Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Emulsion Preparation
2.2.1. Premix Membrane Emulsification
2.2.2. Rotor-Stator Emulsification
2.3. Characterization of Crystallization and Melting Behavior
2.4. Laser Diffraction Analysis
2.5. DSD Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Crystallization and Melting Behavior of CB and AMF
3.2. Dependence of Crystallization and Melting Behavior of Emulsified TAGs on Dispersed-Phase Composition
3.3. Influence of Surfactant Concentration on the Change of Droplet Size Distribution after Crystallization and Melting of Dispersed Trilaurin
3.4. Influence of Cooling/Heating Procedure on the Change of Droplet Size Distribution after Crystallization and Melting of Dispersed Trilaurin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Müller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [CrossRef]
- Müller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Adv. Colloid Interface Sci. 2012, 174, 1–30. [Google Scholar] [CrossRef]
- Töpel, A. Chemie und Physik der Milch; Behr’s Verlag DE: Hamburg, Germany, 2015; ISBN 9783954683604. [Google Scholar]
- Gunstone, F. The Chemistriy of Oils and Fats: Sources, Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev. 2007, 59, 631–644. [Google Scholar] [CrossRef]
- Denkov, N.; Tcholakova, S.; Lesov, I.; Cholakova, D.; Smoukov, S.K. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature 2015, 528, 392. [Google Scholar] [CrossRef] [Green Version]
- Cholakova, D.; Denkov, N.; Tcholakova, S.; Lesov, I.; Smoukov, S.K. Control of drop shape transformations in cooled emulsions. Adv. Colloid Interface Sci. 2016, 235, 90–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesov, I.; Valkova, Z.; Vassileva, E.; Georgiev, G.S.; Ruseva, K.; Simeonov, M.; Tcholakova, S.; Denkov, N.D.; Smoukov, S.K. Bottom-Up Synthesis of Polymeric Micro- and Nanoparticles with Regular Anisotropic Shapes. Macromolecules 2018, 51, 7456–7462. [Google Scholar] [CrossRef]
- Guttman, S.; Ocko, B.M.; Deutsch, M.; Sloutskin, E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr. Opin. Colloid Interface Sci. 2016, 22, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Guttman, S.; Sapir, Z.; Ocko, B.M.; Deutsch, M.; Sloutskin, E. Temperature-Tuned Faceting and Shape Changes in Liquid Alkane Droplets. Langmuir 2017, 33, 1305–1314. [Google Scholar] [CrossRef]
- Guttman, S.; Sapir, Z.; Schultz, M.; Butenko, A.V.; Ocko, B.M.; Deutsch, M.; Sloutskin, E. How faceted liquid droplets grow tails. Proc. Natl. Acad. Sci. USA 2016, 113, 493–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boode, K.; Bisperink, C.; Walstra, P. Destabilization of O/W emulsions containing fat crystals by temperature cycling. Colloids Surf. 1991, 61, 55–74. [Google Scholar] [CrossRef]
- Boode, K.; Walstra, P. Partial coalescence in oil-in-water emulsions 1. Nature of the aggregation. Colloids Surf. A Physicochem. Eng. Asp. 1993, 81, 121–137. [Google Scholar] [CrossRef]
- Helgason, T.; Awad, T.S.; Kristbergsson, K.; McClements, D.J.; Weiss, J. Influence of Polymorphic Transformations on Gelation of Tripalmitin Solid Lipid Nanoparticle Suspensions. J. Am. Oil Chem. Soc. 2008, 85, 501–511. [Google Scholar] [CrossRef]
- Walstra, P. Overview of Emulsion and Foam Stability. In Food Emulsions and Foams: Interfaces, Interactions and Stability; Dickinson, E., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 1987; pp. 242–257. ISBN 978-1-85573-785-3. [Google Scholar]
- Vanapalli, S.A.; Palanuwech, J.; Coupland, J.N. Stability of emulsions to dispersed phase crystallization: Effect of oil type, dispersed phase volume fraction, and cooling rate. Colloids Surf. A Physicochem. Eng. Asp. 2002, 204, 227–237. [Google Scholar] [CrossRef]
- Awad, T.S.; Helgason, T.; Kristbergsson, K.; Decker, E.A.; Weiss, J.; McClements, D.J. Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions. Food Biophys. 2008, 3, 155–162. [Google Scholar] [CrossRef]
