Microrheology to Understand the Viscosity Behavior of a Sophorolipid Biosurfactant
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Roy, A. A Review on the Biosurfactants: Properties, Types and its Applications. J. Fundam. Renew. Energy Appl. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R. Biosurfactants—a new frontier for social and environmental safety: A mini review. Biotechnol. Res. Innov. 2018, 2, 81–90. [Google Scholar] [CrossRef]
- Adu, S.A.; Naughton, P.J.; Marchant, R.; Banat, I.M. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics 2020, 12, 1099. [Google Scholar] [CrossRef]
- Dierickx, S.; Castelein, M.; Remmery, J.; De Clercq, V.; Lodens, S.; Baccile, N.; De Maeseneire, S.L.; Roelants, S.L.K.W.; Soetaert, W.K. From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol. Adv. 2021, 107788. [Google Scholar] [CrossRef] [PubMed]
- Develter, D.W.G.; Lauryssen, L.M.L. Properties and industrial applications of sophorolipids. Eur. J. Lipid Sci. Technol. 2010, 112, 628–638. [Google Scholar] [CrossRef]
- Hirata, Y.; Ryu, M.; Igarashi, K.; Nagatsuka, A.; Furuta, T.; Kanaya, S.; Sugiura, M. Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities. J. Oleo Sci. 2009, 58, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Kasture, M.; Singh, S.; Patel, P.; Joy, P.A.; Prabhune, A.A.; Ramana, C.V.; Prasad, B.L.V. Multiutility sophorolipids as nanoparticle capping agents: Synthesis of stable and water dispersible Co nanoparticles. Langmuir 2007, 23, 11409–11412. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Sabatini, D.A. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci. 2011, 12, 1232–1244. [Google Scholar] [CrossRef]
- Van Renterghem, L.; Roelants, S.L.K.W.; Baccile, N.; Uyttersprot, K.; Taelman, M.C.; Everaert, B.; Mincke, S.; Ledegen, S.; Debrouwer, S.; Scholtens, K.; et al. From lab to market: An integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnol. Bioeng. 2018, 115, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Van Bogaert, I.N.A.; Saerens, K.; De Muynck, C.; Develter, D.; Soetaert, W.; Vandamme, E.J. Microbial production and application of sophorolipids. Appl. Microbiol. Biotechnol. 2007, 76, 23–34. [Google Scholar] [CrossRef]
- Kim, K.; Dalsoo, Y.; Youngbum, K.; Baekseok, L.; Doonhoon, S.; Eun-Ki, K. Characteristics of sophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol. 2002, 12, 235–241. [Google Scholar]
- Delbeke, E.I.P.; Roelants, S.L.K.W.; Matthijs, N.; Everaert, B.; Soetaert, W.; Coenye, T.; Van Geem, K.M.; Stevens, C.V. Sophorolipid Amine Oxide Production by a Combination of Fermentation Scale-up and Chemical Modification. Ind. Eng. Chem. Res. 2016, 55, 7273–7281. [Google Scholar] [CrossRef]
- Zhang, L.; Somasundaran, P.; Singh, S.K.; Felse, A.P.; Gross, R. Synthesis and interfacial properties of sophorolipid derivatives. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 240, 75–82. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Baccile, N.; Seyrig, C.; Poirier, A.; Alonso-de Castro, S.; Roelants, S.L.K.W.; Abel, S. Self-assembly, interfacial properties, interactions with macromolecules and molecular modelling and simulation of microbial bio-based amphiphiles (biosurfactants). A tutorial review. Green Chem. 2021, 23, 3842–3944. [Google Scholar] [CrossRef]
- Baccile, N.; Cuvier, A.-S.; Prévost, S.; Stevens, C.V.; Delbeke, E.; Berton, J.; Soetaert, W.; Van Bogaert, I.N.A.; Roelants, S. Self-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers. Langmuir 2016, 32, 10881–10894. [Google Scholar] [CrossRef] [Green Version]
- Baccile, N.; Babonneau, F.; Jestin, J.; Pehau-Arnaudet, G.; Van Bogaert, I. Unusual, pH-induced, self-assembly of sophorolipid biosurfactants. ACS Nano 2012, 6, 4763–4776. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.G.; Shrestha, L.K.; Aramaki, K. Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. Colloid Polym. Sci. 2009, 287, 1305–1315. [Google Scholar] [CrossRef]
- Chen, M.L.; Penfold, J.; Thomas, R.K.; Smyth, T.J.P.; Perfumo, A.; Marchant, R.; Banat, I.M.; Stevenson, P.; Parry, A.; Tucker, I.; et al. Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 2010, 26, 18281–18292. [Google Scholar] [CrossRef]
