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Abstract: Fast electron transfer between laccase (Lac) and single-walled carbon nanotubes (SWCNTs)
can be achieved at a cholate-modified SWCNT interface. Furthermore, the catalytic reduction
of O2 starts at a high potential, close to the equilibrium redox potential of the O2/H2O couple.
A sodium cholate (SC)-modified electrode interface provides suitable conditions for Lac direct
bioelectrocatalysis. In the present study, the SC promotional effect in Lac direct bioelectrocatalysis
was investigated using various types of electrode materials. The fully hydrophilic surface of indium
tin oxide and an Au electrode surface did not show a SC promotional effect, because SC did not
bind to these surfaces. A carbon surface with a large number of defects was unsuitable for SC
binding because of hydrophilic functional groups at the defect sites. Carbon surfaces with few defects,
for example, basal-plane highly oriented pyrolytic graphite (HOPG), gave a SC promotional effect.
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1. Introduction

Steroid biosurfactants such as cholate, deoxycholate, taurocholate, and deoxycholate are large,
rigid, planar, hydrophobic moieties that have a steroid nucleus with two or three hydroxyl groups.
These biosurfactants have been used as solubilizers for nucleotide- and membrane-binding proteins [1].
Furthermore, these biosurfactants, especially sodium cholate (SC, Figure 1), are outstanding dispersing
agents for nanocarbon, especially single-walled carbon nanotubes (SWCNTs) [2–4].
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sugar opened the way for glucose biofuel cells [5–16]. However, the transfer of electrons involved in 
the redox reactions to an external circuit is a challenging theme. This difficulty is due to the redox 
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Direct electron transfer reactions between proteins (enzymes) and electrodes have been extensively
studied from the viewpoints of both, understanding the fundamental features and for applications as
biosensors and biofuel cell [5–11]. Typically, enzymatic biofuel cell has been focused because of their
possibility to harvest energy out of non-toxic and non-combustible compounds like sugar opened the
way for glucose biofuel cells [5–16]. However, the transfer of electrons involved in the redox reactions
to an external circuit is a challenging theme. This difficulty is due to the redox center of the enzyme
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buried deeply within the protein shell. This requires the molecular orientation of the enzyme on the
electrode surface for achievement for direct electron transfer reaction.

Most enzymes used for the bioelectrocatalytic reduction of oxygen into water are from the
multicopper enzyme family, such as laccase (Lac) and bilirubin oxidase. Lac contains four copper
atoms within its active sites, which are classified as type-1 (T1), type-2 (T2), and type-3 (T3) Cu sites
according to their spectroscopic and magnetic properties [5–7,17]. T2 and T3 sites form a trinuclear
copper cluster called type-2/3 Cu (T2/3 Cu). The T1 Cu site functions as the primary electron
acceptor, and shuttles electrons to the T2/3 Cu site, where O2 is fully reduced to water without
releasing a H2O2 intermediate [5–7,12–14,17–19]. Lac has a number of strong advantages over other
multicopper oxidases, such as a high turnover catalytic frequency [6] and high catalytic efficiency at
high redox potentials [11,15,20–24]. Practical applications of Lac as a catalyst for enzymatic biocathodes
require direct electron transfer via fast interfacial tunneling. Attention has focused on engineering
of Lac electrode interfaces and materials such as planar and nanostructured carbon materials with
physically adsorbed Lac, surface-functionalized Au electrodes, carbon nanotube wires, and carbon
or Au nanoparticles have been developed [5–7,11–24]. We developed SC-functionalized SWCNT
interfaces for fast interfacial tunneling of Lac [5–7]. An SC-SWCNT electrode provides fast electron
tunneling at pH 3, namely 4–5 × 103 cm−1·s−1, with a high O2 reduction potential that is close to the
equilibrium redox potential of the O2/H2O couple (1.05 V vs. NHE at pH 3.0) [25–28]. Taking previous
research into account, this SC promotion effect would come from the Lac orientation controlling onto
the interface through hydorphobic and/or π–π interactions between the SWCNT interface and T1
Cu site of Lac located the substrate-binding pocket [5–7,11–24]. However, it was unclear whether the
SC effect could be achieved with other planar electrodes, such as Au, metallic oxides, and carbon
electrodes. In the present study, we clarified which electrode types give the SC effect and the reasons
for their suitability. Furthermore, SC adsorption on a basal-plane highly oriented pyrolytic graphite
(HOPG) electrode and the thickness of the SC molecular layer at its interface were investigated to gain
insights into Lac direct bioelectrocatalysis via fast interfacial tunneling.