- Reiner, J.; Ly, T.T.; Liu, L.; Karbstein, H.P. Melt Emulsions: Influence of the Cooling Procedure on Crystallization and Recrystallization of Emulsion Droplets and their Influence on Dispersion Viscosity upon Storage. Chem. Ing. Tech. 2022, 94, 356–364. [Google Scholar] [CrossRef]
- Reiner, J.; Walter, E.M.; Karbstein, H.P. Assessment of droplet self-shaping and crystallization during temperature fluctuations exceeding the melting temperature of the dispersed phase. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130498. [Google Scholar] [CrossRef]
- Günther, E.; Schmid, T.; Mehling, H.; Hiebler, S.; Huang, L. Subcooling in hexadecane emulsions. Int. J. Refrig. 2010, 33, 1605–1611. [Google Scholar] [CrossRef]
- McClements, D.J.; Dungan, S.R.; German, J.B.; Simoneau, C.; Kinsella, J.E. Droplet Size and Emulsifier Type Affect Crystallization and Melting of Hydrocarbon-in-Water Emulsions. J. Food Sci. 1993, 58, 1148–1151. [Google Scholar] [CrossRef]
- Abramov, S.; Ahammou, A.; Karbstein, H.P. Influence of external forces during supercooling on dispersion stability during melt emulsification. Chem. Eng. Technol. 2018, 41, 768–775. [Google Scholar] [CrossRef]
- Abramov, S.; Shah, K.; Weißenstein, L.; Karbstein, H. Effect of Alkane Chain Length on Crystallization in Emulsions during Supercooling in Quiescent Systems and under Mechanical Stress. Processes 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Garti, N.; Sato, K. Crystallization and Polymorphism of Fats and Fatty Acids; Dekker, M., Ed.; OpenLibrary: New York, NY, USA, 1988. [Google Scholar]
- Westesen, K.; Siekmann, B.; Koch, M.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 1993, 93, 189–199. [Google Scholar] [CrossRef]
- Siekmann, B.; Westesen, K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf. B Biointerfaces 1994, 3, 159–175. [Google Scholar] [CrossRef]
- Complex fats as matrix constitutions in lipid nanoparticles. In Proceedings of the 1st World Meeting of APGI/APV, Budapest, Hungary, 9–11 May 1995.
- Coupland, J.N. Crystallization in emulsions. Curr. Opin. Colloid Interface Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Effect of Particle Size on Colloidal Solid Triglycerides. Langmuir 2000, 16, 5234–5241. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Effects of surfactants on the crystallization and polymorphism of lipid nanoparticles. In Molecular Organisation on Interfaces; Lagaly, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 7–10. ISBN 978-3-540-43637-9. [Google Scholar]
- Aronhime, J.S.; Sarig, S.; Garti, N. Dynamic control of polymorphic transformation in triglycerides by surfactants: The button syndrome. J. Am. Oil Chem. Soc. 1988, 65, 1144–1150. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci. 2003, 92, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Fredrick, E.; Walstra, P.; Dewettinck, K. Factors governing partial coalescence in oil-in-water emulsions. Adv. Colloid Interface Sci. 2010, 153, 30–42. [Google Scholar] [CrossRef]
- Cholakova, D.; Vinarov, Z.; Tcholakova, S.; Denkov, N.D. Self-emulsification in chemical and pharmaceutical technologies. Curr. Opin. Colloid Interface Sci. 2022, 59, 101576. [Google Scholar] [CrossRef]
- Valkova, Z.; Cholakova, D.; Tcholakova, S.; Denkov, N.; Smoukov, S.K. Mechanisms and Control of Self-Emulsification upon Freezing and Melting of Dispersed Alkane Drops. Langmuir 2017, 33, 12155–12170. [Google Scholar] [CrossRef] [PubMed]
- Cholakova, D.; Glushkova, D.; Tcholakova, S.; Denkov, N. Cold-Burst Method for Nanoparticle Formation with Natural Triglyceride Oils. Langmuir 2021, 37, 7875–7889. [Google Scholar] [CrossRef] [PubMed]
- Tcholakova, S.; Valkova, Z.; Cholakova, D.; Vinarov, Z.; Lesov, I.; Denkov, N.; Smoukov, S.K. Efficient self-emulsification via cooling-heating cycles. Nat. Commun. 2017, 8, 15012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebula, D.J.; McClements, D.J.; Povey, M.J.W. Small angle neutron scattering from voids in crystalline trilaurin. J. Am. Oil Chem. Soc. 1990, 67, 76–78. [Google Scholar] [CrossRef]
