Anion Effects on the Liquid-Liquid Equilibrium Behavior of Pluronic L64 + Water + Sodium Salts at Different pH: Determination of Thermodynamic Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Determination of Thermodynamic Parameters
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pais, C.; Franco-Duarte, R.; Sampaio, P.; Wildner, J.; Carolas, A.; Figueira, D.; Ferreira, B.S. Chapter 9—Production of Dicarboxylic Acid Platform Chemicals Using Yeasts: Focus on Succinic Acid. In Biotransformation of Agricultural Waste and By-Products; Poltronieri, P., D’Urso, O.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 237–269. [Google Scholar]
- Walsh, G. Biopharmaceutical benchmarks 2010. Nat. Biotechnol. 2010, 28, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Glyk, A.; Scheper, T.; Beutel, S. PEG–salt aqueous two-phase systems: An attractive and versatile liquid–liquid extraction technology for the downstream processing of proteins and enzymes. Appl. Microbiol. Biotechnol. 2015, 99, 6599–6616. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.V.; de Carvalho Santos-Ebinuma, V.; Pessoa Junior, A.; Pereira, J.F.B. Liquid–liquid extraction of biopharmaceuticals from fermented broth: Trends and future prospects. J. Chem. Technol. Biotechnol. 2018, 93, 1845–1863. [Google Scholar] [CrossRef]
- Aguilar, O. Aqueous Two-Phase Systems for the Recovery and Purification of Bioproducts from Plants and Vegetable Tissues. In Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products; Rito-Palomares, M., Benavides, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–140. [Google Scholar]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, P.A.J.; Azevedo, A.M.; Sommerfeld, S.; Bäcker, W.; Aires-Barros, M.R. Aqueous two-phase extraction as a platform in the biomanufacturing industry: Economical and environmental sustainability. Biotechnol. Adv. 2011, 29, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.S.; D’Anzicourt, C.M.d.S.; Soares, C.M.F.; Souza, R.L.d.; Lima, Á.S. Liquid-liquid extraction of phenolic compounds in systems based on acetonitrile + water + polyvinylpyrrolidone at 298.15 K. Sep. Purif. Technol. 2019, 211, 117–123. [Google Scholar] [CrossRef]
- Rocha, M.V.; Nerli, B.B. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems. Int. J. Biol. Macromol. 2013, 61, 204–211. [Google Scholar] [CrossRef]
- Molino, J.V.D.; Viana Marques, D.d.A.; Júnior, A.P.; Mazzola, P.G.; Gatti, M.S.V. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol. Prog. 2013, 29, 1343–1353. [Google Scholar] [CrossRef]
- Coelho, D.; Soares, P.; Silveira, E.; Pessoa, A.; Tambourgi, E. Purification of Bromelain from Pineapple Residues (Ananas comosus) by PEG/Salt Aqueous Biphasic Systems. Exacta 2011, 9, 333–338. [Google Scholar] [CrossRef]
- Silva, M.E.; Pellogia, C.; Piza, F.A.T.; Franco, T.T. Purification of three different microbial b-galactosidases by partitioning in aqueous two-phase systems. Food Sci. Technol. 1997, 17, 219–223. [Google Scholar] [CrossRef]
- Clarke, S. The hydrophobic effect: Formation of micelles and biological membranes, 2nd edition (Tanford, Charles). J. Chem. Educ. 1981, 58, A246. [Google Scholar] [CrossRef] [Green Version]
- Alexandridis, P.; Alan Hatton, T. Poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Johansson, H.-O.; Karlström, G.; Tjerneld, F. Temperature-induced phase partitioning of peptides in water solutions of ethylene oxide and propylene oxide random copolymers. Biochim. Biophys. Acta (BBA) Gen. Subj. 1997, 1335, 315–325. [Google Scholar] [CrossRef]
