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Abstract: Background: Colorectal cancer is one of the most challenging cancers to treat. Exploring
novel therapeutic strategies is necessary to overcome drug resistance and improve patient outcomes.
Quercetin (QR) is a polyphenolic lipophilic compound that was chosen due to its colorectal anticancer
activity. Nanoparticles could improve cancer therapy via tumor targeting by utilizing D-tocopheryl
polyethylene glycol succinate (vitamin-E TPGS) as a surfactant in a nanoemulsion preparation, which
is considered an efficient drug delivery system for enhancing lipophilic antineoplastic agents. Thus,
this study aims to develop and optimize QR-loaded nanoemulsions (NE) using TPGS as a surfactant
to enhance the QR antitumor activity. Method: The NE was prepared using a self-assembly technique
using the chosen oils according to QR maximum solubility and TPGS as a surfactant. The prepared
QR-NE was evaluated according to its particle morphology and pH. QR entrapment efficiency and
QR in vitro drug release rate were determined from the selected QR-NE then we measured the QR-NE
stability. The anticancer activity of the best-selected formula was studied on HT-29 and HCT-116
cell lines. Results: Oleic acid was chosen to prepare QR-NE as it has the best QR solubility. The
prepared NE, which had particles size < 200 nm, maximum entrapment efficiency > 80%, and pH
3.688 + 0.102 was selected as the optimal formula. It was a physically stable formula. The prepared
QR-NE enhanced the QR release rate (84.52 ± 0.71%) compared to the free drug. QR-NPs significantly
improved the cellular killing efficiency in HCT-116 and HT-29 colon cancer cell lines (lower IC50, two
folds more than free drug). Conclusion: The prepared QR-NE could be a promising stable formula for
improving QR release rate and anticancer activity.

Keywords: colorectal cancer; nanoemulsion; quercetin; TPGS; drug delivery system

1. Introduction

Colorectal cancer is one of the most common cancers in men and the third among
women globally. More than 1.9 million new colorectal cancer cases and 935,000 deaths
were estimated to have occurred in 2020 [1,2]. Although its mortality rates have decreased
in all populations, the American Indians and Alaskan natives still suffer mostly at a
high rate [3,4]. Nowadays, newer applications are used to diagnose and treat colorectal
cancer due to their excellent enhancement of conventional methods and the development
of novel approaches for detection and therapy, such as nanotechnology [5–7]. Recent
nanotechnologies applications in colorectal cancer therapy have utilized nano-sized particle
(NP)-based specific delivery systems for enhancing chemo and targeted therapy for tumors.
These novel treatment approaches enhance drug permeability and drug retention effect [8,9].
The enhancing permeability and retention (EPR) effect arises from the leaky vasculature
and impaired lymphatic drainage in the tumor cells [10,11].
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Tumor targeting is one of the main nanotechnology advantages in cancer treatment.
A NPs drug delivery system could improve drug delivery to malignant cells with less
accumulation in nonmalignant cells [12]. This could be achieved by passive and/or active
targeting, for targeting malignant and nonmalignant cells. In passive targeting, nano-drug
particles could entrap the tumor cells, which could enhance the permeability and retention
(EPR) [13]. To localize nano-drug particles to cancer cells, active targeting is promising,
using selective molecular recognition as antigens or frequently expressed proteins on the
surfaces of cancer cells. It also takes advantage of biochemical properties associated with
cancer, such as matrix metalloproteinase secretion [14].

Nanoscale drug delivery systems, commonly referred to as nanocarriers, are nano-
sized materials that can carry multiple drugs or imaging agents. Nanoemulsions (NE) as
nanoscale delivery systems can deliver hydrophobic cytotoxic antineoplastic drugs with
efficient pharmacokinetics and pharmacodynamics patterns. NE can also enhance the
dose efficacy, reduce the drugs’ side effects, increase the drug surface area, ease prepara-
tion, improve the thermodynamic stability, and help target and sustain controlled drug
delivery [15–17].