2. Materials and Methods

Sodium cholate (SC) was obtained from Wako Pure Chemical Industries (Osaka, Japan).
Fungal Lac from Trametes sp. (Enzyme Commission number EC 1.10.3.2) was obtained from Amano
Enzyme (Nagoya, Japan) and purified by a previously reported method [16]. The Lac purity was
confirmed by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), which gave
a single band at approximately 63 kDa [26]. The Lac concentration was determined from its molar
absorption coefficient, that is, 5700 (mol·dm−3)−1·cm−1 at 614 nm [29]. Potassium hexacyanoferrate
(III) (K3[Fe(CN)6]) and hexa-ammineruthenium (III) chloride ([Ru(NH3)6]Cl3) were obtained from
Wako Pure Chemical Industries (Osaka, Japan).

Plastic formed carbon (PFC) plate (electrode area: 0.28 cm2, Mitsubishi Pencil Co., Ltd., Tokyo,
Japan) was obtained from the Tsukuba Materials Information Laboratory, Ltd. (Tsukuba, Japan).
Prior to use, the surface was polished with 0.05 mm alumina slurry, followed by sonication in Milli-Q
water for 10 min. HOPG plate (electrode area: 0.28 cm2) was obtained from Veeco Instruments,
New York, NY, USA. Prior to use, the surface of the basal plane was peeled off with adhesive tape
to expose a fresh basal plane. A tin-doped indium oxide (ITO) electrode (electrode area: 0.25 cm2,
tin-doped indium oxide thickness: ca. 30 nm), which was used as a metallic oxide, was obtained from
the Kinoene Optics Co., Tokyo, Japan. The ITO electrode surface was cleaned with a UV–ozone system
(OC-2503 model, Eye Graphics Co., Ltd., Tokyo, Japan) for 3 min to remove organic contaminants [30].
An Au disk electrode (electrode area: 0.20 cm2) was obtained from the BAS Co., Ltd. (Tokyo, Japan).
Prior to use, the disk surface was polished with 0.05 µm alumina slurry, followed by sonication
in water.

The electrode with a fresh surface was immersed in 0.2% (w/v) SC aqueous solution for 30 min.
For Lac modification, the electrode was immersed in 0.1 mol·dm−3 acetate buffer solution (pH 5)
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containing 5 µmol·dm−3 Lac at 8 ◦C for 30 min. Finally, each electrode surface was gently rinsed with
0.1 mol·dm−3 acetate buffer solution.

Voltammetric measurements were performed with an electrochemical analyzer (ALS/CHI model
600A) with a conventional three-electrode cell. The reference electrode was Ag|AgCl|saturated KCl
(+199 mV vs. NHE) and a Pt plate was used as the counter electrode. All potentials are reported
with respect to Ag|AgCl|saturated KCl at 25 ◦C. For the Lac bioelectrocatalysis experiments, 0.1 mol
dm−3 acetate buffer solution (pH 5) was used as the electrolyte; it was purged with high-purity argon
before measurements were performed. A steady-state sigmoidal shape (with a plateau current) in the
voltammograms of Lac adsorbed on the electrodes was obtained by stirring the buffer solution with a
magnetic stirrer. The cell temperature was controlled at 25 ◦C by a thermostated incubator. The redox
waves of K3[Fe(CN)6] and [Ru(NH3)6]Cl3 were examined in 0.1 mol dm−3 acetate buffer solution.

