Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oil Extraction of P. pubescens Fruit
2.3. Nanoemulsion Preparation
2.4. Accelerated Physical Stability
2.5. Physicochemical Stability Study
2.5.1. Macroscopic Analysis
2.5.2. Droplet Diameter and Polydispersity Index (PDI)
2.5.3. Zeta Potential
2.5.4. pH
2.5.5. Chemical Analysis of P. pubescens Oil by GC-MS
2.5.6. Consistency Index
2.6. Microbiological Stability
2.7. In Vitro Antileishmanial Activity
2.8. Cytotoxicity Assays
2.9. Statistical Analysis
3. Results
3.1. Physical Stability Accelerated
3.2. Physicochemical Stability Study
3.3. Microbiological Stability
3.4. In Vitro Antileishmanial Activity and Cytotoxicity Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, T.M.; Morais-Braga, M.F.B.; Saraiva, A.A.F.; Rolón, M.; Veja, C.; Arias, A.R.; Costa, J.G.M.; Menezes, I.R.A. Evaluation of the anti-Leishmania activity of ethanol extract and fractions of the leaves from Pityrogramma calomelanos (L.) link. Nat. Prod. Res. 2013, 27, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop. 2017, 172, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish, F.; Delfan, B.; Mahmoudvand, H.; Moradi, N.; Ezatpour, B.; Ebrahimzadeh, F.; Rashidipour, M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharm. 2016, 82, 208–215. [Google Scholar] [CrossRef]
- Ammar, A.A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res. 2019, 9, 76–84. [Google Scholar] [CrossRef]
- Galvão, E.L.; Pedras, M.J.; Cota, G.F.; Rabello, A.; Simões, T.C. How cutaneous leishmaniasis and treatment impacts in the patients’ lives: A cross-sectional study. PLoS ONE 2019, 14, e0211374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind. Crop. Prod. 2015, 77, 795–802. [Google Scholar] [CrossRef]
- Oliveira, L.A.R.; Oliveira, G.A.R.; Borges, L.L.; Bara, M.T.F.; Silveira, D. Vouacapane diterpenoids isolated from Pterodon and their biological activities. Braz. J. Pharm. 2017, 27, 663–672. [Google Scholar] [CrossRef]
- Moraes, A.R.D.P.; Tavares, G.D.; Rocha, F.J.S.; Paula, E.; Giorgio, S. Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp. Parasitol. 2018, 187, 12–21. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Dakka, N.; Fellah, H.; Abrini, J.; Bakri, Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. Beni.-Suef. Univ. J. Basic. Appl. Sci. 2018, 7, 50–54. [Google Scholar] [CrossRef]
- Coelho, L.P.; Reis, P.A.; Castro, F.L.; Gayer, C.R.M.; Lopes, C.S.; e Silva, M.C.C.; Sabino, K.C.C.; Todeschini, A.R.; Coelho, M.G.P. Antinociceptive properties of ethanolic extract and fractions of Pterodon pubescens Benth. Seeds. J. Ethnopharmacol. 2005, 98, 109–116. [Google Scholar] [CrossRef]
- Bustamante, K.G.L.; Lima, A.D.F.; Soares, M.L.; Fiuza, T.S.; Tresvenzol, L.M.F.; Bara, M.T.F.; Pimenta, F.C.; Paula, J.R. Avaliação da atividade antimicrobiana do extrato etanólico bruto da casca da sucupira branca (Pterodon emarginatus Vogel)—Fabaceae. Rev. Bras. Plantas Med. 2010, 12, 341–345. [Google Scholar] [CrossRef]
