In Situ Dilatometry Measurements of Deformation of Microporous Carbon Induced by Temperature and Carbon Dioxide Adsorption under High Pressures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent
2.2. Adsorptive
2.3. Methods
2.3.1. Characterization of Adsorbent
2.3.2. Measurements of the Sorbonorit 4 Deformation Induced by the Carbon Dioxide Deformation and Temperature
3. Results and Discussion
3.1. Characterization of the Adsorbent
3.2. Carbon Dioxide Adsorption onto Sorbonorit 4
3.3. Temperature-Induced Deformation of Sorbonorit 4
3.4. Adsorption-Induced Deformation of Sorbonorit 4
3.5. Thermodynamic Behaviors of the CO2–Sorbonorit 4 Adsorption System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Environ. Sci. 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biniek, K.; Davies, R.; Henderson, K. Why Commercial Use Could Be the Future of Carbon Capture? Available online: https://www.mckinsey.com/capabilities/sustainability/our-insights/why-commercial-use-could-be-the-future-of-carbon-capture (accessed on 20 February 2023).
- Pollock, R.A.; Jackson, R.T.; Clairmont, A.A.; Nicholson, W.L. Carbon Dioxide as an Otic Vasodilator: Otic Blood Flow as Measured by the Microsphere Technique. Arch. Otolaryngol. 1974, 100, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; van der Linden, J. Wound ventilation with carbon dioxide: A simple method to prevent direct airborne contamination during cardiac surgery? J. Hosp. Infect. 2004, 56, 131–136. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Holtcamp, M.W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev. 1996, 153, 155–174. [Google Scholar] [CrossRef]
- Langanke, J.; Wolf, A.; Hofmann, J.; Bohm, K.; Subhani, M.A.; Muller, T.E.; Leitner, W.; Gurtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Bharti, R.K.; Srivastava, S.; Thakur, I.S. Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04. Bioresour. Technol. 2014, 153, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Smita Sundaram, S.; Edgard Gnansounou, E.; Christian Larroche, C.; Thakur, I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresour. Technol. 2018, 247, 1059–1068. [Google Scholar] [CrossRef]
- Koley, S.; Khadase, M.S.; Mathimani, T.; Raheman, H.; Mallick, N. Catalytic and non-catalytic hydrothermal processing of Scenedesmus obliquus biomass for bio-crude production—A sustainable energy perspective. Energy Convers. Manag. 2018, 163, 111–121. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Zhang, Q.; Li, Z.; Yang, D. Effect of CO2 on heavy oil recovery and physical properties in huff-n-puff processes under reservoir conditions. J. Energy Res. Technol. 2018, 140, 072907. [Google Scholar] [CrossRef]
- Iddphonce, R.; Wang, J.; Zhao, L. Review of CO2 injection techniques for enhanced shale gas recovery: Prospect and challenges. J. Nat. Gas Sci. Eng. 2020, 77, 103240. [Google Scholar] [CrossRef]
- Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O. Adsorption and strain: The CO2-induced swelling of coal. J. Mech. Phys. Solids 2010, 58, 1489–1505. [Google Scholar] [CrossRef] [Green Version]
- Huo, P.; Zhang, D.; Yang, Z.; Li, W.; Zhang, J.; Jia, S. CO2 geological sequestration: Displacement behavior of shale gas methane by carbon dioxide injection. Int. J. Greenh. Gas Control. 2017, 66, 48–59. [Google Scholar] [CrossRef]
- Zhang, W.; Mehrabian, A. Full coupling of CO2–CH4 transport and sorption with solid deformation in gas shale enhances natural gas recovery and geological CO2 storage capacity. J. Nat. Gas Sci. Eng. 2022, 106, 104736. [Google Scholar] [CrossRef]
- Gunawardene, O.H.P.; Gunathilake, C.; Vikrant, K.; Amaraweera, S.M. Carbon Dioxide capture through physical and chemical adsorption using porous carbon materials: A review. Atmosphere 2022, 13, 397. [Google Scholar] [CrossRef]
- Tao, H.; Qian, X.; Zhou, Y.; Cheng, H. Research progress of clay minerals in carbon dioxide capture. Renew. Sust. Energ. Rev. 2022, 164, 112536. [Google Scholar] [CrossRef]
