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Abstract: Balancing the accuracy and the complexity of models is a well established and
ongoing challenge. Models can be misleading if they are not accurate, but models may
be incomprehensible if their accuracy depends upon their being complex. In this paper,
semilattices are examined as an option for balancing the accuracy and the complexity of
machine learning models. This is done with a type of machine learning that is based on
semilattices: algebraic machine learning. Unlike trees, semilattices can include connections
between elements that are in different hierarchies. Trees are a subclass of semilattices.
Hence, semilattices have higher expressive potential than trees. The explanation provided
here encompasses diagrammatic semilattices, algebraic semilattices, and interrelationships
between them. Machine learning based on semilattices is explained with the practical
example of urban food access landscapes, comprising food deserts, food oases, and food
swamps. This explanation describes how to formulate an algebraic machine learning model.
Overall, it is argued that semilattices are better for balancing the accuracy and complexity
of models than trees, and it is explained how algebraic semilattices can be the basis for
machine learning models.

Keywords: agreeable AI; algebraic machine learning; food deserts; food oases; food
swamps; semilattices; shared interpretability; trees; world models

1. Introduction
Machine learning models (MLMs) can be described as models-of-the-world. Over

the centuries, and still in 2025, models-of-the-world have had many forms, such as two-
dimensional (2D) representations on paper and three-dimensional (3D) representations
made from physical materials [1]. As summarised by phrases such as the math is not the
territory [2] and the map is not the territory [3], models-of-the-world are partial approxima-
tions of things in the real world. Although models can be useful [4,5], formulating accurate
approximations of some things in the real world can be very difficult [6], and models that
are too complex may be practically useless [7]. Hence, models need to balance accuracy
and complexity [8–10]. Yet, balancing the accuracy and the complexity of a model can be a
formidable challenge, even for much older technologies than MLMs such as 2D diagrams
on paper [11] and 3D physical models [12]. Balancing the accuracy and the complexity of
machine learning models (MLMs) is an ongoing challenge [13–15].

In the remaining five sections of this paper, semilattices are explained as an option for
balancing the accuracy and the complexity of machine learning models. Unlike trees, semi-
lattices can include connections between elements that are in different hierarchies [16,17].
An explanation is provided here with the practical example of urban food access land-
scapes [18,19]. In Section 2, the accuracy and complexity of semilattices is compared to
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trees. In Section 3, interrelationships between diagrammatic semilattices and algebraic
semilattices are explained. In Section 4, steps are described in the formulation of a ma-
chine learning model based on semilattices. The steps are made using algebraic machine
learning [20–22]. In Section 5, an MLM based on semilattices is described and its out-
puts are presented in diagrammatic semilattices. In conclusion, diagrammatic semilattices
and algebraic semilattices are related to challenges in MLM explainability, transparency,
interpretability, and shared interpretability [23] in Section 6.

A general review of algebraic machine learning is provided in [24]. By contrast, in
this paper, specific details are provided of how to formulate an algebraic machine learning
model comprising diagrammatic semilattices and algebraic semilattices. Overall, in this
paper, it is argued that semilattices are better for balancing the accuracy and complexity of
models than trees, and it is explained how algebraic semilattices can provide the basis for
machine learning models through algebraic machine learning.

2. Comparing Trees and Semilattices
Trees are a subclass of semilattices. Hence, semilattices have higher expressive po-

tential than trees. Semilattice-based and tree-based models can be described by Hasse
diagrams, which are named after their originator, the mathematician Helmut Hasse (1898–
1979). A Hesse diagram is formed by a set of points for the elements of a model and
links between the elements of a model. Formulating a model can begin with arranging
information in a hierarchy or order, denoted with ≤, ≥, which is based on one element
including all information of another.