Quercetin (QR) is a bioactive flavonoid compound (flavanol class) with strong anti-
cancer activity besides its anti-inflammatory, anti-oxidant, and vasodilator effects [18,19].
QR anticancer activity works by adjusting cell-cycle progression, promoting apoptosis
by reducing the expression stage of anti-apoptotic proteins, inhibiting angiogenesis and
metastasis progression, affecting autophagy, and inhibiting cell proliferation [19,20]. Ac-
cording to its rapid clearance and lower water solubility and stability, the lower QR’s oral
bioavailability and high therapeutic dose (about 500 mg twice daily) are the primary oral
QR limitations [21]. QR stability changes in a physiological medium as it is affected by pH,
temperature, and oxidation [21]. In addition, using D-tocopheryl polyethylene glycol succi-
nate (vitamin E TPGS) surfactant in nanocarrier is promising. TPGS is the water-soluble
derivative of vitamin E. It contains a hydrophilic polar head and the lipophilic alkyl tail,
which has been shown to have beneficial effects on the solubilization of QR, inhibiting
P-gp mediated by hindering P-gp efflux on intestinal brush borders. TPGS has proved
its essential role in chemotherapy by inducing cell-cycle arrest, promoting apoptosis, and
enhancing permeation in the cancer cell [22]. Therefore, in this study, QR will be loaded in
NPs as a NE formulation using TPGS as a surfactant to overcome the QR drawbacks and
enhance its antitumor efficacy.

2. Materials and Methods
2.1. Materials and Cell Lines

The QR, medium-chain triglyceride, glyceryl monooleate (GMO), oleic acid, PEG
400, and surfactants (TPGS) were bought from Sigma-Aldrich Co (St. Louis, MO, USA).
Colon cancer cell lines HCT-116 and HT-29 ATCC® were taken from our collaborator and
were cultured in Gibco DMEM (Dulbecco’s modified Eagle’s medium) containing 4.5 g
of glucose/liter (Thermofisher Scientific, Waltham, MA, USA) and including 10% fetal
bovine serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA). For MTT studies, the
cell culture media were maintained at 37 ◦C and 5% CO2 after being supplemented with
100 units/mL of penicillin and 100 µg/mL of streptomycin.

2.2. Selection of the Oil Phase

The appropriate oil for NE formulation is the oil improving the drug solubility to
increase the drug-entrapping efficiency. An excess QR amount was separately added to
5 mL of certain oils such as MCT, glyceryl monooleate (GMO), and oleic acid (all of the
above vehicles were in a liquid phase at 37 ◦C) for 72 h to achieve a dissolution equilibrium
state. The samples were centrifuged at 10,000 rpm for 10 min. The QR concentrations in
the supernatant were quantified by UV analysis at 370 nm using Synergy 2 UV Microplate
Reader by BioTek Instruments, Inc. The solubility result was the mean of three experiments
± SD [23].
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2.3. Preparation of Quercetin-Loaded NEs (QR-NEs)

QR-NE was prepared by the high-pressure homogenization (HPH) method, as de-
scribed previously by Sessa et al. [24]. The emulsion components were selected based
on several preliminary trials, and the chosen oil was the oil that had the maximum drug
solubility. Oil phase (the selected oil) 10 w/w% was heated at 70 ◦C, then 0.1 w/w% QR
was added and magnetically stirred for 15 min, till complete drug solubilization. The
aqueous phase consists of distilled water containing 8 w/w% surfactants (TPGS) heated to
the same temperature as the oil phase. Coarse emulsions were prepared by adding the oil
phase into the aqueous phase under magnetic stirring at 500 rpm for 10 min. The coarse
emulsions were passed through a high-pressure homogenizer to obtain final NE (AH100D,
ATS Engineering, BVI, Canada), further dispersed by high-speed stirring using Ultra-Turrax
(FM200, FLUKO Technology, Saarbrücken, Germany) at different homogenization rates
(10,000, 12,000, 15,000) rpm for different times (10, 12, 15 min). To investigate the impacts
of each independent variable (homogenizer speed and rotation time) and their combined
effect on dependent variables (particle size and entrapment efficiency) one-way ANOVA
was used with consideration of significant difference at p < 0.05 using Design Expert 7.0.0
Stat Ease. Inc. Minneapolis, MN, software [25].

