the prediction
of urban happiness.

4.2. Model Development and Integration

The core of the predictive analysis involved the development and training of two
distinct models, the GBM and NN. As described in Section 3, the integration of these
models was a nuanced process where the outputs from the GBM served as inputs to the
NN, creating a synergistic model that harnesses the predictive power of both methodolo-
gies. Algorithm 2 shows the respective pseudocode sections for the model development
and integration.

Algorithm 2 Hybrid Model Development and Integration

Require: Dtrain: Preprocessed Training Dataset, MGBM: Gradient Boosting Machine
(GBM) Model,MNN: Neural Network (NN) Model

Ensure: MHybrid: Integrated GBM-NN Model
1: TrainMGBM on Dtrain, optimizing for minMGBM LGBM(Dtrain), where LGBM is

the loss function associated with GBM
2: Generate predictions ŷGBM←MGBM(Dtrain)
3: Use ŷGBM as the input features forMNN
4: TrainMNN on ŷGBM, optimizing minMNNLNN(ŷGBM), where LNN is the loss

function associated with NN
5: Construct the hybrid modelMHybrid← F (MGBM,MNN), where F is a function

combining the GBM and NN models
6: Return the integrated modelMHybrid

4.3. Evaluation and Interpretation

To comprehensively evaluate the efficacy and reliability of the integrated GBM + NN
hybrid model, a robust assessment using k-fold cross-validation was employed, as outlined
in Algorithm 3. This methodology divided the dataset into k disjoint subsets, enabling
iterative training and testing, to ensure that every instance contributed to both phases.
Such an approach not only validated the model’s performance on various subsets but also
provided a robust measure of its generalizability to unseen urban settings. The performance
metrics derived from this evaluation phase played a critical role in assessing the predictive
capabilities and robustness of the model. Four key metrics were utilized: root mean squared
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and mean
absolute percentage error (MAPE). These metrics provided a comprehensive view of the
model’s predictive accuracy, error magnitude, and explanatory power.
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The RMSE, as shown in (43), quantifies the standard deviation of the residuals, repre-
senting the average magnitude of prediction errors. This metric is particularly effective in
penalizing large errors, making it sensitive to significant deviations between the predicted
and actual values.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (43)

Furthermore, the MAE, as presented in (44), measures the average absolute difference
between predicted and actual values. Unlike RMSE, it treats all errors equally, providing a
straightforward interpretation of prediction accuracy.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (44)

Then, the R2 metric, defined in (45), evaluated the proportion of variance in the target
variable explained by the model. A value closer to 1 indicated that the model accounted for
most of the variability, reflecting strong predictive power.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (45)

Finally, the MAPE, as shown in (46), computes the average percentage difference
between predicted and actual values, normalized by the true values. It provides an intuitive
measure of prediction accuracy in relative terms.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (46)

Each metric complemented the others, offering a holistic understanding of the model’s
strengths and limitations. For example, while RMSE penalizes larger errors and highlights
significant outliers, MAE provides an unbiased average error magnitude. Meanwhile,
R2 assessed the explanatory power of the model, and MAPE contextualized the errors in
percentage terms, enhancing the interpretability for decision-making in urban analytics.
In addition, the research culminated in the interpretation and reporting stage, where the
results were analyzed to extract meaningful and actionable insights. This analysis focused
on understanding the significance of the different predictors and their impact on urban
happiness, facilitated by detailed visualizations and comprehensive discussions.