For example, as illustrated by the tree-based model in Figure 1, a restaurant includes
all the information of its menu, its menu includes all the information of its meal options,
and its meal options include all the information about ingredients. There are four levels of
elements (restaurant, menu, meal option, ingredients), which are arranged hierarchically
one on top of the other.
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The tree-based model shown in Figure 1 is simple because it only comprises a few
elements. However, a tree-based model can easily become complex when a model encom-
passes more elements. Consider, for example, if the restaurant shown in Figure 1 increases
its offerings to include the following three meal options: a caprese salad, a cheeseburger,
and a basic burger. As shown in Figure 2 below, in a tree-based model, there is the need to
repeat the following ingredients: three instances of tomato slices; two instances of lettuce;
two instances of bread buns; and two instances of patties. A definition of complexity is
the amount of information needed to describe a system [25], and the need for repetition of
information in a tree-based model increases the amount of information needed to describe a
system. In this example, the system is one restaurant with one menu for three meal options
comprising six types of ingredients. However, as shown in Figure 2, there are 11 instances
of ingredients when using a tree-based model. Hence, there are five redundant instances of
ingredients. By contrast, in the semilattice-based model shown in Figure 2, there is only
one instance of each of the six types of ingredient used. Thus, the semilattice-based model
is more accurate and less complex than the tree-based model.
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meal options and their ingredients.

3. Interrelationships Between Diagrammatic Semilattices and
Algebraic Semilattices

In this section, beginning with Figure 3 below, interrelationships between diagram-
matic semilattices and algebraic semilattices are explained through practical examples.

A Hasse diagram, more specifically the ordered set it depicts, can be viewed as a
semilattice: an algebraic structure whose elements correspond to the points of the diagram
endowed with a binary operation, denoted by ⊙, that, given two elements, say x and y,
return a third element z = x⊙y, with z the smallest one being greater than both x and y.

For example, we have mozzarella ⊙ tomato = caprese, which tells us, with as little
information as possible, that caprese is the element containing both tomato and mozzarella.
This relationship is highlighted in green in Figure 3 below. As highlighted in Figure 4 below,
since tomato ≤ basic burger, we obtain the following: basic burger ⊙ tomato = basic burger.
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Starting from the semilattice structure, which we can label M (for model), via its
operation ⊙, we can recover the ordered set representation (hence, its Hasse diagram)
using the following equation:

x ≤ y⇐⇒ x ⊙ y = y

For example, if M contains a tomato and a basic burger, and in M we have basic burger
⊙ tomato = basic burger, the order of M will automatically satisfy tomato ≤ basic burger,
as highlighted in Figure 4 above. Informally speaking, a semilattice is just a collection of
objects (i.e., pieces of information) that can only be summed (joined). A known example
of semilattice operation is given by set union, ⊙ = ∪, operating on sets, e.g., {x} ⊙ {y} =
{x} ∪ {y} = {x, y}, although a semilattice operation can be “more general” than set union.
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The fundamental properties that ⊙must satisfy in order to be a semilattice operation are
simple to describe, with intuitive examples as listed below.

• Joining the information of menu with itself does not bring anything new: menu ⊙
menu = menu. It is idempotent.

• Joining tomato ⊙mozzarella = caprese is the same as the join mozzarella ⊙ tomato =
caprese. It is commutative.

• Operating multiple joins, e.g., (bun⊙ patty)⊙ cheese = cheeseburger, does not depend
on the order—it is the same as bun ⊙ (patty ⊙ cheese) = cheeseburger. It is associative.

Apart from idempotency, commutativity and associativity characterise the sum be-
tween integers +, explaining why ⊙ is referred to as the idempotent sum. We omit idempo-
tent since we are not going to consider the sum between integers, leaving us with no risk of
ambiguity. Summing up, formally, we obtain the following:

A semilattice (M,⊙) is a set, M = {x, y, . . .}, with one binary operation ⊙, called the
idempotent summation or just the sum, as listed below.

• Idempotent: x ⊙ x = x
• Commutative: x ⊙ y = y ⊙ x
• Associative: x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z

Without losing generality, we suppose that M is generated by a special set of elements
C = {c1, c2, . . .} ⊂M, which we call constants. They are called constants because they are
always present, i.e., constantly present, in the model. For example, in Figure 5, we can take
C as equal to all elements except the menu.
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The generic element of M, say hamburger ∈ M, is either a constant, which it is,
or can be written as a (possibly non-unique) sum of constants. It is also the case that
hamburger = bread bun ⊙ patty = bread bun ⊙ tomato. It should be noticed that we could
take menu out of C since we have menu = burgers ⊙ caprese. Of course, for readability
purposes, it is is easier to have menu instead of burgers ⊙ caprese.
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Remark 1. This example illustrates that the choice of constants is not unique, some can be dropped
as we just saw for menu. The set C can be tailored to the model, depending on the application, in
order to increase the potential for ease of interpretability.

