Effect of Gelling Agent Type on the Physical Properties of Nanoemulsion-Based Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanoemulsion-Based Gels
2.3. Optical Properties of Nanoemulsion-Based Gels
2.4. Rheological Properties of Nanoemulsion-Based Gels
2.4.1. Flow Properties
2.4.2. Viscoelastic Properties
2.5. Textural Properties
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Water-Holding Capacity of Nanoemulsion-Based Gels
2.8. Statistical Analysis
3. Results and Discussion
3.1. Visual Appearance of Nanoemulsion-Based Gels
3.2. Color Properties
3.3. Rheological Characterization of Nanoemulsion-Based Gels
3.3.1. Flow Properties
3.3.2. Viscoelastic Properties
3.4. Texture Properties
3.5. Fourier Transform Infrared (FTIR) Analysis
3.6. Water-Holding Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calligaris, S.; Moretton, M.; Melchior, S.; Mosca, A.C.; Pellegrini, N.; Anese, M. Designing food for the elderly: The critical impact of food structure. Food Funct. 2022, 13, 6467–6483. [Google Scholar] [CrossRef]
- Song, X.; Perez-Cueto, F.J.; Bredie, W.L. Sensory-driven development of protein-enriched rye bread and cream cheese for the nutritional demands of older adults. Nutrients 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Cichero, J. Age-related changes to eating and swallowing impact frailty: Aspiration, choking risk, modified food texture and autonomy of choice. Geriatrics 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Alsanei, W.A.; Chen, J. Food structure development for specific population groups. In Handbook of Food Structure Development; Spyropoulos, F., Lazidis, A., Norton, I., Eds.; Royal Society of Chemistry: London, UK, 2019; pp. 459–479. [Google Scholar]
- Aguilera, J.M.; Park, D. Texture-modified foods for the elderly: Status, technology, and opportunities. Trends Food Sci. Technol. 2016, 57, 156–164. [Google Scholar] [CrossRef]
- Hadde, E.K.; Chen, J. Texture and texture assessment of thickened fluids and texture-modified food for dysphagia management. J. Texture Stud. 2021, 52, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, K.; Ishihara, S.; Nakauma, M.; Funami, T. Fracture phenomena of soft gellan gum gels during compression with artificial tongues. Food Hydrocoll. 2021, 112, 106283. [Google Scholar] [CrossRef]
- Munialo, C.D.; Kontogiorgos, V.; Euston, S.R.; Nyambayo, I. Rheological, tribological and sensory attributes of texture-modified food for dysphagia patients and the elderly: A review. Int. J. Food Sci. Technol. 2019, 55, 1862–1871. [Google Scholar] [CrossRef]
- Tan, C.; McClements, D.J. Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods 2021, 10, 812. [Google Scholar] [CrossRef]
- Jena, G.K.; Parhi, R.; Sahoo, S.K. Nanoemulsions in Food Industry. In Application of Nanotechnology in Food Science, Processing and Packaging; Springer: Cham, Switzerland, 2022; pp. 73–91. [Google Scholar]
- Li, G.; Zhang, Z.; Liu, H.; Hu, L. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct. 2021, 12, 1933–1953. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible nanoemulsions as carriers of active ingredients: A review. Annu. Rev. Food Sci. Technol. 2017, 8, 439–466. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Saeed, F.; Afzaal, M.; Hussain, M.; Ikram, A.; Khalid, M.A. Food grade nanoemulsions: Promising delivery systems for functional ingredients. J. Food Sci. Technol. 2023, 60, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Kelly, A.L.; Miao, S. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends Food Sci. Technol. 2020, 102, 123–137. [Google Scholar] [CrossRef]
- Lu, Y.; Mao, L.; Hou, Z.; Miao, S.; Gao, Y. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality. Food Eng. Rev. 2019, 11, 245–258. [Google Scholar] [CrossRef]
- Torres, O.; Murray, B.; Sarkar, A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends Food Sci. Technol. 2016, 55, 98–108. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Yuan, F.; Gao, Y.; Mao, L. Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocoll. 2021, 116, 106637. [Google Scholar] [CrossRef]
- Farjami, T.; Madadlou, A. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends Food Sci. Technol. 2019, 86, 85–94. [Google Scholar] [CrossRef]
