Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. NR Experiments
2.3. NR Principles
2.4. NR Data Treatment
3. Results and Discussion
3.1. Contrast Matching Demonstration
3.2. Cationic Surfactants
3.3. Anionic Surfactant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadros, T.F. Applied Surfactants: Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGA: Weinheim, Germany, 2005; pp. 85–113. [Google Scholar]
- Joshi, T.P. A Short History and Preamble of Surfactants. Int. J. Appl. Chem. 2017, 13, 283–292. [Google Scholar]
- Bertsch, H. Available online: https://en.wikipedia.org/wiki/Heinrich_Bertsch (accessed on 23 September 2022).
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; Wiley-VCH: Weinheim, German, 2012; ISBN 978-0-470-54194-4. [Google Scholar]
- Aveyard, B. Surfactants: In Solution, at Interfaces and in Colloidal Dispersions; Oxford University Press: Oxford, UK, 2019; ISBN 0198828608. [Google Scholar]
- Salamah, A.; Phan, C.M.; Pham, H.G. Dynamic adsorption of cetyltrimethylammonium bromide at decane/water interface. Colloids Surf. A 2015, 484, 313–317. [Google Scholar] [CrossRef]
- Zarbakhsh, A.; Querol, A.; Bowers, J.; Yaseen, M.; Lu, J.R.; Webster, J.R.P. Neutron reflection from the liquid-liquid interface: Adsorption of hexadecylphosphorylcholine to the hexadecane—Aqueous solution interface. Langmuir 2005, 21, 11704–11709. [Google Scholar] [CrossRef] [PubMed]
- Zarbakhsh, A.; Querol, A.; Bowers, J.; Webster, J.R.P. Structural studies of amphiphiles adsorbed at liquid-liquid interfaces using neutron reflectometry. Faraday Discuss. 2005, 129, 155–167. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Aksenenko, E.V.; Kovalchuk, V.I.; Mucic, N.; Javadi, A.; Liggieri, L.; Ravera, F.; Loglio, G.; Schneck, E.; Miller, R. New view of the adsorption of surfactants at the water/alkane interface—Competitive and cooperative effects of surfactant and alkane molecules. Adv. Colloid Interface Sci. 2020, 279, 102143. [Google Scholar] [CrossRef]
- Javadi, A.; Moradi, N.; Karbaschi, M.; Fainerman, V.B.; Möhwald, H.; Miller, R. Alkane vapor and surfactants co-adsorption on aqueous solution interfaces. Colloids Surf. A 2011, 391, 19–24. [Google Scholar] [CrossRef]
- Mattei, M.; Kontogeorgis, G.M.; Gani, R. A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria 2014, 362, 288–299. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, D.; Hu, J. Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers 2021, 13, 1127. [Google Scholar] [CrossRef]
- Shabes, B.K.; Altman, R.M.; Richmond, G.L. Come Together: Molecular Details into the Synergistic Effects of Polymer–Surfactant Adsorption at the Oil/Water Interface. J. Phys. Chem. B 2018, 122, 8582–8590. [Google Scholar] [CrossRef]
- Mucic, N.; Moradi, N.; Javadi, A.; Aksenenko, E.V.; Fainerman, V.B.; Miller, R. Mixed adsorption layers at the aqueous CnTAB solution/hexane vapour interface. Colloids Surf. A 2014, 442, 50–55. [Google Scholar] [CrossRef]
- Ravera, F.; Ferrari, M.; Liggieri, L. Adsorption and partitioning of surfactants in liquid–liquid systems. Adv. Colloid Interface Sci. 2000, 88, 129–177. [Google Scholar] [CrossRef]
- Leckner, J. Theory of Reflection. In Volume 87 of Springer Series on Atomic, Optical, and Plasma Physics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Tyrode, E.; Johnson, C.M.; Rutland, M.W.; Day, J.P.R.; Bain, C.D. A Study of the Adsorption of Ammonium Perfluorononanoate at the Air-Liquid Interface by Vibrational Sum-Frequency Spectroscopy. J. Phys. Chem. C 2007, 111, 316–329. [Google Scholar] [CrossRef]
- Walsh, C.B.; Wen, X.; Franses, E. Ellipsometry and Infrared Reflection Absorption Spectroscopy of Adsorbed Layers of Soluble Surfactants at the Air-Water Interface. J. Colloid Interface Sci. 2001, 233, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.R.; Manning-Benson, S.; Bain, C.D. Effect of chain length on the structure of monolayers of alkyltrimethylammonium bromides (CnTABs) at the air-water interface. J. Phys. Chem. B 1998, 102, 218–222. [Google Scholar] [CrossRef]
- Fragneto, G.; Delhom, R.; Joly, L.; Scoppola, E. Neutrons and model membranes: Moving towards complexity. Curr. Opin. Colloid Interface Sci. 2018, 38, 108–121. [Google Scholar] [CrossRef]
- Skoda, M.W.A. Recent developments in the application of X-ray and neutron reflectivity to soft-matter systems. Curr. Opin. Colloid Interface Sci. 2019, 42, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.A. Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Curr. Opin. Colloid Interface Sci. 2018, 37, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Ciumac, D.; Campbell, R.A.; Xu, H.; Clifton, L.A.; Hughes, A.V.; Webster, J.R.P.; Lu, J.R. Implications of Lipid Monolayer Charge Characteristics on their Selective Interactions with a Short Antimicrobial Peptide. Colloids Surf. B 2017, 150, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Carrascosa Tejedor, J.; Santamaria, A.; Tummino, A.; Varga, I.; Efstratiou, M.; Lawrence, M.J.; Maestro, A.; Campbell, R.A. Polyelectrolyte/Surfactant Films: From 2D to 3D Structural Control. Chem. Commun. 2022, 58, 10687–10690. [Google Scholar] [CrossRef]