Overall, diagrammatic representation has the potential to facilitate human under-
standing, while algebraic description allows for efficient machine computation when the
technical tools described in the next section are used.

4. Machine Learning Models Based on Semilattices
The technical formulations described in the following section are derived from [20–22].

The first step is to embed a real-world problem as a semilattice model. More specifically,
the input is given by the set of constants C and the set of relations R between the constants
and their sums. The output is the semilattice model, M. This is built by starting from the
constants and satisfying the relations in R (as well as their consequences). For example,
let C = {mozzarella, tomato, caprese, menu, restaurant}. Then, the set of relations R is
as follows:

menu ≤ restaurant caprese ≤menu

mozzarella ≤ caprese tomato ≤ caprese

The resulting model is M represented by Figure 1, shown above in Section 2.
One advantage of working directly with the information, without any layer of encod-

ing, is that in the model we build, information is preserved and deductions in said model
can be linked back to the original constituents of the model. For example, M can be the
model in Figure 2 of a restaurant with two different kinds of burgers: a cheeseburger and a
basic burger. As shown in Figure 6, the elements of this model can be renamed {m1, m2, . . . ,
mn}. However, as we need to model more general food access problems than what happens
in one particular restaurant, we need to “zoom out” to the urban food access landscape
summarized in Figure 7.
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We start building our model step by step. We start with a few constants, and then
expand the model. Take the set of constants C = {Tr, Fd}, with Tr representing a census tract,
and Fd the property of being a food desert. We set Fd ≤ Tr if Tr is a food desert. Our model
will be one of the following options shown below in Figure 8.
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Figure 8. Model options.

Thus, the links and points of the diagram change depending on the properties of the
census tract, as does our model as a consequence. The previous model only contained
information about a specific census tract Tr and the property of a food desert. In order to
build a model for a whole region and to add more properties to the one being analysed, it is
reasonable to consider several census tracts, {Tr1, . . . , TrN}, and also consider the properties
of being a food swamp and a food oasis, Fs and Fo respectively. We denote by MG the
global model over the constants {Tr1, . . . , TrN} ∪ {Fd, Fs, Fo}, with relations given in the
following manner:

Fd ≤ Tri if Tri is a food desert;
Fs ≤ Tri if Tri is a food swamp;
Fo ≤ Tri if Tri is a food oasis.
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If we reorder the tracts so that the first nd corresponds to food deserts, the next ns to
food swamps, and the last ones to food oases, we obtain the diagram shown in Figure 9 for
our MG:
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The global model MG has many elements corresponding to some of the possible
sums, which can be interpreted as the joint census tract, with top element ⊙MG simply
given by the sum of all the constants. Notice that the model has around 2N elements.
Since the number of elements that constitute a model can grow quickly, using either
diagrammatic or algebraic semilattices out-of-the-box is computationally problematic, since
both representations need us to list every element. To solve this problem, we next discuss
briefly an alternative representation for semilattices that, by translating said structure in
terms of sets with union, through what we call an atomisation, allows us to efficiently
store and manipulate models. Consider M as a model over a set of constants C. For ease of
representation, we can think of M as the model of Figure 1. An atom, denoted with Greek
letters ϕ, ψ, . . ., over C is simply (an object indexed by) a set of constants U(ϕ) ⊂ C. Set
ϕ < c if and only if c is a constant in U(ϕ). Examples of atoms are as follows:

ϕrestaurant < {restaurant}
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Notice that we write ϕU to explicitly set U = U(ϕ).
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Let M be a semilattice. An atomisation for M is a set A = {ϕ1, ϕ2, . . . } of compatible
atoms characterising the order of M. The theory developed in [20–22] guarantees us, among
other facts that we discuss later, the existence and uniqueness of atomisations.

Theorem 1. Let M be a semilattice. Then, M has a unique atomisation A with a minimal number
of atoms.

One reason for using atomisations is that they translate a given semilattice to sets
with unions. We show this explicitly using M, the model shown in Figure 11. Let A be the
atomisation of M given by A = {ϕrestaurant, ϕrestaurant,menu}. If we associate to the category
of restaurant the atoms lower than restaurant, denoted as L(restaurant), and similarly
for menu, then we have menu ≤ restaurant⇐⇒ L(menu) ⊆ L(restaurant). As expected
{ϕrestaurant,menu} ⊆ {ϕrestaurant, ϕrestaurant,menu}.
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Equivalently, we have L(menu ⊙ restaurant) = L(menu) ∪ L(restaurant). The previous
example is not a coincidence.