- Mouhat, F.; Bousquet, D.; Boutin, A.; Bouessel du Bourg, L.; Coudert, F.-X.; Fuchs, A.H. Softening upon adsorption in microporous materials: A counterintuitive mechanical response. J. Phys. Chem. Lett. 2015, 6, 4265–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, J.W. The effects of dissolved CO2 on coal structure and properties. Inter. J. Coal Geol. 2004, 57, 63–70. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Fomkin, A.A.; Potapov, S.V. Thermodynamics of krypton adsorption on microporous carbon adrbent at high pressures. Russ. Chem. Bull. 2017, 66, 607–613. [Google Scholar] [CrossRef]
- Men’shchikov, I.; Shkolin, A.; Khozina, E.; Fomkin, A. Peculiarities of thermodynamic behaviors of xenon adsorption on the activated carbon prepared from silicon carbide. Nanomaterials 2021, 11, 971. [Google Scholar] [CrossRef]
- Mechan, F.T. Expansion of charcoal on sorption of carbon dioxide. Proc. R. Soc. 1927, A115, 199–205. [Google Scholar]
- Bangham, D.H.; Fakhoury, N. The expansion of charcoal accompanying sorption of gases and vapours. Nature 1928, 122, 681–682. [Google Scholar] [CrossRef]
- Bangham, D.H.; Fakhoury, N. The swelling of charcoal. Part I.—Preliminary experiments with water vapour, carbon dioxide, ammonia, and sulphur dioxide. Proc. R. Soc. Lond. Ser. A 1930, 130, 81–89. [Google Scholar]
- Bangham, D.H. The Gibbs adsorption equation and adsorption on solid. Trans. Faraday Soc. 1937, 33, 805–809. [Google Scholar] [CrossRef]
- Gor, G.Y.; Huber, P.; Bernstein, N. Adsorption-induced deformation of nanoporous materials—A review. Appl. Phys. Rev. 2017, 4, 011303. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.L.; Budkov, Y.A.; Gor, G.Y. Models of adsorption-induced deformation: Ordered materials and beyond. J. Phys. Condens. Matter 2021, 34, 063002. [Google Scholar] [CrossRef]
- Vandamme, M. Coupling between adsorption and mechanics (and vice versa). Cur. Opin. Chem. Eng. 2019, 24, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Lakhanpal, M.L.; Flood, E.A. Stresses and strains in adsorbate–adsorbent systems: IV. Contractions of activated carbon on adsorption of gases and vapors at low initial pressures. Can. J. Chem. 1957, 35, 887–899. [Google Scholar] [CrossRef]
- Yakovlev, V.Y.; Fomkin, A.A.; Tvardovskii, A.V. Adsorption and deformation phenomena at the interaction of CO2 and a microporous carbon adsorbent. J. Coll. Int. Sci. 2003, 268, 33–36. [Google Scholar] [CrossRef]
- Balzer, C.; Wildhage, T.; Braxmeier, S.; Reichenauer, G.; Olivier, J.P. Deformation of Porous Carbons upon Adsorption. Langmuir 2011, 27, 2553–2560. [Google Scholar] [CrossRef]
- Bahadur, J.; Melnichenko, Y.B.; He, L.; Contescu, C.I.; Gallego, N.C.; Carmichael, J.R. SANS Investigations of CO2 Adsorption in Microporous Carbon. Carbon 2015, 95, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Folman, M.; Yates, D.J.C. Expansion-contraction effects in rigid adsorbents at low coverages. Trans. Farad. Soc. 1958, 54, 429–440. [Google Scholar] [CrossRef]
- Pulin, A.L.; Fomkin, A.A.; Sinitsyn, V.A.; Pribylov, A.A. Adsorption and adsorption-induced deformation of NaX zeolite under high pressures of carbon dioxide. Russ. Chem. Bull. 2001, 50, 60–62. [Google Scholar] [CrossRef]
- Sorenson, S.G.; Payzant, E.A.; Noble, R.D.; Falconer, J.L. Influence of crystal expansion/contraction on zeolite membrane permeation. J. Memb. Sci. 2010, 357, 98–104. [Google Scholar] [CrossRef]
- Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N.A.; Maurin, G.; Llewellyn, P.L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P.; et al. An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption. Adv. Mater. 2007, 19, 2246–2251. [Google Scholar] [CrossRef]
- Ramsahye, N.A.; Maurin, G.; Llewellyn, P.L.; Loiseau, T.; Serre, C.; Férey, G. On the breathing effect of a metal-organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments. Chem. Commun. 2007, 3261–3263. [Google Scholar] [CrossRef]
