Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Instrumentation
2.3. Preparation of Polystyrene/AlOOH Hybrid
2.4. Batch Adsorption Studies
2.5. Desorption Studies
3. Results and Discussion
3.1. Synthesis and Characterization PS/AlOOH Hybrid Adsorbent
3.2. Adsorption Kinetics
3.3. Effect of Solution pH
3.4. Effect of Concentration and Adsorption Isotherm
3.5. Pb(II) Adsorption Thermodynamics
3.6. Desorption and Reusability Studies
3.7. Comparison of Adsorption Performance
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asencios, Y.J.O.; Sun-Kou, M.R. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II). App. Sur. Sci. 2012, 258, 10002–10011. [Google Scholar] [CrossRef]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; El-Latif, M.A.; Ibrahim, H.; Hamad, H.; Showman, M. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water. Sci. Rep. 2022, 12, 7060. [Google Scholar] [CrossRef] [PubMed]
- Bayuo, J.; Rwiza, M.; Mtei, K. A comprehensive review on the decontamination of lead(II) from water and wastewater by low-cost biosorbents. RSC Adv. 2022, 12, 11233. [Google Scholar] [CrossRef] [PubMed]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Xi, C.; Zhang, F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front. Chem. 2022, 10, 814643. [Google Scholar] [CrossRef]
- Gupta, K.; Joshi, P.; Gusain, R.; Khatri, O.P. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 2021, 445, 214100. [Google Scholar] [CrossRef]
- Nosrati, S.; Seifpanahi-Shabani, K.; Karamoozian, M. Novel polymorphous aluminosilicate nano minerals: Preparation, characterization and dyes wastewater treatment. Korean J. Chem. Eng. 2017, 34, 2406–2417. [Google Scholar] [CrossRef]
- Alhassan, S.I.; Hung, L.; He, Y.; Yan, L.; Wu, B.; Wang, H. Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Cri. Rev. Environ. Sci. Technol. 2021, 51, 2051–2085. [Google Scholar] [CrossRef]
- Keshtkar, Z.; Tamjidi, S.; Vaferi, B. Intensifying nickel (II) uptake from wastewater using the synthesized γ-alumina: An experimental investigation of the effect of nano-adsorbent properties and operating conditions. Environ. Technol. Innov. 2021, 22, 101439. [Google Scholar] [CrossRef]
- Esfanjani, L.; Farhadyar, N.; Shahbazi, H.R.; Fathi, F. Development of a method for cadmium ion removal from the water using nano γ-alumina/β-cyclodextrin. Toxicol. Rep. 2021, 8, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Koju, N.K.; Song, X.; Wang, Q.; Hu, Z.; Colombo, C. Cadmium removal from simulated groundwater using alumina nanoparticles: Behaviors and mechanisms. Environ. Pollut. 2018, 240, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Adeola, A.O.; Nomngongo, P.N. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers 2022, 14, 2462. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, L.; Rahdar, L.; Khaksefidi, A.; Ghamkhari, R.; Fytianos, A.; Kyazas, G.Z. Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents. Polymers 2020, 12, 1313. [Google Scholar] [CrossRef] [PubMed]
- Erol, H.B.U.; Hestekin, C.N.; Hestekin, J.A. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes 2021, 11, 45. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. J. Chem. Eng. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, Y.; Yuan, Y.; Hu, B.; Wang, B. Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics. Ecotoxicol. Environ. 2021, 208, 111451. [Google Scholar] [CrossRef]
- Lu, X.; Zeng, F.; Wei, S.; Hu, B.; Wang, B. Effects of humic acid on Pb2+ adsorption onto polystyrene microplastics from spectroscopic analysis and site energy distribution analysis. Sci. Rep. 2022, 12, 8932. [Google Scholar] [CrossRef]