Theorem 2. Let (M,⊙) be a semilattice with atomisation A. Then

x ≤ y⇐⇒ L(x) ⊆ L(y)

L(x ⊙ y) = L(x) ∪ L(y).

Moreover, the mapping M ∋ x←→ L(x)⊆A is an equivalence (isomorphism) between
semilattices and sets (of atoms).

Remark 2. We remark that atomisations allow us to compress information about semilattices, while
keeping track of constants and their relations. For example, in Figure 9, we have different results for
Tr ⊙ Fd; this is effectively encoded with the atomisation shown in Figure 12 below.
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The ability of atomisations to effectively compress information is even more evident
when considering the model shown in Figure 9. In this case, the 2N elements of the global
model MG and their order is represented by the N atoms ϕTri plus three atoms, each below
exactly one of the constants: Fd, Fs, and Fo. For example, we have ϕFs ,Tr1,Tr2,...,Trns

. The
model MG with its atomisation is shown in Figure 13.
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Notice that, in the MG of the example shown in Figure 13, the only information is a
given tract being either a food desert, swamp, or oasis (i.e., Fd, Fs, Fo). Hence, this basic
model does not carry much information. This changes when we consider other data for a
given census tract. Let Tri be a constant representing a census tract. We consider several
attributes for Tri; for example, we can include the average household income. We add
constants {Il , Ia, Ih} to represent low, average, and high household incomes, respectively.
Since they refer to quantities, we can suppose them to be ordered, i.e., Il < Ia < Ih. Finally,
we set Tri to be greater than the relative constant, depending on Tri being on a given range,
e.g., if Tri has an average income, we set Tri > Ia. In this case, we would obtain, considering
only Tri, the model shown below in Figure 14. The atomisation for which is as follows:
A = {ϕTri, ϕIh, ϕTri, Ih, Ia, ϕTri, Ih, Ia, Il}.
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When considering more properties, such as average car availability, education degree
of population, etc., the atomisation will become more complex, entailing the relations
between tracts, food classifications, and other attributes. We show via an example how
this applies to two tracts: Tr1 and Tr2. Let M2 be the model with constants for tracts Tr1

and Tr2, {Fd, Fs, Fo} for the food environment classes, {Il, Ia, Ih} representing income levels,
and C representing car availability. Let us suppose that the data we have give us the
following model:

Fd ≤ Tr1, Il ≤ Tr1, C ≤ Tr1

Fd ≤ Tr2, Il ≤ Tr2, C ̸≤ Tr2

Thus, the difference between the two tracts is car availability. Consequently, the atomi-
sation for M2 contains, in addition to those with only one constant, the following atoms:

{ϕFdTr1Tr2, ϕIlTr1Tr2, ϕCTr1}

Hence, the atomisation reflects the relations between the data, while compressing the
information on the semilattice and allowing us to analyse the semilattice by directly using
the atoms.

The model M2, although it perfectly represents the data, is still not able to generalise
from such data. In setting Fd ≤ Tr1, we made Fd an intrinsic property of the tract, regardless
of the income and car availability present in said tract. Since we want to be able to predict
F_d from the tract properties, i.e., I_l and C, and since Il ⊙ C ≤ Tr1, a solution is to make
F_d a “property” of the configuration of the tract rather than of the tract itself. In other
words, we set

Fd ≤ Il ⊙ C ≤ Tr1 (1)

By the transitive property, we still obtain Fd ≤ Tr1, but now our model is more
refined. Suppose a new tract Tr3 is introduced, with the same income and car availability
of Tr1, since we made F_d a consequence of Il ⊙ C we automatically obtain Fd ≤ Tr3, by
Fd ≤ Il ⊙ C and Il ⊙ C ≤ Tr1. Hence, Tr_3 inherits the F_d property as a consequence of
looking the same as Tr_1, which is perfectly accurate for such a small model. Denoting new
model as M3, we see a consequent change in the atomisation:

{ϕFd IlTr1Tr2Tr3 , ϕIlTr1Tr2Tr3 , ϕCTr1Tr3}

The atomisation now encodes the interdependence between F_d and I_l. Since all the
food deserts have the property I_l and Tr_2 have only the property I_l, we obtain Fd ≤ Il ,
and accordingly

{ϕFd IlTr1Tr2Tr3} ⊆ {ϕFd IlTr1Tr2Tr3 , ϕIlTr1Tr2Tr3}

The process of replacing the income values with a few ranges is a simplification which,
while useful for representing and interpreting data, decreases the accuracy of the model. In
reality, we do not need to do so; for example, we can add a constant for each value we have
for the income of each tract, in order not to lose information, and hence accuracy. Figure 15
shows the general picture of such a model, which we denote as being continuous.