- Dolino, G.; Bellet, D.; Faivre, C. Adsorption strains in porous silicon. Phys. Rev. 1996, B 54, 17919–17929. [Google Scholar] [CrossRef]
- Prass, J.; Muter, D.; Erko, M.; Paris, O. Apparent lattice expansion in ordered nanoporous silica during capillary condensation of fluids. J. Appl. Crystallog. 2012, 45, 798–806. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Men’shchikov, I.E.; Fomkin, A.A. Method to measure the deformation of nanoporous materials induced by the adsorption of gases and vapors. Nanobiotechnol. Rep. 2022, 17, 916–922. [Google Scholar] [CrossRef]
- Mogilnikov, K.P.; Baklanov, M.R. Determination of Young’s modulus of porous low-k films by ellipsometric porosimetry. Electrochem. Solid State Lett. 2002, 5, F29–F31. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Men’shchikov, I.E.; Khozina, E.V.; Yakovlev, V.Y.; Fomkin, A.A. Isotropic and anisotropic properties of adsorption-induced deformation of porous carbon materials. Adsorption 2023, 1–17. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Ciach, A.; Neimark, A.V. Adsorption-Induced Deformation of Microporous Carbons: Pore Size Distribution Effect. Langmuir 2008, 24, 6603–6608. [Google Scholar] [CrossRef] [PubMed]
- Dubinin, M.M. Physical adsorption of gases and vapors in micropores. Prog. Surf. Membr. Sci. 1975, 9, 1–70. [Google Scholar]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 1989, 27, 457–467. [Google Scholar] [CrossRef]
- Bakaev, V.A. Molecular Theory of Physical Adsorption. Ph.D. Thesis, Moscow State University, Moscow, Russia, June 1989. (In Russian). [Google Scholar]
- Downarowicz, D. Adsorption characteristics of propane-2-ol vapours on activated carbon Sorbonorit 4 in electrothermal temperature swing adsorption process. Adsorption 2015, 21, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Kel’tsev, N.V. Osnovy Adsorbtsionnoi Tekhniki (Fundamentals of Adsorption Techniques); Khimiya USSR: Moscow, Russia, 1976; p. 592. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Sugden, S. The Parachor and Valency; G. Routledge: London, UK, 1930; p. 224. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar]
- Neimark, A.V.; Lin, Y.; Ravikovitch, P.I.; Thommes, M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 2009, 47, 1617–1628. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK; New York, NY, USA, 1982; p. 303. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Fomkin, A.A.; Men’shchikov, I.E.; Kharitonov, V.M.; Pulin, A.L. A bench for Measuring Adsorption of Gases and Vapors by the Gravimetric Method and Its Operation Procedure. Patent RF no. 2732199, 14 September 2020. [Google Scholar]
- Shkolin, A.V.; Fomkin, A.A. Measurement of Carbon-Nanotube Adsorption of Energy-Carrier Gases for alternative energy systems. Meas. Tech. 2018, 61, 395–401. [Google Scholar] [CrossRef]
- GOST 34100.3-2017/ISO/IEC Guide 93-3:2008; Part 3. Guide to the Expression of Uncertainty in Measurement. ISO: Geneva, Switzerland, 2008. Available online: https://files.stroyinf.ru/Data/651/65118.pdf (accessed on 18 June 2018).
- Shkolin, A.V.; Men’shchikov, I.E.; Khozina, E.V.; Yakovlev, V.Y.; Simonov, V.N.; Fomkin, A.A. Deformation of Microporous Carbon Adsorbent Sorbonorit 4 during Methane Adsorption. J. Chem. Eng. Data. 2022, 67, 1699–1714. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Fomkin, A.A. Description of Adsorption-Stimulated Deformation of Microporous Adsorbents Based on Generalized Potential of Intermolecular Interactions (6, n). Prot. Met. Phys. Chem. Surf. 2016, 52, 193–198. [Google Scholar] [CrossRef]
- GOST ISO 11095:1996; Statistical Methods. Linear Calibration Using Reference Materials. ISO: Geneva, Switzerland, 1996. Available online: https://gostassistent.ru/doc/a6da0522-2d64-4f80-bdbe-5a156b96299a (accessed on 10 June 2018).