Cyclic voltammograms were simulated with cyclic voltammetric simulation software (DigiSim
2.0, Bioanalytical Systems, Tokyo, Japan) [31].

Raman spectroscopy was performed with a HORIBA LabRAM HR-800 instrument (HORIBA
Jobin Yvon, Les Ulis, France) with 514 nm (2.41 eV) laser excitation. All images were captured with a
digital charge-coupled device camera. Wavenumbers were calibrated against the 520 cm−1 emission of
the silica slides used for analysis. A 50× long lens was used to focus the laser at 2 µm, with a laser
power of 0.2 mW.

3. Results and Discussion

3.1. Dependence of SC Effect on Electrode Type

To investigate the SC promotion effect against the different type of planar electrode, we used
two types of carbon electrodes of HOPG and PFC, ITO, and Au electrodes. Figure 2 shows cyclic
voltammograms for HOPG, PFC, ITO, and Au electrodes after immersion in SC solution and then
Lac solution. A catalytic O2 reduction current was observed at the SC-treated HOPG electrode from
+0.65 V; this arises from direct electron transfer between immobilized Lac and the HOPG electrode.
However, the O2 reduction potential from +0.65 was lower potential than the previously obtained
result at SC-modified SWCNT interface. This direct bioelectrocatalytic current was not observed at
the bare HOPG electrode (i.e., HOPG without SC treatment). This clearly indicates that SC plays
an important role in promoting direct electron transfer from Lac at the HOPG interface. In contrast,
direct bioelectrocatalytic currents were not observed at PFC, ITO, and Au electrodes, although these
electrode surfaces were immersed in SC solution. It should be noted that the PFC did not give the SC
promotional effect although it is a carbon material. Possible reasons for these results are as follows.
The SC molecules were not adsorbed on the PFC, ITO, and Au electrode interfaces. Alternatively,
the SC molecules were adsorbed on the electrode surfaces, but the direct electron transfer reaction with
Lac did not occur.

3.2. SC Adsorption Behavior

The dependence of the SC promotional effect on the electrode type was clarified by investigating
SC adsorption phenomena, with redox complexes [Fe(CN)6]3− and [Ru(NH3)6]3+ as probes. The redox
reactions of [Fe(CN)6]3− and [Ru(NH3)6]3+ are strongly affected by electrode interface conditions [32].
It was expected that the redox behavior would change when SC was adsorbed on the interface. Figure 3
shows the changes in the redox behaviors of [Fe(CN)6]3− and [Ru(NH3)6]3+ at the HOPG electrode
before and after surface modification with SC. As described above, the HOPG electrode gave a SC
promotional effect in direct bioelectrocatalysis. This clearly indicates that SC was adsorbed on its
surface. Figure 3a shows that the redox reaction of [Fe(CN)6]3− was inhibited at the SC-modified
HOPG interface, but that of [Ru(NH3)6]3+ was not affected. The results obtained with [Fe(CN)6]3− and
[Ru(NH3)6]3+ differed because the SC molecule has a negatively charged carboxylic acid group bound
to the steroid framework; therefore, electrostatic repulsion should occur between [Fe(CN)6]3− and
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the SC-modified HOPG interface, but not at the interface with [Ru(NH3)6]3+. These results show that
[Fe(CN)6]3− is a suitable indicator for monitoring SC adsorption. The redox reactions of [Fe(CN)6]3−

at the PFC, ITO, and Au electrodes were also investigated. No change in the redox behavior was
observed at these electrodes, which indicates that SC molecules did not adsorb on the PFC, ITO,
and Au interfaces. This suggests that the fully hydrophilic surfaces of the ITO and Au interfaces did
not interact with the hydrophobic steroid framework. Moreover, electrostatic interactions between the
negatively charged carboxylic acid bound to the steroid framework and the electrode interface is not
expected because the ITO and Au interfaces are slightly negatively charged.
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Figure 3. Cyclic voltammograms of 2 mmol dm−3 (a) [Fe(CN)6]−3 and (b) [Ru(NH3)6]+3 at sodium
cholate (SC)-modified HOPG (solid line) and bare HOPG (broken line) electrodes in 0.1 mol·dm−3

acetate buffer solution (pH 5). Potential sweep rate was 20 mV·s−1.