Vice versa, if our model were to become excessively large, then we can switch back to
the previous scenario that has ranges. This can be done by setting, for example, I_100 < I_50.
As a result, since we already had I_50 < I_100, by definition, all the constants between
I_100 and I_50 would collapse to a unique object, interpretable as the range I_[50, 100],
which inherits the relations of all its constants, i.e., I_50 < Tr while I_100 < I_50, also yields
I_100 < Tr.
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We end this section by outlining the basics of the implementation that we apply to the
food access landscape problem in the next section. As explained in Algorithm 1 below, the
main step is to build the model for our data. In other words, we build the set of constants,
C, containing one constant for each class of food landscape and one for each value attained
by each census tract, as well as satisfying the set of relations R as Equation (1). This is
performed by means of the output atomisation A, which completely encodes the model.
Subsequently, we use the atomisation A to predict if a test census tract is either a food
desert, food swamp or food oasis based on the tract data.

Algorithm 1: M = Model(R)

1 C = {F_d, F_s, F_o }, A = { ϕF_d, ϕF_s, ϕF_o}
2 foreach r = (Tr in class F_x with Property_i = y_i) in R:
3 add constants “Property_i = y_i” to C
4 set Rel:= F_x < Property_1 = y_1⊙ ...⊙ Property_n = y_n (cf. Equation (1))
5 A:= sparseCrossing(Rel, A)

More specifically,

1. We initialise the constants, one for each class, and relative atoms.
2. The main cycle: for each tract in the training, pertaining to a given food landscape

class and with given properties (also referred to as predictors) we do the following:
3. We add constants for our data;
4. We build the corresponding algebraic relations;
5. We update the atomisation to obtain a model that satisfies the given relation through

the sparse crossing algorithm (cf. [20]), which allows us to perform this operation
efficiently.

5. Case Study
By following the methods described in the previous sections, and informed by [20–22],

we build a model for the food desert landscape in the US in the year 2010, which for
the purpose of comparison is informed by [26]. As summarised in Table 1 below, all the
necessary information to build our model can be arranged in a table of size 50,212-by-19.
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Table 1. Summary of predictors.

Variable Description Mean

Observations Census tracts (2010) 50,212

HH Income
Median household income in the past

12 months
(thousand 2010 inflation-adjusted dollars)

54.75
(26.99)

Poverty rate
Tract poverty rate

(measured with heterogeneous
family-level threshold)

17.13
(12.73)

HH with SNAP
Tract housing units receiving

Supplemental Nutrition Assistance
Program benefits

219.17
(190.17)

Inequality Gini Index for the tract
(increases in inequality)

0.41
(0.06)

Unemployment Unemployment rate among population
16 years and over

8.66
(5.61)

Below
high school

% of population did not graduate
high school

18.58
(14.52)

High school % of population with high school degree 38.62
(17.05)

Bachelor’s
or more

% of population with a bachelor’s degree
or higher

26.63
(18.31)

Property value Median value of housing unit in
thousand dollars

242.37
(192.99)

Public transport % population using public transportation
(excluding taxicab)

2.31
(4.86)

No vehicle Number of housing units without
a vehicle

160.37
(246.28)

Land area Land area of the tract in square miles 45.83
(622.92)

Population density Population density per square mile of
land area (in thousand)

5.68
(11.78)

Black African American population (%) 13.50
(22.55)

Hispanic Hispanic or Latino population (%) 10.95
(12.15)

Asian Asian population (%) 3.83
(7.52)

White White population (%) 72.60
(26.39)

Rural population

The percentage of the population living in
a rural part of tract (measured by distance

from population weighted centroid
of a census tract)

17.47
(33.23)

mRFEI The modified Retail Food Environment
Index (%)

11.41
(9.09)