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Oliver, J.P.; Rodrigues-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Shafeeyan, M.S.; Houshmand, A.; Daud, W.M.A.W.; Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrol. 2010, 89, 143–151. [Google Scholar] [CrossRef]
- Giraldo, L.; Vargas, D.P.; Moreno-Piraján, J.C. Study of CO2 Adsorption on Chemically Modified Activated Carbon with Nitric Acid and Ammonium Aqueous. Front. Chem. 2020, 8, 543452. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Fomkin, A.A.; Yakovlev, V.Y. Analysis of adsorption isosteres of gas and vapor on microporous adsorbents. Russ. Chem. Bull. 2007, 56, 393–396. [Google Scholar] [CrossRef]
- Shkolin, A.V.; Fomkin, A.A.; Tsivadze, A.Y.; Anuchin, K.M.; Men’shchikov, I.E.; Pulin, A.L. Experimental study and numerical modeling: Methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions. Prot. Met. Phys. Chem. Surf. 2016, 52, 955–963. [Google Scholar] [CrossRef]
- Men’shchikov, I.E.; Fomkin, A.A.; Tsivadze, A.Y.; Shkolin, A.V.; Strizhenov, E.M.; Pulin, A.L. Methane adsorption on microporous carbon adsorbents in the region of supercritical temperatures. Prot. Met. Phys. Chem. Surf. 2015, 51, 393–398. [Google Scholar] [CrossRef]
- Nikolaev, K.M.; Dubinin, M.M. Concerning adsorption properties of carbon adsorbents 3. A study of adsorption isotherms of gases and vapors on active carbons over a wide interval of temperatures, including the critical region. Russ. Chem. Bull. 1958, 7, 1124–1133. [Google Scholar] [CrossRef]
- Men´shchikov, I.E.; Fomkin, A.A.; Arabei, A.B.; Shkolin, A.V.; Strizhenov, E.M. Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Prot. Met. Phys. Chem. Surf. 2016, 52, 575–580. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, 1st ed.; Noyes Publications: Park Ridge, NJ, USA, 1993; pp. 59–60. [Google Scholar]
- Bailey, A.C.; Yates, B. Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures. J. Appl. Phys. 1970, 41, 5088–5091. [Google Scholar] [CrossRef]
- Novikova, S.I. Thermal Expansion of Solids; Nauka: Moscow, Russia, 1974; p. 293. (In Russian) [Google Scholar]
- Menéndez-Díaz, J.A.; Martín-Gullón, I. Chapter 1. Types of Carbon Adsorbents and Their Production. In Interface Science and Technology, 1st ed.; Bandosz, T.J., Ed.; Elsevier: London, UK, 2006; Volume 7, pp. 1–47. [Google Scholar] [CrossRef]
- Men’shchikov, I.E.; Shiryaev, A.A.; Shkolin, A.V.; Vysotskii, V.V.; Khozina, E.V.; Fomkin, A.A. Carbon adsorbents for methane storage: Genesis, synthesis, porosity, adsorption. Korean J. Chem. Eng. 2021, 38, 276–291. [Google Scholar] [CrossRef]
- Uraki, Y.; Tamai, Y.; Ogawa, M.; Gaman, S.; Tokurad, S. Activated carbon from peat. BioResources 2009, 4, 205–213. [Google Scholar]
- Bergna, D.; Hu, T.; Prokkola, H.; Romar, H.; Lassi, U. Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process. Waste Biomass Valorization 2020, 11, 2837–2848. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, N.F.; Ivakhnyuk, G.K.; Gavrilov, D.N.; Tetenov, V.V.; Smetanin, G.N.; Samonin, V.V.; Babkin, O.E.; Zaitzev, Y.A. Carbon Adsorbents from Inorganic Compounds of Carbon. In Carbon Adsorbents and their Industrial Applications; Nauka: Moscow, Russia, 1983; pp. 20–33. (In Russian) [Google Scholar]
- Shkolin, A.V.; Fomkin, A.A. Deformation of auk microporous carbon adsorbent induced by methane adsorption. Col. J. 2009, 71, 119–124. [Google Scholar] [CrossRef]
- Pulin, A.L.; Fomkin, A.A. Thermodynamics of CO2 adsorption on zeolite NaX in wide intervals of pressures and temperatures. Russ. Chem. Bull. 2004, 53, 1630–1634. [Google Scholar] [CrossRef]