- Nascimento, M.B.d.; Castro, S.d.S.; Veloso, C.M.; Fontan, R.d.C.I.; Nascimento, D.J.S.d.; Gandolfi, O.R.R.; Sampaio, V.S.; Veríssimo, L.A.A.; Bonomo, R.C.F. Equilibrium data and thermodynamic studies of α-amylase partition in aqueous two-phase systems. Fluid Ph. Equilibria 2018, 463, 69–79. [Google Scholar] [CrossRef]
- Rodrigues, G.D.; Silva, M.C.H.; Silva, L.H.M.; Teixeira, L.S.; Andrade, V.M. Liquid−Liquid Phase Equilibrium of Triblock Copolymer L64, Poly(ethylene oxide-b-propylene oxide-b-ethylene oxide), with Sulfate Salts from (278.15 to 298.15) K. J. Chem. Eng. Data 2009, 54, 1894–1898. [Google Scholar] [CrossRef]
- Andrade, V.M.; Rodrigues, G.D.; de Carvalho, R.M.M.; da Silva, L.H.M.; da Silva, M.C.H. Aqueous two-phase systems of copolymer L64+organic salt+water: Enthalpic L64–salt interaction and Othmer–Tobias, NRTL and UNIFAC thermodynamic modeling. Chem. Eng. J. 2011, 171, 9–15. [Google Scholar] [CrossRef]
- Kitahara, T.; Kamihira, M.; Takeuchi, H. Application of Pluronic F68 for Aqueous Two-Phase Extraction of Proteins. J. Chem. Eng. Jpn. 1993, 26, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Svensson, M.; Berggren, K.; Veide, A.; Tjerneld, F. Aqueous two-phase systems containing self-associating block copolymers: Partitioning of hydrophilic and hydrophobic biomolecules. J. Chromatogr. A 1999, 839, 71–83. [Google Scholar] [CrossRef]
- Merchuk, J.C.; Andrews, B.A.; Asenjo, J.A. Aqueous two-phase systems for protein separation: Studies on phase inversion. J. Chromatogr. B Biomed. Appl. 1998, 711, 285–293. [Google Scholar] [CrossRef]
- Corkill, J.M.; Goodman, J.F.; Harrold, S.P. Thermodynamics of micellization of non-ionic detergents. Trans. Faraday Soc. 1964, 60, 202–207. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of ion hydration and its interpretation in terms of a common model. Pure Appl. Chem. 1987, 59, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Marcus, Y. Thermodynamics of solvation of ions. Part 6.—The standard partial molar volumes of aqueous ions at 298.15 K. J. Chem. Soc. Faraday Trans. 1993, 89, 713–718. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Apparent molar volumes of organic acids and salts in water at 298.15 K. Fluid Ph. Equilibria 1990, 60, 157–171. [Google Scholar] [CrossRef]
- Clegg, S.L.; Wexler, A.S. Densities and Apparent Molar Volumes of Atmospherically Important Electrolyte Solutions. 1. The Solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, Including Extrapolations to Very Low Temperature and to the Pure Liquid State, and NaHSO4, NaOH, and NH3 at 25 °C. J. Phys. Chem. A 2011, 115, 3393–3460. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Silva, L.M.; Loh, W. Two-phase aqueous systems: Fundamentals and applications for protein partitioning/purification. Quim Nova 2006, 29, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Barani, A.; Pirdashti, M.; Heidari, Z.; Dragoi, E.-N. Influence of the molecular weight of polymer, temperature and pH on phase diagrams of poly (ethylene glycol) + di-potassium tartrate aqueous two-phase systems. Fluid Ph. Equilibria 2018, 459, 1–9. [Google Scholar] [CrossRef]
- Dan, A.; Moulik, S. The Solution Behavior of Poly(vinylpyrrolidone): Its Clouding in Salt Solution, Solvation by Water and Isopropanol, and Interaction with Sodium Dodecyl Sulfate. J. Phys. Chem. B 2008, 112, 3617–3624. [Google Scholar] [CrossRef]