Algorithm 3 Model Evaluation via k-Fold Cross-Validation

Require: MHybrid: Integrated GBM-NN Model, Dcomplete: Complete Dataset, k: Num-
ber of folds

Ensure: P : Performance Metrics (e.g., Accuracy, Precision, Recall, F1-Score)
1: PartitionDcomplete into k disjoint subsetsD1,D2, . . . ,Dk, whereDi∩D j = ∅ for i ̸= j

and ∪i = 1kDi = Dcomplete
2: for each fold i ∈ 1, 2, . . . , k do
3: Set Dtest← Di and Dtrain← Dcomplete \ Di
4: Train MHybrid on Dtrain by minimizing the objective function

minMHybridL(Dtrain), where L denotes the model loss function
5: TestMHybrid on Dtest to generate predictions ŷtest
6: Compute performance metrics P i← E(ŷtest, ytest), where E represents the evalua-

tion metric functions and ytest denotes the true labels
7: end for
8: Compute the average performance Pavg← 1

k ∑ i = 1kP i
9: Return Pavg: Average Performance Metrics
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4.4. Statistical Analysis

This section describes the detailed experimental framework used to quantitatively
assess the relationship between the urban features and happiness, based on rigorous
statistical testing and model interpretability techniques. The goal of these experiments
was to determine the individual and joint effects of urban features on the happiness score.
These experiments employed cross-validation, hypothesis testing, and regression analysis
to derive robust and interpretable results.

4.4.1. Experiment Design and Setup

The dataset D = (X, y), where X ∈ Rn×m is the feature matrix of urban indicators
and y ∈ Rn is the vector of happiness scores, served as the basis for the experiments.
The objective was to quantify how the individual features Xj influenced the target variable
y. The urban features included indicators like Air Quality Index (AQI), Traffic Density, Green
Space Area, Healthcare Index, and Cost of Living Index, among others. The experiments were
structured to evaluate each feature Xj, or combinations of features, in predicting happiness.
The testing procedure involved comparing the predicted happiness scores against the
actual values and conducting hypothesis testing to establish the statistical significance of
the relationships. Formally, the experiments tested the null hypothesis H0 (that a feature
has no significant effect on happiness, i.e., β j = 0) against the alternative hypothesis H1

(that the feature does have a significant effect, i.e., β j ̸= 0).

4.4.2. Data Splitting and Cross-Validation

To ensure the robustness of the experiments and prevent overfitting, we used k-fold
cross-validation with k = 10. The dataset was divided into k equally sized subsets or folds,
denoted D1, D2, . . . , Dk. At each iteration, the model was trained on k− 1 folds and tested
on the remaining folds. This process was repeated k times, with each fold serving as
the test set once, thereby ensuring that each instance in the dataset was tested exactly
once. In addition, for the hyperparameter tuning, we employed a grid search method to
find the most optimal parameter for each model. The overall cross-validation error E was
calculated as the average error across all folds. For each fold Di, the error Ei was computed
as presented in (47).

Ei =
1
|Di| ∑

j∈Di

(
yj − ŷj

)2 (47)

where yj is the actual happiness score for instance j, and ŷj is the predicted happiness score
from the model. The final cross-validation error E was the mean of the errors from all folds,
as presented in (48).

E =
1
k

k

∑
i=1

Ei (48)

This approach helped mitigate overfitting by ensuring that the model was evaluated
on unseen data in each fold, providing an unbiased estimate of its performance.

4.4.3. Feature Importance and Impact Quantification

The first step in understanding the impact of individual urban features on happiness
was to compute feature importance scores using the GBM part of the hybrid model. A GBM
constructs an ensemble of decision trees, and the feature importance is derived based on
how often a feature f j is used for splitting and the resulting reduction in the loss function.
For each feature f j, the importance score I( f j) was calculated as (49).

I( f j) = ∑
t∈Tj

∆L(t) (49)
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where Tj represents the set of decision trees in the ensemble where the feature f j was used,
and ∆L(t) is the reduction in the loss function L(y, ŷ) at tree t. The loss function L(y, ŷ)
used in this regression task was the Mean Squared Error (MSE), defined as (50).

L(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (50)

The feature importance scores provided a preliminary understanding of which features
had the most significant impact on happiness.