- Spindola, H.M.; Servat, L.; Rodrigues, R.A.F.; Sousa, I.M.O.; Carvalho, J.E.; Foglio, M.A. Geranylgeraniol and 6α,7β-dihydroxyvouacapan-17β-oate methyl ester isolated from Pterodon pubescens Benth: Further investigation on the antinociceptive mechanisms of action. Eur. J. Pharm. 2011, 656, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Nucci, C.; Mazzardo-Martins, L.; Stramosk, J.; Brethanha, L.C.; Pizzolatti, M.G.; Santos, A.R.S.; Martins, D.F. Oleaginous extract from the fruits Pterodon pubescens Benth induces antinociceptionin animal models of acute and chronic pain. J. Ethnopharmacol. 2012, 143, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.F.; Borges, L.L.; de Paula, J.A.M.; Vieira, R.F.; Ferri, P.H.; de Couto, R.O.; de Paula, J.R.; Bara, M.T.F. Chemical variability of the essential oils from fruits of Pterodon emarginatus in the Brazilian Cerrado. Braz. J. Pharm. 2013, 23, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Hoscheid, J.; Bersani-Amado, C.A.; da Rocha, B.A.; Outuki, P.M.; da Silva, M.A.R.C.P.; Froehlich, D.L.; Cardoso, M.L.C. Inhibitory Effect of the Hexane Fraction of the Ethanolic Extract of the Fruits of Pterodon pubescens Benth. Acute Chronic Inflamm. ECAM 2013, 2013, 272795. [Google Scholar] [CrossRef] [Green Version]
- Hoscheid, J.; Cardoso, M.L.C. Sucupira as a potential plant for arthritis treatment and other diseases. Arthritis 2015, 2015, 379459. [Google Scholar] [CrossRef] [Green Version]
- Goes, P.R.N.; Hoscheid, J.; Silva-Filho, S.E.; Froehlich, D.L.; Pelegrini, B.L.; Canoff, J.R.A.; Lima, M.M.S.; Cuman, R.K.N.; Cardoso, M.L.C. Rheological behavior and antiarthritic activity of Pterodon pubescens nanoemulsion. Res. Soc. Dev. 2020, 9, e179108119. [Google Scholar] [CrossRef]
- Santos, E.S.; Garcia, F.P.; Outuki, P.M.; Hoscheid, J.; de Goes, P.R.N.; Cardozo-Filho, L.; Nakamura, C.V.; Cardoso, M.L.C. Optimization of extraction method and evaluation of antileishmanial activity of oil and nanoemulsions of Pterodon pubescens Benth. Fruit Extracts. Exp. Parasitol. 2016, 170, 252–260. [Google Scholar] [CrossRef]
- Oliveira, L.A.R.; Oliveira, G.A.R.; Lemes, G.F.; Romão, W.; Vaz, B.G.; Albuquerque, S.; Gonçalez, C.; Lião, L.M.; Bara, M.T.F. Isolation and Structural Characterization of Two New Furanoditerpenes from Pterodon emarginatus (Fabaceae). J. Braz. Chem. Soc. 2017, 28, 1911–1916. [Google Scholar] [CrossRef]
- Wulff-Pérez, M.; Torcello-Gómez, A.; Gálvez-Ruíz, M.J.; Martín-Rodríguez, A. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll. 2009, 23, 1096–1102. [Google Scholar] [CrossRef]
- Bangia, J.K.; Singh, M.; Om, H.; Behera, K. A comparative study on the effect of temperature on density, sound velocity and refractive index of nanoemulsions formed by castor, olive and linseed oils in aqueous cellulose acetate propionate and butyrate and Tween80. Thermochim. Acta 2016, 641, 43–48. [Google Scholar] [CrossRef]
- Want, M.Y.; Islamuddin, M.; Chouhan, G.; Dasgupta, A.K.; Chattopadhyay, A.P.; Afrin, F. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies. J. Colloid Interface Sci. 2014, 432, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.; Martins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löberberg, R. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm. 2018, 547, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Vasi, A.M.; Popa, M.I.; Butnaru, M.; Dodi, G.; Verestiuc, L. Chemical functionalization of hyaluronic acid for drug delivery applications. Mater. Sci. Eng. C 2014, 38, 177–185. [Google Scholar] [CrossRef]