- Ishigami, Y.; Gama, Y.; Nagahora, H.; Yamaguchi, M.; Nakahara, H.; Kamata, T. The pH-Sensitive Conversion of Molecular Aggregates of Rhamnolipid Biosurfactant. Chem. Lett. 1987, 16, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Champion, J.T.; Gilkey, J.C.; Lamparski, H.; Retterer, J.; Miller, R.M. Electron microscopy of rhamnolipid (biosurfactant) morphology: Effects of pH, cadmium, and octadecane. J. Colloid Interface Sci. 1995, 170, 569–574. [Google Scholar] [CrossRef]
- Xu, L.; Amin, S. Microrheological study of ternary surfactant-biosurfactant mixtures. Int. J. Cosmet. Sci. 2019, 41, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Kleinen, J.; Venzmer, J. Streaming potential measurements to understand the rheological properties of surfactant formulations containing anionic and zwitterionic surfactant. J. Cosmet. Sci. 2016, 67, 59–70. [Google Scholar] [PubMed]
- Patist, A.; Oh, S.G.; Leung, R.; Shah, D.O. Kinetics of micellization: Its significance to technological processes. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 176, 3–16. [Google Scholar] [CrossRef]
- Cates, M.E. Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J. Phys. Chem. 1990, 94, 371–375. [Google Scholar] [CrossRef]
- Schroyen, B.; Vlassopoulos, D.; Van Puyvelde, P.; Vermant, J. Bulk rheometry at high frequencies: A review of experimental approaches. Rheol. Acta 2020, 59, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Tan, G.; Jiang, H.; Vogtt, K.; Weaver, M.; Koenig, P.; Beaucage, G.; Larson, R.G. From well-entangled to partially-entangled wormlike micelles. Soft Matter 2019, 15, 642–655. [Google Scholar] [CrossRef]
- Amin, S.; Blake, S.; Kennel, R.; Lewis, E. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy. Materials 2015, 8, 3754–3766. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, B.R.; Weitz, D.A. Microrheology of cross-linked polyacrylamide networks. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2005, 71, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Krajina, B.A.; Tropini, C.; Zhu, A.; DiGiacomo, P.; Sonnenburg, J.L.; Heilshorn, S.C.; Spakowitz, A.J. Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials. ACS Cent. Sci. 2017, 3, 1294–1303. [Google Scholar] [CrossRef]
- Cai, P.C.; Krajina, B.A.; Kratochvil, M.J.; Zou, L.; Zhu, A.; Burgener, E.B.; Bollyky, P.L.; Milla, C.E.; Webber, M.J.; Spakowitz, A.J.; et al. Dynamic light scattering microrheology for soft and living materials. Soft Matter 2021, 17, 1929–1939. [Google Scholar] [CrossRef]
- Amin, S.; Rega, C.A.; Jankevics, H. Detection of viscoelasticity in aggregating dilute protein solutions through dynamic light scattering-based optical microrheology. Rheol. Acta 2012, 51, 329–342. [Google Scholar] [CrossRef]
- Baccile, N.; Van Renterghem, L.; Le Griel, P.; Ducouret, G.; Brennich, M.; Cristiglio, V.; Roelants, S.L.K.W.; Soetaert, W. Bio-based glyco-bolaamphiphile forms a temperature-responsive hydrogel with tunable elastic properties. Soft Matter 2018, 14, 7859–7872. [Google Scholar] [CrossRef]
- Mason, T.G.; Weitz, D.A. Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids. Phys. Rev. Lett. 1995, 74, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Microrheology Feature Key. Available online: https://www.malvernstore.com/en-gb/categories/software/cps0125 (accessed on 8 October 2021).
- Willenbacher, N.; Oelschlaeger, C.; Schopferer, M.; Fischer, P.; Cardinaux, F.; Scheffold, F. Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys. Rev. Lett. 2007, 99, 68302. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaeger, C.; Willenbacher, N. Mixed wormlike micelles of cationic surfactants: Effect of the cosurfactant chain length on the bending elasticity and rheological properties. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 406, 31–37. [Google Scholar] [CrossRef]
- Bharadwaj, N.A.; Ewoldt, R.H. Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheol. Acta 2015, 54, 223–233. [Google Scholar] [CrossRef]
- Costello, B. The AR-G2 Magnetic Bearing Rheometer. 2005. Available online: http://www.tainstruments.com/pdf/literature/RH085_AR_G2_performance.pdf (accessed on 25 November 2021).