4.4.4. Pearson Correlation Analysis

To further examine the linear relationships between urban features and happiness,
we performed Pearson correlation analysis. The Pearson correlation coefficient ρ(Xj, y) was
used to measure the linear relationship between each feature Xj and the happiness score y.
The Pearson coefficient is defined as (51).

ρ(Xj, y) =
Cov(Xj, y)

σXj σy
(51)

where Cov(Xj, y) represents the covariance between feature Xj and the target variable
y, and σXj and σy are the standard deviations of Xj and y, respectively. The covariance
Cov(Xj, y) was calculated as (52).

Cov(Xj, y) =
1
n

n

∑
i=1

(
Xij − X̄j

)
(yi − ȳ) (52)

where X̄j and ȳ represent the mean of the feature Xj and the mean happiness score, respec-
tively. A Pearson correlation coefficient ρ close to 1 or −1 indicates a strong positive or
negative linear relationship, respectively, between the feature and happiness.

4.4.5. Hypothesis Testing and Significance Analysis

To establish the statistical significance of the relationship between urban features and
happiness, t-tests were conducted. The t-test was used to compare the means of two groups,
such as cities with high air quality versus cities with low air quality, to determine if the
difference in happiness scores was statistically significant. The t-statistic for comparing two
groups was calculated as (53).

t =
ȳ1 − ȳ2√

s2
1

n1
+

s2
2

n2

(53)

where ȳ1 and ȳ2 are the mean happiness scores of the two groups, s2
1 and s2

2 are the sample
variances, and n1 and n2 are the sample sizes for each group. The degrees of freedom (df) for
the t-test were calculated as (54).

d f =

(
s2

1
n1

+
s2

2
n2

)2

(
s2
1

n1

)2

n1−1 +

(
s2
2

n2

)2

n2−1

(54)

The resulting p-value from the t-test was compared to a significance level α = 0.05.
If p < 0.05, the null hypothesis H0 (that there was no effect) was rejected, indicating that
the feature had a statistically significant effect on happiness. For example, we conducted
a t-test comparing happiness scores between cities with high air quality (AQI ≤ 50) and
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cities with low air quality (AQI > 100). The result showed that improving air quality had a
significant positive effect on happiness, with p < 0.05.

4.5. Regression Analysis for Marginal Effects

To quantify the magnitude of the effect of each feature, we applied linear regression
analysis. The linear regression model is given by (55).

yi = β0 +
m

∑
j=1

β jXij + ϵi (55)

where yi is the happiness score for instance i, Xij is the value of feature Xj for instance i,
and β j is the regression coefficient representing the marginal effect of Xj on y. The error
term ϵi represents the residual, or the difference between the predicted and actual happiness
score. The regression coefficients β j were estimated by minimizing the Residual Sum of
Squares (RSS) as presented as (56).

RSS =
n

∑
i=1

(yi − ŷi)
2 (56)

where ŷi represents the predicted happiness score for instance i. The statistical significance
of each coefficient β j was assessed using t-tests on the regression coefficients, with corre-
sponding p-values used to determine if the effect of each feature was significant. For exam-
ple, a 10% improvement in air quality led to an estimated 5% increase in happiness, with a
p-value < 0.01, confirming the significance of the result.