2.4. Evaluation of the Prepared QR-NE
2.4.1. Nanoemulsion Particle Morphology

NE droplet size and zeta potential was determined by a Zeta-sizer (Zeta-sizer Ver.
7.01, Malvern Instruments). Separately, 0.1 mL of the prepared QR-NE formulation was
dispersed in 50 mL of water and mixed well, and monitored at 25 ◦C ± 1.

2.4.2. Determination of Entrapment Efficiency

Entrapment efficiency (EE%) and loading capacity were determined by difference
according to the following equations, respectively:

EE (%) = Weight of total drug in the formulation − Weight of drug in the aqueous phase (un-entrapped) ×
100/Weight of total drug in the formulation.

(1)

Drug loading (%) = (Total weight of the drug/Total weight of sample) × 100%. (2)

The free drug concentration (un-entrapped) was determined in the supernatant after
centrifugation of the prepared QR-NE formulations at 13,300 rpm and 4 ◦C for 60 min
(Eppendorf, Hamburg, Germany). The QR amount in the supernatant was assessed against
a blank (free QR formulation we prepared and treated under the same conditions) using a
UV spectrophotometer (Pharmacia/Amersham Ultrospec 4000 UV/VIS Spectrophotometer)
at 370 nm [26].

2.4.3. Determination of pH

The pH of the formulation was measured using a digital pH meter (Metler Toledo,
OH, USA). Results were taken as the mean ± SD of three measures to reduce the error. pH
is an important parameter as mainly the used excipients in the formulation decide the pH
of the final preparation and hence the route of administration.

2.5. Studying the Physical Stability of QR-NE
2.5.1. Centrifugation Method

The selected formula was centrifuged at 5000 rpm for 10 min to check its physical
stability. The nanoemulsion system was observed visually for the appearance of any
creaming or phase separation [27].
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2.5.2. Agitation Test

Three grams of QR-NE selected formula were accurately weighed and placed in a petri
dish on a platform shaker at 50 rpm for 24 h at room temperature using an orbital shaker.
The sample was observed for signs of any cream or oil droplets (phase separation) [28].

2.5.3. Heating Cooling Cycle

The formulae were stored between refrigerator temperatures 4 ◦C and 45 ◦C for six
cycles with storage at each temperature and not less than 48 h. The formulations, stable at
these temperatures, were subjected to centrifugation [29].

2.6. In Vitro Drug Release Study of QR from QR-NEs

The in vitro release study was conducted separately on free drug (QR) suspension
and the selected formula (QR-NE). Two grams from each, separately, were put in a dialysis
bag (molecular weight cut-off 3500). The dialysis bags were put into a beaker containing
50 mL of the release medium at 37 ◦C and mechanically stirred at 100 rpm. At specific
time intervals, 2 mL release medium (10% alcoholic water; to maintain a sink condition)
was withdrawn and replaced with an equivalent fresh medium. QR-released concentration
was determined using a UV-spectrophotometer. Three independent experiments were
conducted, and the data were expressed as mean ± SD [30].

2.7. Transmission Electron Microscopy (TEM)

For morphology, transmission electron microscopy (TEM) characterization of the
tested selected formula was tested using the JEOL JEM-1000 instrument (JEOL Ltd., Tokyo,
Japan). Fifty microliters of the selected sample were placed on a film-coated 200-mesh
copper specimen grid for 10 min, and the fluid excess was eliminated using filter paper.
The prepared grid was stained using 3% phosphotungstic acid (one drop) and dried for
3 min. The dried sample was examined using the TEM microscope (Philips, CM 12). The
sample was observed by operating at 120 kV.