- Xu, G.; Kang, J.; You, W.; Li, R.; Zheng, H.; Lv, L.; Zhang, Q. Pea protein isolates affected by ultrasound and NaCl used for dysphagia’s texture-modified food: Rheological, gel, and structural properties. Food Hydrocoll. 2023, 139, 108566. [Google Scholar] [CrossRef]
- Montes de Oca-Ávalos, J.M.; Borroni, V.; Huck-Iriart, C.; Navarro, A.S.; Candal, R.J.; Herrera, M.L. Relationship between formulation, gelation kinetics, micro/nanostructure and rheological properties of sodium caseinate nanoemulsion-based acid gels for food applications. Food Bioproc. Tech. 2020, 13, 288–299. [Google Scholar] [CrossRef]
- Liao, Y.; Sun, Y.; Wang, Z.; Zhong, M.; Li, R.; Yan, S.; Li, Y. Structure, rheology, and functionality of emulsion-filled gels: Effect of various oil body concentrations and interfacial compositions. Food Chem. X 2022, 16, 100509. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Meyer, A.S. Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids. Trends Food Sci. Technol. 2021, 109, 608–621. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer-based carrageenan blends and composites. Int. J. Biol. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Bui, V.T.; Nguyen, B.T.; Nicolai, T.; Renou, F. Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydr. Polym. 2019, 223, 115107. [Google Scholar] [CrossRef] [PubMed]
- Bertasa, M.; Dodero, A.; Alloisio, M.; Vicini, S.; Riedo, C.; Sansonetti, A.; Scalarone, D.; Castellano, M. Agar gel strength: A correlation study between chemical composition and rheological properties. Eur. Polym. J. 2020, 123, 109442. [Google Scholar] [CrossRef]
- Lee, W.K.; Lim, Y.Y.; Leow, A.T.C.; Namasivayam, P.; Abdullah, J.O.; Ho, C.L. Factors affecting yield and gelling properties of agar. J. Appl. Phycol. 2017, 29, 1527–1540. [Google Scholar] [CrossRef]
- de Souza Paglarini, C.; de Figueiredo Furtado, G.; Biachi, J.P.; Vidal, V.A.S.; Martini, S.; Forte, M.B.S.; Lopes Cunha, R.; Pollonio, M.A.R. Functional emulsion gels with potential application in meat products. J. Food Eng. 2018, 222, 29–37. [Google Scholar] [CrossRef]
- Lucas-González, R.; Roldán-Verdu, A.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of emulsion gels formulated with chestnut (Castanea sativa M.) flour and chia (Salvia hispanica L) oil as partial fat replacers in pork burger formulation. J. Sci. Food Agric. 2020, 100, 1265–1273. [Google Scholar] [CrossRef]
- Nacak, B.; Öztürk-Kerimoğlu, B.; Yıldız, D.; Çağındı, Ö.; Serdaroğlu, M. Peanut and linseed oil emulsion gels as potential fat replacer in emulsified sausages. Meat Sci. 2021, 176, 108464. [Google Scholar] [CrossRef]
- Chen, X.; McClements, D.J.; Wang, J.; Zou, L.; Deng, S.; Liu, W.; Liu, C. Coencapsulation of (−)-Epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: Controlled release and bioaccessibility. J. Agric. Food Chem. 2018, 66, 3691–3699. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Su, Y.; Chang, C.; Yang, Y.; Gu, L. Flocculation behavior and gel properties of egg yolk/κ-carrageenan composite aqueous and emulsion systems: Effect of NaCl. Food Res. Int. 2020, 132, 108990. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.M.; Meng, R.; Xu, B.C.; Zhang, B. Investigation of the formation mechanism and curcumin bioaccessibility of emulsion gels based on sugar beet pectin and laccase catalysis. J. Agri Food Chem. 2021, 69, 2557–2563. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, N.; Robert, P.; Arancibia, C. Understanding older people perceptions about desserts using word association and sorting task methodologies. Food Qual. Prefer. 2022, 96, 104423. [Google Scholar] [CrossRef]
- Chen, H.; Mao, L.; Hou, Z.; Yuan, F.; Gao, Y. Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocoll. 2020, 99, 105372. [Google Scholar] [CrossRef]
- Riquelme, N.; Robert, P.; Troncoso, E.; Arancibia, C. Influence of the particle size and hydrocolloid type on lipid digestion of thickened emulsions. Food Funct. 2020, 11, 5955–5964. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Stokes, J.R. Rheology and tribology: Two distinctive regimes of food texture sensation. Trends Food Sci. Technol. 2012, 25, 4–12. [Google Scholar] [CrossRef]
- Sharma, M.; Pico, J.; Martinez, M.M.; Duizer, L. The dynamics of starch hydrolysis and thickness perception during oral processing. Food Res. Int. 2020, 134, 109275. [Google Scholar] [CrossRef]