5. Result and Discussion
The performance of the various machine learning models for the prediction task

was evaluated using 10-fold cross-validation, and the results are summarized in Table 2.
Key performance metrics included the average root mean square error (RMSE), average
mean absolute error (MAE), average coefficient of determination (R2), and average mean
absolute percentage error (MAPE). First, the GBM + NN hybrid model achieved the best
overall performance across all metrics, with an RMSE of 0.3332, MAE of 0.2633, R2 of 0.9673,
and MAPE of 7.0082%. The low RMSE and MAE values indicated high predictive accuracy,
while the R2 value showed that 96.73% of the variance in the target variable was explained
by the model. The low MAPE further highlighted the model’s robustness in minimizing
percentage errors. This superior performance can be attributed to the hybrid nature of the
model, which combines the structured data handling capabilities of GBM with the non-linear
feature extraction capabilities of neural networks. Furthermore, tree-based models such as
the random forest, gradient boosting machine (GBM), and CatBoost performed competitively,
with the random forest achieving an RMSE of 0.4063, MAE of 0.3173, R2 of 0.9524, and MAPE
of 11.86%. CatBoost achieved slightly better RMSE and MAE values compared to the GBM
but lagged behind GBM + NN and random forest in overall performance. With an RMSE of
0.8189 and R2 of 0.8120, the GBM demonstrated good predictive capability but was surpassed
by GBM + NN and random forest. On the other hand, CatBoost achieved the lowest RMSE
(0.3486) among the individual tree-based models, reflecting a strong predictive accuracy.
However, its MAPE (8.4328%) was slightly higher than GBM + NN, indicating room for
improvement in capturing percentage-based errors.
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Table 2. Ten-Fold Cross-Validation Results for Various Models

Model Average RMSE Average MAE Average R2 Average MAPE (%)

Dense Neural Network 0.5837 0.4342 0.8949 69.6198

LSTM + CNN 1.2188 0.9900 0.3955 67.3178

CNN 0.4923 0.3673 0.9227 69.4898

DeepGBM 0.5626 0.4658 0.9028 67.9763

Ensemble Model 1.5114 1.2648 0.3398 48.8259

GRU 0.4931 0.3783 0.9226 69.2551

LSTM 1.0239 0.8424 0.5992 67.9094

Autoencoder + Regression 0.6566 0.4993 0.8679 68.5552

ResNet 0.6677 0.5239 0.8655 69.5246

MLP 0.6031 0.4653 0.8894 69.6376

GBM 0.8189 0.6787 0.8120 25.8416

Linear Regression 0.5485 0.4280 0.9136 10.9827

TabNet 5.6100 5.1469 −8.5989 84.3540

GBM + NN 0.3332 0.2633 0.9673 7.0082

CatBoost Regressor 1.1114 0.9088 0.6519 36.7200

Random Forest Regressor 0.4063 0.3173 0.9524 11.8600

Among neural network models, the dense neural network and convolutional neural
network (CNN) showed a competitive performance. The CNN achieved an RMSE of 0.4923,
MAE of 0.3673, and R2 of 0.9227, outperforming many other neural network models. The
dense neural network exhibited an RMSE of 0.5837 and R2 of 0.8949, suggesting a good
overall performance, but not as strong as the CNN. The other neural network architectures
like GRU (RMSE: 0.4931, R2: 0.9226) and ResNet (RMSE: 0.6677, R2: 0.8655) showed
moderate results, indicating their potential for handling temporal and spatial data, albeit
less effectively for this task. The standalone ensemble model performed poorly compared
to its counterparts, with an RMSE of 1.5114, MAE of 1.2648, and R2 of only 0.3398. The high
MAPE (48.8259%) suggests that this approach struggled to generalize effectively on the
dataset. Furthermore, the inclusion of temporal structures in models such as LSTM and
LSTM + CNN did not yield favorable results. LSTM had an RMSE of 1.0239 and R2 of
0.5992, indicating limited effectiveness in capturing patterns in this dataset. LSTM + CNN
performed worse, with an RMSE of 1.2188 and R2 of 0.3955, suggesting that the combination
of temporal and spatial features did not synergize well for this task.