We start with a dataset of 50,212 census tracts, those for which in the given year com-
plete data is available, together with the 18 socio-economic predictors plus 1 for the mRFEI,
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which is the indicator used to classify food deserts, swamps and oases, corresponding,
respectively, to mRFEI of 0, mRFEI median (9.09) and mRFEI above the median. The reason
why the constants Tr_i for the census tracts do not appear in the previous list is that for the
purpose of classification, we are more interested in the values attained by the predictors,
as it is clear from Equation (1), in contrast to the global model of Figure 9, where we want
to explicitly consider all the tracts. Notice, we have constants for US states, as we deem
it a relevant feature of the data, each of them having different relevant legislation (taxes
and policies). The data used has been retrieved from [27–29]. A short summary of the
structuring of the source data is provided in Table 2 below. This shows the starting data
entries and the concluding data entries.

Table 2. Structuring of source data.

Census Tract Class State Income . . . Pop-Dens

1 Desert Alabama 45.96 . . . 0.9

2 Oasis Alaska 86 . . . 4.3

. . . . . .

50,212 Swamp Wyoming 52.5 . . . 7

Suppose we have a tract in Alabama which is a food desert, Figure 16 below depicts a
simplified, partial diagram for this case.
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Using the methods provided by AML, namely, sparse crossing, we are able to derive a
model, denoted M, with only 13,000 atoms (we call this set A) out of the much larger set
compatible with our relations. More specifically, in choosing a smaller set of atoms we are
in fact building a simplified model “focused” on the relations like Equation (1).

Using these atoms, we can predict if a census tract, based on the values of the predic-
tors, is either a desert, swamp, or oasis. In Table 3, we report the accuracy for distinguishing
between two classes, excluding a third. For example, between deserts and oases, in a test
set excluding swamps. We compare with the accuracy obtained from a straightforward
XGB implementation. The overall accuracy from the benchmark study [26] was 72 percent.

Table 3. Accuracy comparison between XGB and AML.

Method Deserts vs. Oases Swamps vs. Oases Deserts vs. Swamps

XGB 68.37% 69.18% 69.56%

AML 69.97% 69.25% 71.51%
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The prediction is obtained by comparing the atoms of M that are lower than a given
class with those that are lower than the test tract we want to predict. Let us consider the
tract Tr represented in Figure 16 and suppose our atomisation is as follows:

B =
{

ϕFd Income[20,43]PopDens[ 1,2] , ϕFs Income[45,50]PopDens[10,13] , ϕFo Income[51,98]PopDens[3,5]

}
where we used the intervals, as Income [20, 43], to abbreviate a set of constants, like
{Income21, Income24, . . ., Income42.8}.

It is simple to check that the term corresponding to Tr, which is the sum in Figure 16,
has more in common with the atom of B relative to a food desert, rather than to food swamp
or food oasis. Consequently, we assign the food desert property to the tract Tr. Clearly, as
the number of atoms grows, this prediction becomes more accurate but at the same time
becomes more complex. To manage increasing complexity, we select from the 13,000 atoms
representing M a smaller subset that contains the atoms that are most relevant with respect
to the relations like Equation (1). Thus obtaining a restricted set of around 1300 atoms,
which we call A’. There are only 5124 constants appearing in the atoms of A’, and we
name this set C’. This means that, inside the global model M, which is able to effectively
discriminate between deserts, swamps, and oases, we can find a much smaller model M’,
built over the constants of C’ with atomisation A’, which is still a “good” representation of
our problem. By good, we mean having high predictive accuracy for this problem while
controlling model complexity.

Selecting among those from the restricted set of constants C’, those more frequently
appearing in the atomisation A’, we obtain a much smaller sub-model we are actually able
to draw. Intuitively, we select the “concepts” of our model that recurrently appear in our
classifying model. An enlarged view of some of Figure 17 is provided in Figure 18.
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Figure 17 shows part of the diagram obtained by picking the five most relevant atoms
for food deserts, swamps, and oases, denoted with Φ, together with a few selected constants.
The diagram shows us some basic criteria for identifying food deserts. For example, a tract
Tr that has an income of 70 and a population density of 2 will be classified as a food desert.
This is an overly simplified model, as we considered only 15 atoms out of the 1300 of the
already-restricted set A’. More refined selection criteria can be used in order to picture the
interdependence of a subset of predictors or better analyse the differences between only
two of the three classes under investigation.