2.8. Evaluation of the Anticancer Activity against HT-29 and HCT-116 Cells

The cytotoxicity of the selected QR-NE formula was studied on HT-29 and HCT-116
cells using MTT-colorimetric method. An MTT assay was used to evaluate the viability
of cancer cell lines following 48 h of treatment with quercetin at 5, 10, 20, 50, and 100 µM.
Free QR was used as a control. Both cells were seeded in 96-well plates at a density of
5 × 103 cells and then incubated for 24 h. Subsequently, the cells were treated with series
concentrations of free QR and the selected formula of QR-NE (containing an equivalent
concentration of QR) separately for 24 h. The cell viability was evaluated with MTT on a
Synergy 2 Multi-Detection Microplate Reader by BioTek Instruments, Inc at 570 nm. The
inhibitory concentration (50%) was determined from 3 independent experiments conducted,
and the result was expressed as mean ± standard deviation compared to full proliferation
(100%), which was obtained from untreated cells and was considered a negative control [31].

2.9. Animals’ Treatment and Histological Analysis of Tissues after QR-NE Treatment

To evaluate the safety of QR-NE, male Wistar rats (200 ± 20 g) were used. The study
was conducted according to the guidelines of the Declaration of Helsinki and approved
by the Institutional Animal Care and Use Committee at Taif University, Taif, Saudi Arabia.
The protocol number is (42-0112). The rats were kept and housed in the animal facility
within optimal conditions (a quiet, stress-free, temperature-controlled environment, on a
12-h light/dark cycle). After housing for about a week in the laboratory conditions, the
rats were randomly distributed into 3 groups (4 rats per group). Group (I): vehicle group
(the rats were intraperitoneally treated with 1 mL/kg of normal saline); Group (II): free
drug (the rats were intraperitoneally injected with 50 mg/kg of QR treatment); Groups
(III): QR-NE treatment (the rats were intraperitoneally injected with 50 mg/kg of QR-NE
treatment). All the treatments were continued for 5 consecutive days. Then, for evaluating
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the effects of the compounds, the 12 h fasted rats were sacrificed by anesthetizing and both
whole blood and the tissues were collected. For histopathological examination, a part of
the collected tissues was fixed in 10% neutral buffered formalin. The histopathological
alterations were assessed using the extracted specimens from liver, kidney, and spleen.
The specimens were instantaneously fixed after being extracted in 10% formaldehyde and
embedded in paraffin wax. Sections from specimens were slided (3–4 µm) after being
deparaffinized and hydrated in distilled water. Then the sections were stained with hema-
toxylin and eosin (H&E) according to standard protocols to evaluate tissue architecture.
Finally, histological images were taken using an inverted fluorescence microscope (Leica
DMI8, Leica, Wetzlar, Germany).

2.10. Statistical Analysis

The results of in vitro and anticancer activity studies were expressed as the mean of
three replicates ± SD. The paired t-test was used to compare two variables, while one-way
ANOVA was used to assess the difference between groups using Design Expert 7.0.0 Stat
Ease. Inc. software at a probability level p < 0.05 for significant differences. Sigmoidal
concentration–response curve-fitting models and best-fit straight lines were used by Sigma
plot software to calculate cell viability and cellular apoptosis, respectively. Cell viability
was expressed as a percentage of survival compared to untreated cells, whereas cellular
apoptosis was represented in folds compared to untreated cells (negative control).