Next, traditional regression approaches, such as linear regression, showed respectable
results, with an RMSE of 0.5485, MAE of 0.4280, R2 of 0.9136, and MAPE of 10.9827%.
This indicates that linear models can capture significant patterns in data but fall short
compared to more advanced methods. TabNet showed the poorest performance across
all metrics, with an RMSE of 5.6100 and a negative R2 value (−8.5989), indicating that
the model failed to fit the data effectively. Autoencoder + Regression performed moder-
ately, with an RMSE of 0.6566 and R2 of 0.8679, but did not outperform the tree-based or
hybrid models. The results demonstrate the significant advantage of hybrid models like
GBM + NN, which combine the strengths of traditional tree-based methods and deep
learning architectures. Models like the random forest and CatBoost consistently delivered
a strong performance, highlighting their effectiveness in handling structured, tabular data.
While the CNN and dense neural networks showed strong performance, architectures
like LSTM and ResNet were less effective, emphasizing the importance of choosing the
right neural network for specific tasks. The poor performance of TabNet suggests that it
may not be well-suited for this dataset, possibly due to overfitting or difficulties in feature
representation. The GBM + NN hybrid model was the most effective approach for this task,
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achieving the best performance across all metrics. Future research could explore optimizing
hybrid architectures further and investigating feature engineering techniques to enhance
model performance. Additionally, understanding the limitations of the underperforming
models like TabNet could provide insights into dataset-specific challenges. Beside the
comparison of the machine learning and deep learning models, we also have the results
of the statistical experiments, Table 3 demonstrates that several key urban features had a
statistically significant and substantial impact on happiness. A 10% improvement in air
quality led to a 5% increase in happiness, with a p-value of 0.01, confirming its significance.
Reducing traffic density from high to medium resulted in a 4% increase in happiness, while
increasing green space by 1 square meter per person was associated with a 3% increase
in happiness, both with p-values below 0.05. These results were validated through cross-
validation and hypothesis testing, providing robust evidence for the relationships between
urban features and happiness.

Table 3. Impact of Key Urban Features on Happiness

Urban Feature Change in Feature Change in Happiness p-Value

Air Quality 10% improvement in AQI 5% increase 0.01

Traffic Density High to Medium 4% increase 0.03

Green Space +1 m2 per person 3% increase 0.04

Cost of Living Index −5% decrease 2.5% increase 0.02

Healthcare Index +10% improvement 3.5% increase 0.01

6. Conclusions
This study proposed a novel hybrid approach combining GBM and NN models for the

prediction of urban happiness. By leveraging the capabilities of ensemble learning in GBMs
and the deep feature extraction in neural networks, the GBM + NN hybrid model achieved
significant improvements in predictive accuracy compared to other traditional machine
learning and deep learning models. The experimental results demonstrated that the hybrid
model outperformed all other models tested, achieving the lowest RMSE of 0.3383. The
effectiveness of the hybrid model can be attributed to its ability to effectively capture
complex feature interactions and refine predictions through a two-stage learning process.
This approach not only improved the accuracy of predictions but also provided valuable
insights into the key factors influencing urban happiness, such as air quality, traffic density,
green space availability, healthcare quality, and cost of living. These insights can serve as
a valuable resource for urban planners and policymakers in developing evidence-based
interventions aimed at enhancing the quality of life in cities.

The comparative analysis of the GBM + NN hybrid model against models such as
DeepGBM, CNN, ResNet, and TabNet further highlighted the advantages of integrating
ensemble learning with deep learning techniques. Models like CNN and DeepGBM per-
formed reasonably well, but the absence of an integrated learning structure limited their
predictive capabilities relative to the hybrid model. Traditional models like linear regression
and random forest failed to capture the non-linear relationships between urban features
adequately, leading to higher prediction errors. The findings of this study emphasize
the importance of adopting hybrid models for complex prediction tasks, where a combi-
nation of structured feature handling and deep representation learning is required. The
GBM + NN hybrid model presents a new benchmark in urban happiness prediction, show-
casing a promising direction for future research that involves the integration of different
machine learning paradigms to enhance model performance. Future research could explore
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the extension of this hybrid approach by incorporating additional contextual features,
such as real-time social media data, mobility patterns, and climate information, to further
improve the model’s predictive capabilities. Additionally, the interpretability of the hybrid
model could be enhanced by applying feature importance techniques and explainable AI
methods to provide a more transparent understanding of the impact of each predictor on
urban happiness.
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