The PFC electrode material is carbon, which is the same materials as HOPG. Carbon defects are
important to decide its surface characteristics. Figure 4 shows Raman spectra of HOPG and PFC. Raman
spectroscopy can be used to investigate sp2-hybridized structures in carbon materials, and yields
information on defects and the crystalline structure [33,34]. The prominent features in the Raman
spectra of HOPG and PFC are the G-band at ca. 1585 cm−1 and the D-band at ca. 1350 cm−1 [33,34].
The G-band is a doubly-degenerate phonon Raman active mode in sp2-structured carbon networks,
whereas the D-band is localized where the lattice structure is not perfect, mostly at the edges, and at
defects in the sp2-hybridized carbon structure. A D-band is not observed for HOPG. This indicates
that the sp2-hybridized carbon structure HOPG is highly crystalline, with almost no defects at the
detection level of this method. In contrast, the G/D intensity ratio for PFC was calculated to be ca. 0.65.
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The intensity of the D-band was higher than that of the G-band. Usually, defects in carbon are caused
by cleavage of carbon sp2-bonds and oxidation by O2 at cleavage sites. Hydrophilic functional groups
such as –C=O, –COOH, –C–OH, and –C–O–C– are present at defect sites [35–37]. The Raman results
indicate that the PFC surface is more hydrophilic than HOPG. In fact, the contact angles of HOPG and
PFC were obtained to be 71◦ (±2◦) and 58◦ (±2◦), which clearly indicated that the hydrophilicity of
PFC was higher than that of HOPG. This could be why SC does not adsorb on the PFC interface.
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3.3. Analysis of SC Adsorption Phenomena at HOPG Interface

In the Section 3.2, we clarified the reasons for the dependence of the SC promotional effect on
the electrode type. The SC promotional effect was observed only at the HOPG interface. We then
investigated SC adsorption phenomena at the HOPG interface by using [Fe(CN)6]3− as a probe.
Figure 5a shows the redox reaction of [Fe(CN)6]3− at the HOPG interface in 0.1 mol·dm−3 acetate
buffer solution in the presence of SC. The redox reaction was rapidly inhibited, even when the
concentration of SC was 40 nmol·dm−3, as shown by the increasing potential difference between the
positive and negative peak potentials. The heterogeneous electron transfer rate (k
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In Equation (1), B is the adsorption coefficient, CA is the SC concentration, a is an interaction
coefficient, and θ is the surface coverage of the HOPG interface by SC. If we assume that electron
transfer rate is linearly related to the coverage ratio of SC at the HOPG interface, θ can be described
by Equation (2), where ki
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coefficient, and θ is the surface coverage of the HOPG interface by SC. If we assume that electron 
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by Equation (2), where ki˚’ is the initial k˚’ obtained in the absence of SC, kf˚’ is the k˚’ value at a SC 
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’ value
was estimated from the simulated analysis of the cyclic voltammograms of [Fe(CN)6]3− at HOPG
in 0.1 mol·dm−3 acetate buffer solution in the presence of various concentrations of SC at potential
sweep rate of 20 mV·s−1. (b) SC coverage (θ) as a function of BCA (B: adsorption coefficient, CA: SC
concentration) and curves (broken line) simulated by Frumkin adsorption isotherm at various values
of the interaction coefficient (a). The θ value was estimated from Equation (2).