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, C.; Wang, J.; Gao, W.; Akhverdiyeva, R.; Shah, V.; Gross, R. Supramolecular assemblies of a naturally derived sophorolipid. Langmuir 2004, 20, 7926–7932. [Google Scholar] [CrossRef]
- Hirata, Y.; Ryu, M.; Ito, H.; Araki, M. Saraya Co. Ltd. High-Purity Acid-Form Sophorolipid (SL) Containing Composition and Process for Preparing Same. European Patent EP2821495A1, 7 January 2015. [Google Scholar]
- Agrawal, N.R.; Yue, X.; Raghavan, S.R. The Unusual Rheology of Wormlike Micelles in Glycerol: Comparable Timescales for Chain Reptation and Segmental Relaxation. Langmuir 2020, 36, 6370–6377. [Google Scholar] [CrossRef]
- Cardinaux, F.; Cipelletti, L.; Scheffold, F.; Schurtenberger, P. Microrheology of giant-micelle solutions. Europhys. Lett. 2002, 57, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Läuger, J.; Stettin, H. Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. J. Rheol. 2016, 60, 393–406. [Google Scholar] [CrossRef]
- Dhasaiyan, P.; Le Griel, P.; Roelants, S.; Redant, E.; Van Bogaert, I.N.A.; Prevost, S.; Prasad, B.L.V.; Baccile, N. Micelles versus Ribbons: How Congeners Drive the Self-Assembly of Acidic Sophorolipid Biosurfactants. ChemPhysChem 2017, 18, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Baccile, N.; Pedersen, J.S.; Pehau-Arnaudet, G.; Van Bogaert, I.N.A. Surface charge of acidic sophorolipid micelles: Effect of base and time. Soft Matter 2013, 9, 4911–4922. [Google Scholar] [CrossRef] [Green Version]
- Hayward, D.W.; Chiappisi, L.; Teo, J.H.; Prévost, S.; Schweins, R.; Gradzielski, M. Neutralisation rate controls the self-assembly of pH-sensitive surfactants. Soft Matter 2019, 15, 8611–8620. [Google Scholar] [CrossRef] [PubMed]
Calculated | Mechanical | ||||
---|---|---|---|---|---|
Concentration/% | Cross-over/rad/s | G0 (spectra)/Pa | G0 (cole-cole)/Pa | Zero shear viscosity from microrheology/mPas | Viscosity from mechanical/mPas |
pH 3 | |||||
15 | 1430 | 7.7 | 7.3 | 5.4 | - |
20 | 780 | 9.6 | 10 | 12 | 7.2 |
30 | 500 | 12 | 12 | 24 | 16 |
40 | 380 | 19 | 16 | 50 | 42 |
pH 8 | |||||
15 | 6390 | 41 | 41 | 6.0 | 4.1 |
20 | 5800 | 35 | 40 | 6.0 | 4.8 |
30 | 2500 | 39 | 47 | 16 | 12 |
40 | 2070 | 92 | 80 | 44 | 63 |
Calculated | Mechanical | ||||
---|---|---|---|---|---|
Temperature/°C | Cross-over/rad/s | G0 (spectra)/Pa | G0 (cole-cole)/Pa | Zero shear viscosity from microrheology/mPas | Viscosity from mechanical/mPas |
pH 8 | |||||
0 | 515 | 72 | 66 | 140 | 200 |
5 | 780 | 90 | 91 | 115 | 150 |
25 | 1571 | 94 | 96 | 60 | 60 |
40 | 2870 | 84 | 80 | 30 | 33 |
60 | 5300 | 90 | 115 | 17 | 17 |
pH 3 | |||||
0 | 215 | 28 | 26 | 130 | 140 |
5 | 325 | 25 | 24 | 77 | 70 |
25 | 300 | 18 | 14 | 60 | 42 |
40 | 360 | 13 | 12 | 36 | 30 |
60 | 240 | 9 | 8 | 38 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleinen, J.; Langwald, J.; Venzmer, J.; Yalcinkaya, H. Microrheology to Understand the Viscosity Behavior of a Sophorolipid Biosurfactant. Colloids Interfaces 2022, 6, 3. https://doi.org/10.3390/colloids6010003
Kleinen J, Langwald J, Venzmer J, Yalcinkaya H. Microrheology to Understand the Viscosity Behavior of a Sophorolipid Biosurfactant. Colloids and Interfaces. 2022; 6(1):3. https://doi.org/10.3390/colloids6010003
Chicago/Turabian StyleKleinen, Jochen, Jan Langwald, Joachim Venzmer, and Hacer Yalcinkaya. 2022. "Microrheology to Understand the Viscosity Behavior of a Sophorolipid Biosurfactant" Colloids and Interfaces 6, no. 1: 3. https://doi.org/10.3390/colloids6010003
APA StyleKleinen, J., Langwald, J., Venzmer, J., & Yalcinkaya, H. (2022). Microrheology to Understand the Viscosity Behavior of a Sophorolipid Biosurfactant. Colloids and Interfaces, 6(1), 3. https://doi.org/10.3390/colloids6010003