- Kutlusoy, T.; Oktay, B.; Apohan, N.K.; Süleymanoglu, M.; Kuruca, S.E. Chitosan-co-Hyaluronic acid porous cryogels and their application intissue engineering. Int. J. Biol. Macromol. 2017, 103, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, S.S.; Pereira, P.; Correia, A.; Gama, F.M. Targetability of hyaluronic acid nanogel to cancer cells: In Vitro and in vivo studies. Eur. J. Pharm. Sci. 2017, 104, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Quinones, J.P.; Jokinen, J.; Keinänen, S.; Covas, C.P.; Brüggemann, O.; Ossipov, D. Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. Eur. Pol. J. 2018, 99, 384–393. [Google Scholar] [CrossRef]
- Montanari, E.; Di Meo, C.; Oates, A.; Coviello, T.; Matricardi, P. Pursuing Intracellular Pathogens with Hyaluronan. From a ‘Pro-Infection’ Polymer to a Biomaterial for ‘Trojan Horse’ Systems. Molecules 2018, 23, 939. [Google Scholar] [CrossRef] [Green Version]
- Stefanello, T.F.; Szarpak-Jankowska, A.; Appaix, F.; Louage, B.; Hamard, L.; De Geest, B.G.; Sander, B.V.D.; Nakamura, C.V.; Auzély-Velty, R. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. Acta Biomater. 2014, 10, 750–4758. [Google Scholar] [CrossRef]
- Micale, N.; Piperno, A.; Mahfoudh, N.; Schurigt, U.; Schultheis, M.; Mineo, P.G.; Schirmeister, T.; Scala, A.; Grassi, G. A hyaluronic acid–pentamidine bioconjugate as a macrophage mediated drug targeting delivery system for the treatment of leishmaniasis. RSC Adv. 2015, 5, 95545–95550. [Google Scholar] [CrossRef]
- Kleinubing, S.A.; Outuki, P.M.; Hoscheid, J.; Pelegrini, B.L.; da Silva, E.A.; Canoff, J.R.A.; Lima, M.M.S.; Cardoso, M.L.C. Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. fruit oil for topical drug delivery. Biocatal. Agric. Biotechnol. 2021, 32, 101939. [Google Scholar] [CrossRef]
- Hoscheid, J.; Reinas, A.; Cortez, D.A.G.; da Costa, W.F.; Cardoso, M.L.C. Determination by GC–MS-SIM of furanoditerpenes in Pterodon pubescens Benth.: Development and validation. Talanta 2012, 100, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasil. Resolução No 01, de 29 de Julho de 2005. Guia Para a Realização de Estudos de Estabilidade. Brasília: Agência Nacional de Vigilância Sanitária. 2005. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/res0001_29_07_2005.html (accessed on 7 July 2022).
- Hoscheid, J.; Outuki, P.M.; Kleinubing, S.A.; Silva, M.F.; Bruschi, M.L.; Cardoso, M.L.C. Development and characterization of Pterodon pubescens oil nanoemulsions as a possible delivery system for the treatment of rheumatoid arthritis. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 19–27. [Google Scholar] [CrossRef]
- Brasil. Farmacopeia Brasileira. Diário Of. União 2010, 1, 236–253. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm. 2007, 342, 231–239. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Severino, P.; Andreani, T.; Boonme, P.; Santini, A.; Silva, A.M.; Souto, E.B. D-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity. Saudi Pharm. J. 2017, 25, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.S.; De Medeiros, T.M.; Hoscheid, J.; Prochnau, I.S. Proposta de formulação contendo extrato de folhas de Eugenia involucrata e análise da atividade antimicrobiana. Proposal of a formulation containing leaves extract of Eugenia involucrata. Rev. Fitos 2018, 12, 68–82. [Google Scholar] [CrossRef]
- Vighi, E.; Ruozi, B.; Montanari, M.; Battini, R.; Leo, E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int. J. Pharm. 2010, 389, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Outuki, P.M.; Kleinubing, S.A.; Hoscheid, J.; Montanha, M.C.; da Silva, E.A.; do Couto, R.O.; Kimura, E.; Cardoso, M.L.C. The incorporation of Pterodon pubescens fruit oil into optimized nanostructured lipid carriers improves its effectiveness in colorectal cancer. Ind. Crops Prod. 2018, 123, 719–730. [Google Scholar] [CrossRef]