3. Results and Discussion
3.1. The Selection of Oils

Different oils (GMO, medium-chain triglyceride, and oleic acid) were chosen as excipi-
ents due to their biocompatibility and low toxicity. Moreover, they have also been reported
to form stable nanoemulsions without precipitation. As shown in Figure 1a, the solubility
of QR was found to be highest in the oleic acid (18 carbon chain) [32]. Hence, the oleic was
chosen as an oil phase to prepare nanoemulsion containing QR in this study (p < 0.05).
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Figure 1. (a) Selection of oil for QR-NE preparation (there is a significant difference between GMO and
MCT solubility results from oleic acid’s results at p = 0.068 * and 0.041 **, respectively). (b) Quercetin
emulsion using the selected oil (the composition as in the methods section). (c) Quercetin nanoemul-
sion after homogenization.

The NE preparations were mainly affected by their components. A preliminary study
was conducted; the accepted formula was only the official formula considering the NEs
have a homogenous yellow milky-like consistency. After homogenization treatments, stable,
clear, and homogenous with no oil droplets solutions were obtained as shown in Figure 1b,c.
Table 1 summarizes the nine experiment runs by studying the independent variables on
the accepted particle size, DL, and EE%. As presented in Table 1, all formulations have
an average particle size in the nano-range ranging from 9.522–273 nm. The drug-loading
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content and encapsulation efficiency of the QR-NE can be measured compared to a standard
curve. In this study, we obtained enough drug-loading ranging from 46.87% to 53.65%.
As observed, increasing the homogenization speed led to decreasing the particle size as
observed from the formulae from one to six, and a further increase in the homogenization
speed of 15,000 rpm led to a further increase in the particle size as observed in the formulae
from 7 to 9. This may be because either the droplet breakup was not continuous due to
turbulent–inertial forces appearing in the used homogenizer, or there was retardation of
droplet breakup or significant re-coalescence at higher pressures. These results agreed with
previously reported results by Jafari et al. [33].

Table 1. Formulation parameters affect the particle size and entrapment efficiency.

PN Speed (rpm) Time (Min) EE% DL PS (nm)

1 10,000 10 87.3 ± 2.5 46.87% 273.9 ± 2.22
2 10,000 12 91.2 ± 2.12 48.97% 127.7 ± 1.14
3 10,000 15 93.2 ± 1.87 51.84% 203.2 ± 1.98
4 12,000 10 83.5 ± 1.09 53.65% 50.59 ± 0.56
5 12,000 12 85.5 ± 1.11 50.98% 9.522 ± 0.11
6 12,000 15 88.9 ± 2.01 52.115 62.37 ± 0.87
7 15,000 10 79.1 ± 1.76 47.87% 155.3 ± 1.53
8 15,000 12 78.8 ± 1.65 49.97% 85.6 ± 0.16
9 15,000 15 77.1 ± 1.23 50.84% 105.2 ± 0.54

Abbreviations: PN: Patch number; EE%: Encapsulation efficiency; DL: Drug loading; PS: Particle size.

Also, Figure 2 illustrates the influence of homogenization speed and time on parti-
cle size. The following equation shows the effect of the different variables on QR-NEs
particle size:

PS = 357.543362573099 − 0.0139235087719298 × Speed − 5.39640350877193 × Time. (3)

The expressed equation (Equation (3)) revealed that the negative sign of the speed and
time coefficients indicated a significant inverse relationship between the speed and time of
homogenization and the particle size. The p-value for homogenization speed was 0.0368
(p < 0.05) which indicates that increasing the homogenization speed had a significant effect
on particle size reduction while homogenization time has no significant effect on decreasing
particle size; p-value = 0.0714 (p > 0.05). This could be due to increasing homogenization
speed, which could amplify mechanical and hydraulic shear that breaks the emulsion gel
structure into NE vesicles with a smaller particle size [34]. To be more precise, increasing
the homogenization speed (from 10,000 rpm to 12,000 rpm) and homogenization time (from
10 min to 12 min) led to a decrease in the PS of the nanoemulsion formulations. Further
increases resulted in a significant increase in particle size.
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The effect of different formulation variables on EE% is noted in Table 1 and Figure 3.
As noted in the following equation:

EE = 96.166081871345 − 0.0023140350877193 × Speed + 0.612280701754387 × Time. (4)