- Liu, W.; Gao, H.; McClements, D.J.; Zhou, L.; Wu, J.; Zou, L. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocoll. 2019, 88, 210–217. [Google Scholar] [CrossRef]
- Ghirro, L.C.; Rezende, S.; Ribeiro, A.S.; Rodrigues, N.; Carocho, M.; Pereira, J.A.; Santamaria-Echart, A. Pickering emulsions stabilized with curcumin-based solid dispersion particles as mayonnaise-like food sauce alternatives. Molecules 2022, 27, 1250. [Google Scholar] [CrossRef]
- Martín del Campo, A.; Fermín-Jiménez, J.A.; Fernández-Escamilla, V.V.; Escalante-García, Z.Y.; Macías-Rodríguez, M.E.; Estrada-Girón, Y. Improved extraction of carrageenan from red seaweed (Chondracantus canaliculatus) using ultrasound-assisted methods and evaluation of the yield, physicochemical properties and functional groups. Food Sci. Biotech. 2021, 30, 901–910. [Google Scholar] [CrossRef]
- Giura, L.; Urtasun, L.; Belarra, A.; Ansorena, D.; Astiasarán, I. Exploring tools for designing dysphagia-friendly foods: A review. Foods 2021, 10, 1334. [Google Scholar] [CrossRef]
- IDDSI. The IDDSI Framework. International Dysphagia Diet Standardization Initiative Retriever. Available online: https://iddsi.org/IDDSI/media/images/Complete_IDDSI_Framework_Final_31July2019.pdf (accessed on 16 December 2022).
- Nakauma, M.; Funami, T. Structuring for Elderly Foods. In Food Hydrocolloids; Fang, Y., Zhang, H., Nishinari, K., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Bazunova, M.V.; Shurshina, A.S.; Lazdin, R.Y.; Kulish, E.I. Thixotropic properties of solutions of some polysaccharides. Russ. J. Phy. Chem. B 2020, 14, 685–690. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Liyanapathiranage, A.; Makehelwala, M.; Dassanayake, R.S.; Manamperi, A.; Merah, O.; Mani, S.; Koduru, J.R.; Madhujith, T. Algal polysaccharides: Structure, preparation and applications in food packaging. Food Chem. 2022, 405, 134903. [Google Scholar] [CrossRef]
- Goff, H.D.; Guo, Q. The role of hydrocolloids in the development of food structure. In Handbook of Food Structure Development; Spyropoulos, F., Lazidis, A., Norton, I., Eds.; Royal Society of Chemistry: London, UK, 2019; pp. 1–28. [Google Scholar]
- Makshakova, O.N.; Faizullin, D.A.; Zuev, Y.F. Interplay between secondary structure and ion binding upon thermoreversible gelation of κ-carrageenan. Carbohydr. Polym. 2020, 227, 115342. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, X.; Scholten, E. Rheological behaviour of emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocoll. 2018, 77, 363–371. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Liang, R.; Sun, H.; Wu, L.; Yang, C.; Liu, Y. Development and characterization of ultrastable emulsion gels based on synergistic interactions of xanthan and sodium stearoyl lactylate. Food Chem. 2023, 400, 133957. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, Z.; Wu, M.; Shen, Y.; Li, G.; Ma, T. Fabrication of emulsion gel based on polymer sanxan and its potential as a sustained-release delivery system for β-carotene. Int. J. Biol. Macromol. 2020, 164, 597–605. [Google Scholar] [CrossRef]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental characterization of banana dessert gels for the elderly with dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D.J.; Liu, X.; Liu, F. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocoll. 2020, 102, 105569. [Google Scholar] [CrossRef]
- Moret-Tatay, A.; Rodríguez-García, J.; Martí-Bonmatí, E.; Hernando, I.; Hernández, M.J. Commercial thickeners used by patients with dysphagia: Rheological and structural behaviour in different food matrices. Food Hydrocoll. 2015, 51, 318–326. [Google Scholar] [CrossRef]
- Ishihara, S.; Nakauma, M.; Funami, T.; Odake, S.; Nishinari, K. Swallowing profiles of food polysaccharide gels in relation to bolus rheology. Food Hydrocoll. 2011, 25, 1016–1024. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M. Instrumental food texture evaluation in relation to human perception. Food Hydrocoll. 2022, 124, 107253. [Google Scholar] [CrossRef]
- Wada, S.; Kawate, N.; Mizuma, M. What type of food can older adults masticate? Evaluation of mastication performance using color-changeable chewing gum. Dysphagia 2017, 32, 636–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem, National Library of Medicine: National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/ (accessed on 18 January 2023).