6. Discussion
6.1. Summary

As the category of semilattices contains that of trees, semilattices have greater repre-
sentation power than trees. In particular, semilattices enable a system to be represented
with fewer vertices than trees, thus providing better compression. The need for fewer
vertices is of primary importance because the number of vertices determines the number of
edges. The inherent advantages of semilattices are as applicable to machine learning as
they are to any other application of semilattices.

As illustrated in Figure 2, semilattices have inherently fewer vertices than trees when
modelling the same system, and hence inherently provide a better balance between accuracy
and complexity. The more vertices that are in a model, the more complex that model
becomes. Consider, for example, Figure 8, which for brevity shows a formulation whereby
two vertices for a tract is a food desert and three vertices for a tract is not a food desert.
As shown subsequently in Figure 9, the number of vertices can become very large as
a system is modelled in more detail. Thus, the development of techniques that yield
a reduction in vertices while maintaining the same accuracy is important for balancing
accuracy and complexity.

Diagrammatic representation has potential to facilitate human understanding while alge-
braic description can facilitate efficient machine computation. Diagram—algebra—diagram
descriptions can facilitate the explainability, transparency, interpretability, and shared in-
terpretability (ETISI) of models. However, as always, ETISI depends upon minimising
the cognitive load of representations [23]. For example, the cognitive load of Figure 9 is
higher than the cognitive load of Figure 8. The cognitive load of Figure 2 is smaller than
the cognitive loads of Figures 8 and 9. This is because of the work that has been performed
to make Figure 2 immediately understandable by using pictures to describe things that
people are already familiar with.

Algebraic machine learning (AML) enables the computing of semilattices in durations
of time that are short enough to provide timely information to human policymakers. This
is because AML uses atoms instead of vertices when computing the models. For example,
as shown in Figure 13, we only need N + 3 atoms instead of 2ˆN vertices. A similar scenario
is present in the case study of urban food access landscapes, which otherwise would be
intractable. After generating an accurate model with AML for a problem, such as urban
food access landscapes, rules can be inferred that policymakers can use to inform their
decision-making. For example, the diagram in Figure 18 shows some basic criteria for
identifying food deserts, such as tract income and population density.

Unlike other types of machine learning model structures, semilattices are not convo-
luted. Rather, the simple principles of semilattices are intuitively understandable and can
provide the basis for step-by-step traceable modelling. Nonetheless, developing expertise
in applying semilattices to machine learning does require practice. Whenever applying
AML, practitioners should follow the step-by-step sequence set out in this paper, which
starts with a simple diagram and progresses through more detailed diagrams that set out
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a sequence of modelling steps and incorporate algebraic descriptions. During its devel-
opment, this sequence of steps facilitates the evolving comprehension of the modelling
as it progresses. Then, when complete, it provides a traceable record, which can facilitate
ETISI for others. For example, as illustrated in Figure 2, semilattices incorporate natural
and easy-to-understand principles such as the information of higher vertices contains the
information of lower vertices. Informed by such principles, the steps set out in this paper,
and the methods explained in detail in [20–22], an inexperienced user can begin to address
other problems.

6.2. Principal Contributions

The two principal contributions of this paper are to argue that, as summarised in
Figure 1 and in Figure 2, semilattices can better enable interpretability than decision trees
because semilattices are inherently more accurate and less complex, and, as described
in Sections 3–5, algebraic semilattices can enable progression from input diagrammatic
semilattices to output diagrammatic semilattices. Through Figures 3–15, the paper includes
step-by-step guidance in how to build MLMs with algebraic semilattices, and through
Figures 16–18 the paper includes a detailed example of how to apply them to study complex
problems by means of algebraic machine learning. The semilattice example in the paper is
urban food access landscapes. This example illustrates the need to recognise that MLMs
often cannot be sufficient to provide humans with complete explanations. For example, the
benchmark machine learning study has a prediction accuracy of 72 percent [26], and the
prediction accuracy in the study reported here is not higher.