- Mortezaei, M.; Famili, M.H.N.; Kalaee, M.R. Effect of immobilized interfacial layer on the maximum filler loading of polystyrene/silica nanocomposites. J. Reinf. Plast. Compos. 2011, 30, 593–599. [Google Scholar] [CrossRef]
- Gupta, V.K.; Agarwal, S.; Saleh, T.A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 2011, 185, 17–23. [Google Scholar] [CrossRef]
- Suresh, K.; Kumar, R.V.; Pugazhenthi, G. Processing and characterization of polystyrene nanocomposites based on CoAl layered double hydroxide. J. Sci. Adv. Mater. Dev. 2016, 1, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Xuan, Y.; Li, Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci. China Technol. Sci. 2010, 53, 3088–3093. [Google Scholar] [CrossRef]
- Prabhakar, R.; Samadder, S.R. Use of adsorption-influencing parameters for designing the batch adsorber and neural network–based prediction modelling for the aqueous arsenate removal using combustion synthesised nano-alumina. Environ. Sci. Pollut. Res. 2020, 27, 26367–26384. [Google Scholar] [CrossRef]
- Zhang, H.; Li, P.; Cui, W.; Liu, C.; Wang, S.; Zheng, S.; Zhang, Y. Synthesis of nanostructured γ-AlOOH and its accelerating behavior on the thermal decomposition of AP. RSC Adv. 2016, 6, 27235–27241. [Google Scholar] [CrossRef]
- Gohari, R.J.; Lau, W.J.; Matsuura, T.; Halakoo, E.; Ismail, A.F. Adsorptive removal of Pb(II) from aqueous solution by novel PES/HMO ultrafiltration mixed matrix membrane. Sep. Puri. Tech. 2013, 120, 59–68. [Google Scholar] [CrossRef]
- Akartasse, N.; Azzaoui, K.; Mejdoubi, E.; Elansari, L.L.; Hammouti, B.; Siaj, M.; Jodeh, S.; Hanbali, G.; Hamed, R.; Rhazi, L. Chitosan-Hydroxyapatite Bio-Based Composite in Film Form: Synthesis and Application in Wastewater. Polymers 2022, 14, 4265. [Google Scholar] [CrossRef]
- Lagergen, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second-order model for sorption processes. Proc. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karapantsios, T.D. Why Is the Linearized Form of Pseudo-Second Order Adsorption Kinetic Model So Successful in Fitting Batch Adsorption Experimental Data? Colloids Interfaces 2022, 6, 55. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Sun, B.; Li, X.; Zhao, R.; Yin, M.; Wang, Z.; Jiang, Z.; Wang, C. Hierarchical aminated PAN/γ–AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance. J. Taiwan Institute Chem. Eng. 2016, 62, 219–227. [Google Scholar] [CrossRef]
- Bowen, C.; Yhui, W.; Fan, Z.; Yujie, W.; Cheng, C.; Xiaojuan, J.; Xin, X. Synthesis of porous AlOOH nanospindle via hydrothermal route and its application in Pb(II) removal. Mater. Res. Express 2019, 6, 125057. [Google Scholar]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res. 2001, 35, 613–618. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 11, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, X. Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Ind. Eng. Chem. Res. 2006, 45, 9144–9149. [Google Scholar] [CrossRef]
- Ma, D.; Zou, X.; Li, R.; Chen, P.; Wang, Y.; Chen, T.; Zhang, Q.; Liu, H.; Chen, Y.; Lv, W.; et al. Highly efficient adsorption of Pb(II) by cubic nanocrystals in aqueous solution: Behavior and mechanism. Arab. J. Chem. 2020, 13, 5229–5240. [Google Scholar] [CrossRef]
- Patel, H. Review on solvent desorption study from exhausted adsorbent. J. Saudi Chem. Soc. 2021, 25, 101302. [Google Scholar] [CrossRef]
- Momčilović, M.; Purenović, M.; Bojić, A.; Zarubica, A.; Ranđelović, M. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 2011, 276, 53–59. [Google Scholar] [CrossRef]
- Depci, T.; Kul, A.R.; Önal, Y. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems. Chem. Eng. J. 2012, 200–202, 224–236. [Google Scholar] [CrossRef]