- Galindo-Alvarez, J.; Le, K.-A.; Sadtler, V.; Marchal, P.; Perrin, P.; Tribet, C.; Marie, E.; Durand, A. Enhanced stability of nanoemulsions using mixtures of nonionic surfactant and amphiphilic polyelectrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 237–245. [Google Scholar] [CrossRef]
- Li, B.; Ge, Z.Q. Nanostructured lipid carriers improve skin permeation and chemical stability of idebenone. AAPS PharmSciTech 2012, 13, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Hoscheid, J.; Outuki, P.M.; Kleinubing, S.A.; de Goes, P.R.N.; Lima, M.M.S.; Cuman, R.K.N.; Cardoso, M.L.C. Pterodon pubescens oil nanoemulsions: Physiochemical and microbiological characterization and in vivo anti-inflammatory efficacy studies. Braz. J. Pharmacog. 2017, 27, 375–383. [Google Scholar] [CrossRef]
- Kong, M.; Park, H.J. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr. Polym. 2011, 83, 1303–1310. [Google Scholar] [CrossRef]
- Yang, S.C.; Benita, S. Enhanced Absorption and Drug Targeting by Positively Charged Submicron Emulsions. Drug Dev. Res. 2000, 50, 476–486. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Deng, Y.; McClements, D.J. Fabrication of b-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. J. Colloid Interf. Sci. 2017, 490, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Barradas, T.N.; Senna, J.P.; Cardoso, S.A.; Nicoli, A.; Padula, C.; Santi, P.; Rossi, F.; e Silva, K.G.H.; Mansur, C.R.E. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur. J. Pharm. Biopharm. 2017, 116, 38–50. [Google Scholar] [CrossRef]
- Reinas, A.E.; Hoscheid, J.; Outuki, P.M.; Cardoso, M.L.C. Preparation and characterization of microcapsules of Pterodon pubescens Benth. by using natural polymers. Braz. J. Pharm. Sci. 2014, 50, 920–930. [Google Scholar] [CrossRef] [Green Version]
- Bajerski, L.; Michels, L.R.; Colomé, L.M.; Bender, E.A.; Freddo, R.J.; Bruxel, F.; Haas, S.E. The use of Brazilian vegetable oils in nanoemulsions: An update on preparation and biological applications. Braz. J. Pharm. Sci. 2016, 52, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.S.; Alam, M.S.; Alam, N.; Anwer, T.; Safhi, M.M.A. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines. Sci. Pharm. 2013, 81, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Ali, M.S.; Alam, M.I.; Anwer, T.; Safhi, M.M.A. Stability Testing of Beclomethasone Dipropionate Nanoemulsion. Trop. J. Pharm. Res. 2015, 14, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, B.C.A.; Novais, E.B.; Ribeiro, R.B.C.; Fernandes, C.K.C. Estudo de estabilidade físico-química e microbiológica de dipirona em gotas armazenadas em residências do municipio de São Luis de Montes Belos-GO. Rev. Facul Montes Belos. 2014, 7, 109–120. [Google Scholar]
- Dutra, R.C.; Braga, F.G.; Coimbra, E.S.; Silva, A.D.; Barbosa, N.R. Antimicrobial and leishmanicidal activities of seeds of Pterodon emarginatus. Braz. J. Pharm. 2009, 19, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, L.R.; Fernandes, F.R.; Costa, D.F.; Frézard, F.; Afonso, L.C.C.; Ferreira, L.A.M. Nanoemulsions loaded with amphotericin B: A new approach for the treatment of leishmaniasis. Eur. J. Pharm. Sci. 2015, 70, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, C.R.; Marques, M.F.; Soares, P.R.; Matuda, L.; Oliveira, C.M.A.; Kato, L.; Silva, C.C.; Grillo, L.A. Antiproliferative activity of Pterodon pubescens Benth. seed oil and its active principle on human melanoma cells. Phytomedicine 2008, 15, 528–532. [Google Scholar] [CrossRef]