Figure 6b shows the obtained θ values as a function of BCA, and the simulated curve when
various a values were used. The figure clearly shows that the obtained results fitted the simulated
curve well according to Equation 1, when a was 0.5 and B was 1.4 (±0.4) × 108. Usually, in the
Frumkin adsorption isotherm, the a value indicates the following: a > 0, an attractive force between
molecules; a = 0, no interactions between molecules; and a < 0, a repulsive force between molecules.
For SC, a (=0.5) > 0, which indicates slight attraction between SC molecules and the HOPG interface.
Direct bioelectrocatalysis of Lac at the HOPG interface was also observed when SC and Lac were both
present (Figure 7b), but the catalytic current was much smaller than that obtained for only HOPG
surface modification with SC (Figure 7a). This could be because of the slow electron transfer rate of
Lac. The electron transfer rate is strongly affected by the electron tunneling distance. The electron
transfer rate decreases in proportion to exp (−βR), where R is the edge-to-edge electron tunneling
distance and β is proportional to the square root of the barrier height [39,40]. SC molecules act as an
insulating barrier and inhibit fast electron transfer when the SC molecules form a multilayer on the
HOPG interface.
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nmol·dm−3. The k˚’ values were almost constant or decreased slightly at 40–4000 nmol·dm−3. We thus 
concluded that binding of SC molecules to the HOPG interface reached a maximum at a SC 
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In Equation (1), B is the adsorption coefficient, CA is the SC concentration, a is an interaction 
coefficient, and θ is the surface coverage of the HOPG interface by SC. If we assume that electron 
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’ values [41].

log10ket = 13.0 − (1.2 − 0.8ρ)(R − 3.6) − 3.1(∆G + λ)2/λ (3)

where ket is the electron tunneling rate; ρ is the packing density of protein atoms in the volume
between the redox centers, to account for the β variations in exergonic electron tunneling rates; R is
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the edge-to-edge distance; λ is the energy required to reorganize the nuclear coordinates on electron
transfer; and ∆G is the driving force for electron transfer. The β value is included as a function of ρ [42].
Assuming that ρ = 0.78, ket = k
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(for Lac) at ∆G = −λ, and R is the distance between the T1 Cu site of
Lac and the HOPG surface, R is calculated to be 9.3 (±0.5) Å, where R is the included thickness of
the SC layer (LSC) on the HOPG interface electrode, as shown in Figure 7c. The LSC value can thus be
obtained with Equation 4 from the distance (L) between the T1 Cu site of Lac and the outside of the
Lac protein structure:

LSC = R − L (4)

The L value was previously reported to be 6.5 Å [24,43]. The calculated LSC value is 2.8 (±0.5)
Å. This LSC value is slightly smaller than 4.5 Å, which is the value obtained from the CPK model
(space-filling model) of a SC monolayer adsorbed on a HOPG surface. This result may suggest that
the SC molecules are present at the sub-monolayer level, and such SC sub-monolayer may promote
electron transfer from Lac.

4. Conclusions

SC adsorption phenomena strongly depend on surface hydrophilicity and hydrophobicity. SC was
not adsorbed on hydrophilic surfaces such as ITO and Au. However, SC adsorption on hydrophobic
carbon surfaces such as HOPG was good. SC did not bind well to PFC, although it is a carbon material,
because PFC has a large number of defects. These results were obtained from the redox reaction of
the charged complex [Fe(CN)6]3−. Electrochemical methods are useful for investigating surfactant
binding on electric conducting materials.

The SC adsorption phenomena at the HOPG interface were investigated with the Frumkin
adsorption isotherm. The SC coverage was evaluated from the k
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’ values of [Fe(CN)6]3− at the HOPG
interface. The results indicate that the SC molecule is slightly attracted to the HOPG interface. In a
solution containing a high concentration of SC, the SC molecules form a multilayer on the HOPG
interface. The resulting SC layer acts as an insulating barrier and inhibits fast electron transfer from Lac.
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