The negative sign of homogenization speed indicates a significant antagonistic effect
on EE% (p < 0.05). Increasing homogenization speed decreases the entrapping of QR into
NE particles by reducing their contact. In contrast, a significant direct relation between
homogenization time and EE% could be observed (p < 0.05). By increasing the contact time
between drug and NE components, therefore EE% could be improved. This result agreed
with previously reported works [35].
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3.2. Optimized QR-NE Formula Selection: Morphology and pH Determination

For formula optimization, the formulae with PS < 200 nm, higher DL > 50%, and
maximum EE > 80% had higher priority and were chosen for further study. Therefore,
formulae (F4, F5, F6) were selected. A paired t-test was applied to these formulae’s PS
and EE in pairs, and it was found that there were no significant differences between these
formulae in the EE% results, while there was a substantial difference in the PS results.
Therefore, F5 was chosen as it had a high EE% value, 85.5%, and the uniformly smallest PS
with a high intensity of 96%, as represented in Figure 4a.
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Transmission electron microscopy characterization of F5 in Figure 4b shows that the
nanoemulsion particles are uniformly nano-sized and have a spherical shape with a smooth
and flexible boundary. No aggregation appears between the nanoparticles, indicating their
stability against Ostwald ripening due to globular collapse [2]. This result agreed with
previously reported results that TPGS could form a smooth particle layer, protecting the
NE particles from severe structural changes.

The pH of the selected formula (F5) was 3.688 ± 0.102. The result indicates the
suitability for oral administration of the prepared emulsion as it is closer to the stomach
pH range (1.5–4). In addition, it is also more comparable to the large intestine pH (4–7);
therefore, QR-NEs are suitable for colon administration [36].

3.3. Studying the Physical Stability of QR-NEs

After agitation and centrifugation on QR-NE (F5), there was no phase separation or
creamy appearance in the prepared QR-NE formula. Nanoemulsion is a physically stable
form of the prepared emulsion. In general, the nanoemulsion particles exhibit Brownian
movement; therefore, no coalescence of droplets could occur except in the absence of this
Brownian movement [37]. Centrifugation and agitation could contribute to the energy with
which the NE droplets impinge upon each other. The lack of phase separation and creamy
appearance after agitation and centrifugation indicates that QR-NE has good stability and
can withstand the gravitational and mechanical forces during transportation and handling.

3.4. In Vitro Drug Release Study of QR from QR-NPs

The release results of the best-selected sample (QR-NE-F5) were compared in this
respect with the release of free drug (QR). The release values were calculated as the
percentage of QR dissolute according to the predetermined yield value. As noted in Figure 5,
the QR-NPs showed an excellent release rate compared to free QR release. At the end of the
release time (4 h), 25.63 ± 1.12% of free QR was released, which was considerably lower
(p < 0.05) than released from QR-NE-F5 (84.52 ± 0.71%). The nanoemulsion formula’s
higher release rate can be attributed to its smaller particle size, which increases the surface
area for diffusion. In general, NE is an excellent tool for enhancing the solubility of
hydrophobic drugs such as QR; thereby, the bioavailability of the drug owing to small-scale
globule size is improved. The presence of TPGS in NE can be attributed to the surfactant
nature of TPGS, which enhances the QR release rate via increasing QR solubility [38,39].
TPGS as a surface active agent could improve drug wettability in contact with drug release
media by adsorption on a larger surface area of nanoparticles and rapid drug partitioning
into diluted dissolution medium, primarily from small droplets [40]. The TPGS layer
around the QR NPs could protect the drug against gastrointestinal degradation, following
which intestinal absorption would be further improved.
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Many studies have concluded results in agreement with our results, which show that
NE formulations usually result in an enhanced hydrophobic drugs release rate due to the
effect of oil and interfacial film barriers [40,41].