- Cholakova, D.; Glushkova, D.; Tcholakova, S.; Denkov, N. Nanopore and Nanoparticle Formation with Lipids Undergoing Polymorphic Phase Transitions. ACS Nano 2020, 14, 8594–8604. [Google Scholar] [CrossRef] [PubMed]
- Bunjes, H.; Westesen, K.; Koch, M.H.J. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 1996, 129, 159–173. [Google Scholar] [CrossRef]
- Sato, K. Crystallization behaviour of fats and lipids—A review. Chem. Eng. Sci. 2001, 56, 2255–2265. [Google Scholar] [CrossRef]
- Takeuchi, M.; Ueno, S.; Sato, K. Synchrotron Radiation SAXS/WAXS Study of Polymorph-Dependent Phase Behavior of Binary Mixtures of Saturated Monoacid Triacylglycerols. Cryst. Growth Des. 2003, 3, 369–374. [Google Scholar] [CrossRef]
- Martini, S.; Herrera, M.L.; Hartel, R.W. Effect of cooling rate on crystallization behavior of milk fat fraction/sunflower oil blends. J. Am. Oil Chem. Soc. 2002, 79, 1055–1062. [Google Scholar] [CrossRef]
- Cholakova, D.; Valkova, Z.; Tcholakova, S.; Denkov, N.; Smoukov, S.K. “Self-Shaping” of Multicomponent Drops. Langmuir 2017, 33, 5696–5706. [Google Scholar] [CrossRef] [PubMed]
- Denkov, N.; Cholakova, D.; Tcholakova, S.; Smoukov, S.K. On the Mechanism of Drop Self-Shaping in Cooled Emulsions. Langmuir 2016, 32, 7985–7991. [Google Scholar] [CrossRef]
- Guttman, S.; Kesselman, E.; Jacob, A.; Marin, O.; Danino, D.; Deutsch, M.; Sloutskin, E. Nanostructures, Faceting, and Splitting in Nanoliter to Yoctoliter Liquid Droplets. Nano Lett. 2019, 19, 3161–3168. [Google Scholar] [CrossRef]
- Peyronel, F.; Quinn, B.; Marangoni, A.G.; Pink, D.A. Ultra Small Angle X-Ray Scattering for Pure Tristearin and Tripalmitin: Model Predictions and Experimental Results. Food Biophys. 2014, 9, 304–313. [Google Scholar] [CrossRef]
- Peyronel, F.; Pink, D.A.; Marangoni, A.G. Triglyceride nanocrystal aggregation into polycrystalline colloidal networks: Ultra-small angle X-ray scattering, models and computer simulation. Curr. Opin. Colloid Interface Sci. 2014, 19, 459–470. [Google Scholar] [CrossRef] [Green Version]
TAG | Cn | Saturation | ϑmelt in °C |
---|---|---|---|
Trilaurin (L) | C12 | C12:0 | 47 |
Trimyristin (M) | C14 | C14:0 | 56–57 |
Tripalmitin (P) | C16 | C16:0 | 65–68 |
Tristearin (S) | C18 | C18:0 | 72–75 |
Triolein (O) | C18 | C18:1 | 5 |
Sample | Temperature Range in °C | Cooling Rate in K | Heating Rate in K |
---|---|---|---|
AMF | 0–50 | 0.5 | 0.5 |
CB | 0–50 | 0.5 | 0.5 |
L+M | 0–68 | 0.5 | 0.5 |
L+P | 0–76 | 0.5 | 0.5 |
L+S | 0–84 | 0.5 | 0.5 |
L+O | 0–68 | 0.5 | 0.5 |
M+P | 0–56 | 0.5 | 0.5 |
L | 0–57 | 0.5 | 0.5 |
5 | 5 | ||
0.5 | 5 | ||
5 | 0.5 |
Initial Particle Size | |||
---|---|---|---|
in µm | in µm | in µm | |
13.3 ± 1.4 | 23.0 ± 1.9 | 33.2 ± 3.4 | |
Particle Size after Crystallization and Melting | |||
cTween 20 in wt% | in µm | in µm | in µm |
0.1 | 2.4 ± 0.9 | 10.7 ± 2.5 | 67.4 ± 12.0 |
0.25 | 1.5 ± 0.6 | 5.3 ±0.7 | 36.6 ± 14.5 |
0.5 | 0.6 ± 0.1 | 3.0 ± 1.6 | 39.5 ± 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiner, J.; Martin, D.; Ott, F.; Harnisch, L.; Gaukel, V.; Karbstein, H.P. Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions. Colloids Interfaces 2023, 7, 22. https://doi.org/10.3390/colloids7010022
Reiner J, Martin D, Ott F, Harnisch L, Gaukel V, Karbstein HP. Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions. Colloids and Interfaces. 2023; 7(1):22. https://doi.org/10.3390/colloids7010022
Chicago/Turabian StyleReiner, Jasmin, Désirée Martin, Franziska Ott, Leon Harnisch, Volker Gaukel, and Heike Petra Karbstein. 2023. "Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions" Colloids and Interfaces 7, no. 1: 22. https://doi.org/10.3390/colloids7010022
APA StyleReiner, J., Martin, D., Ott, F., Harnisch, L., Gaukel, V., & Karbstein, H. P. (2023). Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions. Colloids and Interfaces, 7(1), 22. https://doi.org/10.3390/colloids7010022