- Grundl, G.; Müller, M.; Touraud, D.; Kunz, W. Salting-out and salting-in effects of organic compounds and applications of the salting-out effect of Pentasodium phytate in different extraction processes. J. Mol. Liq. 2017, 236, 368–375. [Google Scholar] [CrossRef]
- Videira, M.; Aires-Barros, M.R. Liquid-liquid extraction of clavulanic acid using an aqueous two-phase system of polyethylene glycol and potassium phosphate. J. Chromatogr. A 1994, 668, 237–240. [Google Scholar] [CrossRef]
- Belchior, D.C.V.; Quental, M.V.; Pereira, M.M.; Mendonça, C.M.N.; Duarte, I.F.; Freire, M.G. Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Sep. Purif. Technol. 2020, 233, 116019. [Google Scholar] [CrossRef]
- Sadeghi, R.; Jamehbozorg, B. The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol). Fluid Ph. Equilibria 2009, 280, 68–75. [Google Scholar] [CrossRef]
- Sharma, K.S.; Patil, S.R.; Rohit, K.K.; Rana, A.C.; Rakshit, A.K. Physicochemical studies of nonionic surfactants, C12E12 and C12E15: Effect of pH and NaCl. J. Surf. Sci. Technol. 2004, 20, 89–106. [Google Scholar]
- Rosen, M.J. Surfactant and Interfacial Phenomena, 2nd ed.; John Willey & Sons Inc.: New York, NY, USA, 1989. [Google Scholar]
- Burakowski, A.; Gliński, J.; Riederer, M. Hydration of polyethylene glycol monododecyl ethers (C12Ei, for i = 6 and 10) in their diluted aqueous solutions. J. Mol. Liq. 2019, 276, 179–183. [Google Scholar] [CrossRef]
- Carale, T.R.; Pham, Q.T.; Blankschtein, D. Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 1994, 10, 109–121. [Google Scholar] [CrossRef]
- Silva, L.H.M.; Silva, M.C.H.; Francisco, K.R.; Cardoso, M.V.C.; Minim, L.A.; Coimbra, J.S.R. PEO-M(CN)5NO]x- (M)Fe, Mn, or Cr) interaction as a driving force in the partitioning of the pentacyanonitrosylmetallate anion in ATPS: Strong effect of the central atom. J. Phys. Chem. B 2008, 112, 11669–11678. [Google Scholar] [CrossRef] [Green Version]
- Vicente, F.A.; Santos, J.H.P.M.; Pereira, I.M.M.; Gonçalves, C.V.M.; Dias, A.C.R.V.; Coutinho, J.A.P.; Ventura, S.P.M. Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chem. Eng. 2019, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, W.; Liu, Y.; Zhi, W.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro-Junior, E.G.; Costa, J.M.; Jimenez, O.A.Q.; de Souza, B.R.; Medeiros, A.C.; Basso, R.C. Anion Effects on the Liquid-Liquid Equilibrium Behavior of Pluronic L64 + Water + Sodium Salts at Different pH: Determination of Thermodynamic Parameters. Colloids Interfaces 2023, 7, 4. https://doi.org/10.3390/colloids7010004
Monteiro-Junior EG, Costa JM, Jimenez OAQ, de Souza BR, Medeiros AC, Basso RC. Anion Effects on the Liquid-Liquid Equilibrium Behavior of Pluronic L64 + Water + Sodium Salts at Different pH: Determination of Thermodynamic Parameters. Colloids and Interfaces. 2023; 7(1):4. https://doi.org/10.3390/colloids7010004
Chicago/Turabian StyleMonteiro-Junior, Edson G., Josiel M. Costa, Otto A. Q. Jimenez, Bruno R. de Souza, Abimael C. Medeiros, and Rodrigo C. Basso. 2023. "Anion Effects on the Liquid-Liquid Equilibrium Behavior of Pluronic L64 + Water + Sodium Salts at Different pH: Determination of Thermodynamic Parameters" Colloids and Interfaces 7, no. 1: 4. https://doi.org/10.3390/colloids7010004
APA StyleMonteiro-Junior, E. G., Costa, J. M., Jimenez, O. A. Q., de Souza, B. R., Medeiros, A. C., & Basso, R. C. (2023). Anion Effects on the Liquid-Liquid Equilibrium Behavior of Pluronic L64 + Water + Sodium Salts at Different pH: Determination of Thermodynamic Parameters. Colloids and Interfaces, 7(1), 4. https://doi.org/10.3390/colloids7010004