- Spindola, H.M.; Carvalho, J.E.; Ruiz, A.L.T.G.; Rodrigues, R.A.F.; Denny, C.; Sousa, I.M.O.; Tamashiro, J.Y.; Foglio, M.A. Furanoditerpenes from Pterodon pubescens Benth. with selective in vitro anticancer activity for prostate cell line. J. Braz. Chem. Soc. 2009, 20, 569–575. [Google Scholar] [CrossRef]
Temperature | |||
---|---|---|---|
5 °C | 30 °C | 40 °C | |
Instability index | 0.13 ± 0.06 b | 0.15 ± 0.00 b | 0.42 ± 0.12 a |
Time | ||||||
---|---|---|---|---|---|---|
24 h | 30 d | 60 d | 90 d | 180 d | ||
Droplet diameter (nm) | 5 °C | 24.86 ± 0.64 b | 24.66 ± 0.85 b | 29.50 ± 1.20 a | 31.33 ± 1.50 a | 32.36 ± 1.45 a |
30 °C | 24.86 ± 0.64 b | 24.83 ± 0.68 b | 25.06 ± 0.49 b | 27.30 ± 0.46 a | 27.13 ± 1.10 a | |
40 °C | 24.86 ± 0.64 a | 23.70 ± 0.75 a | 23.90 ± 0.11 a | 23.66 ± 0.75 a | 18.83 ± 0.64 b | |
5 °C | 0.24 ± 0.04 c | 0.26 ± 0.07 b | 0.26 ± 0.09 b | 0.26 ± 0.01 b | 0.29 ± 0.06 a | |
PDI | 30 °C | 0.24 ± 0.04 c | 0.24 ± 0.04 cd | 0.23 ± 0.03 d | 0.29 ± 0.09 b | 0.30 ± 0.04 a |
40 °C | 0.24 ± 0.04 a | 0.23 ± 0.05 b | 0.23 ± 0.02 b | 0.22 ± 0.06 c | 0.19 ± 0.03 d | |
Zeta potential (mV) | 5 °C | −31.45 ± 0.26 a | ND | ND | ND | −32.44 ± 0.20 a |
30 °C | −31.45 ± 0.26 a | ND | ND | ND | −29.67 ± 0.09 a | |
40 °C | −31.45 ± 0.26 a | ND | ND | ND | −18.47 ± 1.50 b | |
pH | 5 °C | 6.80 ± 0.03 a | 6.70 ± 0.05 b | 6.56 ± 0.03 ab | 6.33 ± 0.05 bc | 6.00 ± 0.01 c |
30 °C | 6.80 ± 0.03 a | 6.50 ± 0.01 b | 6.47 ± 0.04 b | 6.15 ± 0.07 c | 6.09 ± 0.14 c | |
40 °C | 6.80 ± 0.03 a | 5.22 ± 0.07 b | 4.79 ± 0.04 c | 4.55 ± 0.01 d | 4.22 ± 0.00 e |
Samples | IC50 (µg/mL) | CC50 (µg/mL) | Selectivity Index |
---|---|---|---|
Nanoemulsion | 2.00 ± 0.04 | 3.50 ± 1.00 | 1.75 |
Free P. pubescens oil | 41.50 ± 3.50 | 36.00 ± 1.40 | 0.87 |
Miltefosine | 0.70 ± 0.02 | 22.40 ± 0.80 | 32.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleinubing, S.A.; Outuki, P.M.; Santos, É.d.S.; Hoscheid, J.; Tominc, G.C.; Dalmagro, M.; Silva, E.A.d.; Lima, M.M.d.S.; Nakamura, C.V.; Cardoso, M.L.C. Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil. Colloids Interfaces 2022, 6, 64. https://doi.org/10.3390/colloids6040064
Kleinubing SA, Outuki PM, Santos ÉdS, Hoscheid J, Tominc GC, Dalmagro M, Silva EAd, Lima MMdS, Nakamura CV, Cardoso MLC. Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil. Colloids and Interfaces. 2022; 6(4):64. https://doi.org/10.3390/colloids6040064
Chicago/Turabian StyleKleinubing, Sirlene Adriana, Priscila Miyuki Outuki, Éverton da Silva Santos, Jaqueline Hoscheid, Getulio Capello Tominc, Mariana Dalmagro, Edson Antônio da Silva, Marli Miriam de Souza Lima, Celso Vataru Nakamura, and Mara Lane Carvalho Cardoso. 2022. "Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil" Colloids and Interfaces 6, no. 4: 64. https://doi.org/10.3390/colloids6040064
APA StyleKleinubing, S. A., Outuki, P. M., Santos, É. d. S., Hoscheid, J., Tominc, G. C., Dalmagro, M., Silva, E. A. d., Lima, M. M. d. S., Nakamura, C. V., & Cardoso, M. L. C. (2022). Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil. Colloids and Interfaces, 6(4), 64. https://doi.org/10.3390/colloids6040064