6.3. Limitations

Prediction accuracy related to urban food access landscapes is lower than, for example,
prediction accuracy for road traffic lights, which can be over 95 percent [30]. However,
large differences in prediction accuracy can arise from fundamental differences between
the things that are being modelled. For example, categories of road traffic lights are much
easier to differentiate than categories of urban food access landscapes. Differentiating
traffic light categories involves differentiating three colours, which are often organised
in configurations that are repeated millions of times throughout the world, such as a red
light at the top, an amber light in the middle, and a green light at the bottom. By contrast,
differentiating between food deserts, food swamps, and food oases can be a much more
difficult problem [31], which can entail disagreements about definitions such as whether
an area is a food oasis or is actually a food mirage for many people because it is an area
that is inaccessible to them [32]. Especially when MLMs are applied to contribute to
explanations of such difficult problems, much human work may still be required such as
visiting physical locations in person in order to gain a more complete picture of the situation
on the ground. Accordingly, our arguments here are limited to the propositions that
semilattices can provide an alternative to decision trees, and that semilattices can contribute
to going beyond the currently insufficient contributions from MLMs in explaining complex
phenomena. In particular, semilattices can contribute to improving the balance between
accuracy and complexity in modelling that involves machine learning. Here, accuracy and
complexity are balanced by using algebraic machine learning which, unlike other types
of machine learning, enables us to build semilattice models that are represented using
atomisations [20–22].

6.4. Directions of Future Research

Improving the explainability, transparency, interpretability, and shared interpretability
(ETISI) of machine learning models is an ongoing challenge [23]. This is to be expected
because explanation of even well-established constructs that long predate machine learning
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continues to be challenging. For example, even explanations of basic mathematics are not
yet so effective that every student, everywhere, every time, achieves 10 out of 10 in their
school mathematics tests. Rather, some types of basic mathematics, such as long division,
can be intrinsically more difficult to explain than others, such as short addition. This can
be because of the potential for cognitive load to increase as the number of interacting
elements in a subject increases [33]. Furthermore, there is the challenge that there are
some phenomena for which there are not yet falsifiable explanations: rather, there are
competing unfalsifiable explanations. An example is the ongoing competition between
unfalsifiable hypotheses about human consciousness [34]. In addition to hard-to-explain
well-established constructs and well-known phenomena without falsifiable explanations,
there are new phenomena that are not yet well-defined and that are being described with
new constructs. An example is urban food access landscapes, which are described with
constructs such as food deserts, food swamps, etc. Whatever type of machine learning
modelling is used, there are now more things to be explained: the new phenomena, the new
constructs, the machine learning model, and interrelationships between them. Accordingly,
it can be expected that explanation will continue to require a lot of hard work.

Less explanation will be required from machine learning models if they are preceded
by the application of established techniques such as structural equation modelling, which
can provide well-structured initial explanations [35]. Then, these initial explanations can be
expressed with analogies, metaphors, and images [36,37]. Figure 7 in Section 4 of this paper
provides an example of how images can be used to support explanations of urban food
access landscapes that use analogy and metaphor with contrasting similes such as food
deserts and food oases. After using analogies, metaphors, and images to reduce the overall
burden of explanation upon MLMs, a subsequent challenge is for a MLM to be transparent.
Metaphorically, transparency involves a MLM being a “glass box” instead of an opaque
“black box”. However, transparency does not necessarily improve the interpretability of
a MLM by humans because there can be so many things in a MLM that, although it is
human-readable, it is not human-intelligible. Consider, for example, this case, where there
are 101,225 constants. Humans cannot easily look at 101,225 things simultaneously in
detail. Yet, 101,225 constants is a small number of things for humans to try to look at in
detail simultaneously compared to the millions of neurons that can be in an artificial neural
network involved in deep learning computations [38]. Thus, the interpretability of many
types of MLM is not necessarily improved by MLMs being transparent.

By contrast, it has long been argued that machine learning that directly generates
decision trees is machine learning that is directly interpretable. However, not all decision
trees are equally interpretable, and some decision trees may not be interpretable [39].
Rather, decision trees can entail high cognitive loads, which can lead to individual people’s
interpretations being based more on their own existing internal world models than on
new information within the decision trees [23]. This can prevent shared interpretability,
which is needed to achieve consensus in decision-making through what can be described
as agreeable AI. Accordingly, a direction for future research is to compare the potential
of tree-based machine learning [40] and semilattices to facilitate shared interpretation.
Other directions for future research include comparing AML with ensemble models where
individual classical models are integrated with machine learning [41] and to models that
combine fuzzy sets with machine learning [42]: for example, by extending semilattices
and atomisations to the fuzzy set domain as a way to better encode uncertainty. These are
appropriate comparators for AML as they are also methods that combine prior knowledge
with learning from data.
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