- Naum, R.G.; Jun, C.K. Thermal expansion of Polycrystalline Graphite. J. Appl. Phys. 1970, 41, 5092–5095. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Y.; Wu, Q.; Liu, B.; Li, D.; Chen, R.; Wang, C.; Li, H.; Zeng, Z.; Liqing Li, L. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: Do adsorbents capture CO2 chiefly through narrow micropores? Fuel 2020, 282, 118727. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Density functional theory model of adsorption deformation. Langmuir 2006, 22, 10864–10868. [Google Scholar] [CrossRef]
- Sampath, K.; Perera, M.; Ranjith, P.; Matthai, S.; Rathnaweera, T.; Zhang, G.; Tao, X. CH4–CO2 Gas exchange and supercritical CO2 based hydraulic fracturing as CBM production-accelerating techniques: A review. J. CO2 Util. 2017, 22, 212–230. [Google Scholar] [CrossRef]
- Neimark, A.V.; Grinev, I. Adsorption-Induced Deformation of Microporous Solids: A New Insight from a Century-Old Theory. J. Phys. Chem. 2020, 124, 749–755. [Google Scholar] [CrossRef]
- Hill, T.L. Theory of Physical Adsorption. In Advances in Catalysis and Related Subjects; Frankenburg, W.G., Komarewsky, V.I., Rideal, E.K., Eds.; Academic Press: New York, NY, USA, 1952; Volume 4, pp. 211–258. [Google Scholar]
- Myers, A.L. Thermodynamics of adsorption in porous materials. AIChE J. 2002, 48, 145–160. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Search for Species Data by Chemical. In NIST Chemistry WebBook; National Institute of Standards and Technology: Gaithersburg, MA, USA, 2018. [Google Scholar]
- Fomkin, A.A. Adsorption of gases, vapors and liquids by microporous adsorbents. Adsorption 2005, 11, 425–436. [Google Scholar] [CrossRef]
M | Tb, K | Tcr, K | ρcr, kg/m3 | Pcr, MPa | Tλ, K | d/lm, Å/Å | dkin, Å |
---|---|---|---|---|---|---|---|
44,011 | 194.65 | 304.19 | 468 | 7.382 | 216.55 | 3.1/4.1 | 3.3 |
Adsorbent | SBET, m2/g | W0, cm3/g | X0, nm | E0, kJ/mol | WS, cm3/g | WME, cm3/g | SME, m2/g | , nm | , nm |
---|---|---|---|---|---|---|---|---|---|
Sorbonorit 4 | 1200 | 0.49 | 0.55 | 21.8 | 0.51 | 0.02 | 10 | 1.22 | 3.9 |
Element | Amount, at.% |
---|---|
C | 89.35 |
O | 9.11 |
K | 0.23 |
Other impurities | 1.21 |
T, K | Δqst, % | |||
---|---|---|---|---|
ΔZ, % | Δη(T), % | Δη(a), % | Δη(a+T), % | |
216.4 | −2.92 | 0.02 | −0.05 | −0.03 |
243 | −2.91 | 0.02 | −0.02 | 0 |
273 | −19.32 | 0.21 | −0.67 | −0.46 |
293 | −42.65 | 0.74 | −1.38 | −0.64 |
333 | −84.94 | 2.59 | −0.19 | 2.40 |
393 | −41.51 | 3.81 | 0.04 | 3.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shkolin, A.; Men’shchikov, I.; Khozina, E.; Fomkin, A. In Situ Dilatometry Measurements of Deformation of Microporous Carbon Induced by Temperature and Carbon Dioxide Adsorption under High Pressures. Colloids Interfaces 2023, 7, 46. https://doi.org/10.3390/colloids7020046
Shkolin A, Men’shchikov I, Khozina E, Fomkin A. In Situ Dilatometry Measurements of Deformation of Microporous Carbon Induced by Temperature and Carbon Dioxide Adsorption under High Pressures. Colloids and Interfaces. 2023; 7(2):46. https://doi.org/10.3390/colloids7020046
Chicago/Turabian StyleShkolin, Andrey, Il’ya Men’shchikov, Elena Khozina, and Anatolii Fomkin. 2023. "In Situ Dilatometry Measurements of Deformation of Microporous Carbon Induced by Temperature and Carbon Dioxide Adsorption under High Pressures" Colloids and Interfaces 7, no. 2: 46. https://doi.org/10.3390/colloids7020046
APA StyleShkolin, A., Men’shchikov, I., Khozina, E., & Fomkin, A. (2023). In Situ Dilatometry Measurements of Deformation of Microporous Carbon Induced by Temperature and Carbon Dioxide Adsorption under High Pressures. Colloids and Interfaces, 7(2), 46. https://doi.org/10.3390/colloids7020046