- Liu, X.; Counil, C.; Shi, D.; Mendoza-Ortega, E.E.; Vela-Gonzalez, A.V.; Maestro, A.; Campbell, R.A.; Krafft, M.P. First quantitative assessment of the adsorption of a fluorocarbon gas on phospholipid monolayers at the air/water interface. J. Colloid Interface Sci. 2021, 593, 1–10. [Google Scholar] [CrossRef]
- Petek, A.; Krajnc, M.; Petek, A. Study of host–guest interaction between ß-cyclodextrin and alkyltrimethylammonium bromides in water. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 221–229. [Google Scholar] [CrossRef]
- Bahadur, J.; Ruppert, L.F.; Pipich, V.; Sakurovs, R.; Melnichenko, Y.B. Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study. Int. J. Coal Geol. 2018, 188, 156–164. [Google Scholar] [CrossRef]
- Palm, R.; Härmas, R.; Härk, E.; Kent, B.; Kurig, H.; Koppel, M.; Russina, M.; Tallo, I.; Romann, T.; Mata, J.; et al. Study of the structural curvature in Mo2C derived carbons with contrast matched small-angle neutron scattering. Carbon 2021, 171, 695–703. [Google Scholar] [CrossRef]
- Nelson, A. Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 2006, 39, 273–276. [Google Scholar] [CrossRef]
- Parratt, L.G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 1954, 95, 359–369. [Google Scholar] [CrossRef]
- Braslau, A.; Deutsch, M.; Pershan, P.S.; Weiss, A.H.; Als-Nielsen, J.; Bohr, J. Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett. 1985, 54, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.M.; Mitrinovic, D.M.; Li, M.; Huang, Z.; Schlossman, M.L. An X-ray reflectivity study of the water-docosane interface. J. Phys. Chem. B 2000, 104, 6336–6339. [Google Scholar] [CrossRef]
- Javadi, A.; Mucic, N.; Vollhardt, D.; Fainerman, V.B.; Miller, R. Effects of dodecanol on the adsorption kinetics of SDS at the water-hexane interface. J. Colloid Interface Sci. 2010, 351, 537–541. [Google Scholar] [CrossRef]
- Ferri, J.K.; Kotsmar, C.; Miller, R. From surfactant adsorption kinetics to asymmetric nanomembrane mechanics: Pendent drop experiments with subphase exchange. Adv. Colloid Interface Sci. 2010, 161, 29–47. [Google Scholar] [CrossRef]
- Azad, M.S. IFT Role on Oil Recovery During Surfactant Based EOR Methods. In Surfactants in Upstream E&P. Petroleum Engineering; Solling, T., Shahzad Kamal, M., Shakil Hussain, S.M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Bashir, A.; Haddad, A.S.; Rafati, R. A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: Analyses of key influencing factors. Pet. Sci. 2022, 19, 1211–1235. [Google Scholar] [CrossRef]
- Xu†, H.; Li, P.X.; Ma, K.; Thomas, R.K.; Penfold, J.; Lu, J.R. Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface: Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC. Langmuir 2013, 29, 9335–9351. [Google Scholar]
- Müller, P.; Bonthuis, D.J.; Miller, R.; Schneck, E. Ionic Surfactants at Air/Water and Oil/Water Interfaces: A Comparison Based on Molecular Dynamics Simulations. J. Phys. Chem. B 2021, 125, 406–415. [Google Scholar] [CrossRef] [PubMed]
Material | Scattering Length, fm |
---|---|
H2O | −1.678 |
D2O | 19.145 |
Hexane | −12.492 |
d14-hexane | 133.270 |
Sodium dodecyl sulfate | 15.926 |
d25-sodium dodecyl sulfate | 276.216 |
Dodecyltrimethylammonium bromide | −11.335 |
d25-dodecyltrimethylammonium bromide | 248.955 |
Tetradecyltrimethylammonium bromide | −13.006 |
d29-tetradecyltrimethylammonium bromide | 288.931 |
Hexadecyltrimethylammonium bromide | −14.676 |
d33-hexadecyltrimethylammonium bromide | 328.907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, R.A.; Kairaliyeva, T.; Santer, S.; Schneck, E.; Miller, R. Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry. Colloids Interfaces 2022, 6, 68. https://doi.org/10.3390/colloids6040068
Campbell RA, Kairaliyeva T, Santer S, Schneck E, Miller R. Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry. Colloids and Interfaces. 2022; 6(4):68. https://doi.org/10.3390/colloids6040068
Chicago/Turabian StyleCampbell, Richard A., Talmira Kairaliyeva, Svetlana Santer, Emanuel Schneck, and Reinhard Miller. 2022. "Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry" Colloids and Interfaces 6, no. 4: 68. https://doi.org/10.3390/colloids6040068
APA StyleCampbell, R. A., Kairaliyeva, T., Santer, S., Schneck, E., & Miller, R. (2022). Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry. Colloids and Interfaces, 6(4), 68. https://doi.org/10.3390/colloids6040068