- Ibrahim, M.N.M.; Ngah, W.S.W.; Norliyana, M.S.; Daud, W.R.W.; Rafatullah, M.; Sulaiman, O.; Hashim, R. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J. Hazard. Mater. 2010, 182, 377–385. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; Thwala, J.M.; Msagati, T.A.M. Preparation, characterization, and application of polypropylene–clinoptilolite composites for the selective adsorption of lead from aqueous media. J. Colloid Interface Sci. 2011, 359, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Cherono, F.; Mburu, N.; Kakoi, B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon 2021, 7, e08254. [Google Scholar] [CrossRef]
- Zand, A.D.; Abyaneh, M.R. Adsorption of Lead, manganese, and copper onto biochar in landfill leachate: Implication of non-linear regression analysis. Sustain. Environ. Res. 2020, 30, 18. [Google Scholar] [CrossRef]
- Nyairo, W.N.; Eker, Y.R.; Kowenje, C.; Akin, I.; Bingol, H.; Tor, A.; Ongeri, D.M. Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep. Sci. Technol. 2018, 53, 1498–1510. [Google Scholar] [CrossRef]
- Li, Y.-H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 2002, 357, 263–266. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.H.; Al Mesfer, M.K.; Khan, M.I.; Danish, M.; Alghamdi, M.M. Exploring Adsorption Process of Lead (II) and Chromium (VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from Juniperus procera Leaves. Processes 2019, 7, 217. [Google Scholar] [CrossRef]
Pseudo-First-Order | Pseudo-Second-Order | Elovich Model | |||
---|---|---|---|---|---|
qe (mg g−1) | 22.934 | qe (mg g−1) | 25.813 | a (mg g−1 min−1/2) | 5.192 |
k1 (min−1) | 0.0541 | k2 (g mg−1 min−1) | 0.0029 | β (mg g−1) | 0.204 |
R2 | 0.9544 | R2 | 0.9815 | R2 | 0.9711 |
RMSE | 1.414 | RMSE | 1.040 | RMSE | 1.125 |
χ2 | 2.605 | χ2 | 0.820 | χ2 | 0.567 |
Langmuir | Freundlich | Redlich–Petersen | Toth | ||||
---|---|---|---|---|---|---|---|
qm | 23.611 mg g−1 | n | 4.962 | KRP | 30.555 L g−1 | qm | 21.355 mg g−1 |
KL | 1.168 L mg−1 | Kf | 2.003 mg g−1 (mg L−1)−1/n | aRP | 1.412 L mg−1 | KTo | 0.699 L mg−1 |
β | 0.972 | tn | 0.984 | ||||
R2 | 0.9760 | R2 | 0.9438 | R2 | 0.9863 | R2 | 0.9864 |
RMSE | 1.036 | RMSE | 2.047 | RMSE | 1.009 | RMSE | 1.004 |
χ2 | 0.390 | χ2 | 3.457 | χ2 | 0.411 | χ2 | 0.409 |
Temperature | −ΔG° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (Jmol−1 K−1) |
---|---|---|---|
305 | 0.818 | ||
313 | 0.947 | 3.753 | 14.998 |
323 | 1.088 |
Adsorbent | Adsorption Capacity (mg/g) | Ref |
---|---|---|
Alumina | 13.11 | [1] |
Pinecone-activated carbon | 27.53 | [38] |
Activated carbon | 17.77 | [39] |
Modified soda lignin | 46.72 | [40] |
Polypropylene–clinoptilolite | 1.01 | [41] |
Activated carbon from waste rubber tire | 9.6805 | [42] |
Biochar | 0.44 | [43] |
Polypyrrole/oMWCNT | 26.32 | [44] |
Acidified CNTs | 17.44 | [45] |
Polypyrrole-based activated carbon | 50 | [46] |
Acid-activated carbon | 30.3 | [47] |
PS/AlOOH | 23.61 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R. Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies. Colloids Interfaces 2022, 6, 72. https://doi.org/10.3390/colloids6040072
Kumar R. Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies. Colloids and Interfaces. 2022; 6(4):72. https://doi.org/10.3390/colloids6040072
Chicago/Turabian StyleKumar, Rajeev. 2022. "Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies" Colloids and Interfaces 6, no. 4: 72. https://doi.org/10.3390/colloids6040072
APA StyleKumar, R. (2022). Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies. Colloids and Interfaces, 6(4), 72. https://doi.org/10.3390/colloids6040072