3.5. Anticancer Activity of QR-NE; Cytotoxicity Study against Colorectal Cancer Cells

An MTT assay was used to evaluate the viability of HCT-116 and HT-29 colon cancer
cell lines following 48 h of treatment with quercetin at 5, 10, 20, 50, and 100 µM. QR-NE
inhibited CRC cell viability in a dose-dependent manner, which was more effective than
the free drug. An increase in the concentration enhanced the viability of all cancer cell
lines. More than twofold lower IC50 value of QR-NE (around 18 µM) indicates the superior
anticancer effect of nanoparticle-based formulations on HCT-116 colon cancer cell lines, as
shown in Figure 6a. We also found that the NE significantly improved the cellular killing
in HT-29 colon cancer cell lines (around 15 µM) compared with the free drug, as shown in
Figure 6b. Furthermore, the higher release rate of the QR combined with the lipid structure
effect of the nanoemulsion increases drug concentration in colon cancer cells, improving
the anticancer activity of the QR-NE formulations compared to free drug [41].
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to 48 h for (a) HCT-116 and (b) HT-29 colon cancer cell lines. Results indicated that formulation
inhibited CRC cell viability in a dose-dependent manner of QR-NE compared to free drugs, while
empty NPs are nontoxic. The twofold lower IC50 value of QR-NE indicates the superior anticancer
effect of nanoparticle-based formulations. Results are expressed as mean ± SD (n = 3). * p < 0.01,
** p < 0.001 based on two-way ANOVA followed by Sidak’s multiple comparisons test.

3.6. QR-NE Safety Evaluation on the Animal Model

Macroscopic examination of all organs, including the liver, spleen, kidney, heart, lung,
and brain tissue, revealed no differences 5 days after QR-NE (50 mg/kg) administration
compared to organs of control rats which were treated with free NE and vehicle. There
were no signs of atrophy, hyperplasia, necrosis, or inflammation.

To investigate tissue abnormalities, histological examination was performed using
hematoxylin–eosin staining. For liver tissues, when compared to the control group, rats
treated with QR-NE experienced no adverse effects on the liver. The parenchymal architec-
ture revealed normal hepatocytes with no evidence of steatosis, inflammation, or fibrosis
(Figure 7). Similarly, as shown in Figure 7, microscopic examination of the kidney, spleen,
and heart revealed no evidence of inflammation or fibrosis. The histological sections of rats’
liver, kidney, spleen, and heart are normal. Based on all gathered data, indications point to
the safety of utilizing this nanoformulation for future efficacy studies.
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Figure 7. QR-NE safety evaluation on the animal model. Photomicrographs of (a) liver, (b) kidney,
and (c) spleen sections after treatment with QR-NE and QR-free drug (H&E staining, magnification
40×, scale bar: 20 µm and 5×, scale bar: 200 µm). H&E hematoxylin and eosin sections were all
treated with quercetin NE after 14 days. Histological evaluation was performed by ImageJ software
version 1.52v.

4. Conclusions

The present study describes the development and safety of the QR-NE anticancer
effect. NE prepared using oleic acid as oil and TPGS as a surfactant is an excellent tool for
enhancing the solubility of hydrophobic drugs. Increasing the homogenization speed led to
a significant effect of decreasing particle size. While increasing the homogenization time de-
creased NE particle size and increased the contact time between drug and NE components,
EE% could be improved. QR-NE is a stable formula that can withstand gravitational and
mechanical forces during transportation and handling. The QR-NE showed an excellent
release rate compared to the free QR release. Using TPGS in NE produces uniform nanopar-
ticles with no aggregation, and a smooth film around the particles improves the used drug
stability and solubility. The latter could enhance the QR release rate and could protect the
drug against gastrointestinal degradation, following which intestinal absorption would be
further improved. QR-NE inhibited CRC cell viability in a dose-dependent manner, which
was more effective than the drug alone. We also found that the NE significantly enhanced
the cellular toxicity efficiency in HT-29 and HCT-116 cancer cell lines, resulting in efficient
cell killing compared with free agents.
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