- Cichero, J.A.Y. Adjustment of food textural properties for elderly patients. J. Texture Stud. 2016, 47, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q. Understanding the oral processing of solid foods: Insights from food structure. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2941–2967. [Google Scholar] [CrossRef]
- Hadde, E.K.; Prakash, S.; Chen, W.; Chen, J. Instrumental texture assessment of IDDSI texture levels for dysphagia management. Part 2: Texture modified foods. J. Texture Stud. 2022, 53, 617–628. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Y.; Wang, Y.; Wang, R.; Zeng, M. Effect of κ-carrageenan on the gelation properties of oyster protein. Food Chem. 2022, 382, 132329. [Google Scholar] [CrossRef]
- Gallego, M.; Barat, J.M.; Grau, R.; Talens, P. Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends Food Sci. Technol. 2022, 119, 152–163. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, L.; Wang, W.; Xiao, Y.; Liu, S.; Luo, Y.; Xie, J. Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocoll. 2020, 99, 105371. [Google Scholar] [CrossRef]
- Moreno, H.M.; Domínguez-Timón, F.; Díaz, M.T.; Pedrosa, M.M.; Borderías, A.J.; Tovar, C.A. Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocoll. 2020, 99, 105375. [Google Scholar] [CrossRef]
- Jamwal, R.; Kumari, S.A.; Sharma, S.; Kelly, S.; Cannavan, A.; Singh, D.K. Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib. Spectrosc. 2021, 113, 103222. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, Y.; Zhang, Y.; Gao, Y.; Mao, L. Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocoll. 2022, 124, 107178. [Google Scholar] [CrossRef]
- Kuligowski, J.; Quintás, G.; Garrigues, S.; de la Guardia, M. Determination of lecithin and soybean oil in dietary supplements using partial least squares-Fourier transform infrared spectroscopy. Talanta 2008, 77, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Duman, O.; Polat, T.G.; Diker, C.Ö.; Tunç, S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int. J. Biol. Macromol. 2020, 160, 823–835. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Alalawy, A.I.; Amutairi, F.M.; Al-Duais, M.A.; Wang, J.; Salama, E.S. Identification and characterization of marine seaweeds for biocompounds production. Environ. Technol. Innov. 2021, 24, 101848. [Google Scholar] [CrossRef]
- Tang, H.; Tan, L.; Chen, Y.; Zhang, J.; Li, H.; Chen, L. Effect of κ-carrageenan addition on protein structure and gel properties of salted duck egg white. J. Sci. Food Agric. 2021, 101, 1389–1395. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Z.; Pan, Y.; Jiang, P.; Pan, J.; Yu, C.; Dong, X. Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product. LWT 2022, 154, 112279. [Google Scholar] [CrossRef]
- Mao, R.; Tang, J.; Swanson, B.G. Water holding capacity and microstructure of gallan gels. Carbohydr. Polym. 2001, 46, 365–371. [Google Scholar] [CrossRef]
- Ryu, J.N.; Jung, J.H.; Lee, S.Y.; Ko, S.H. Comparison of physicochemical properties of agar and gelatin gel with uniform hardness. Food Eng. Prog. 2012, 16, 14–19. [Google Scholar]
Hydrocolloid | L* | a* | b* | Whiteness Index (%) | |
---|---|---|---|---|---|
Type | Concentration (% w/w) | ||||
Carrageenan | 0.5 | 85.2 ± 0.8 b | −0.52 ± 0.06 b | 8.19 ± 0.16 b | 83.05 ± 0.63 b |
1.5 | 83.3 ± 0.3 c | 0.28 ± 0.05 a | 18.41 ± 0.45 a | 76.03 ± 0.10 c | |
Agar | 1.0 | 86.7 ± 0.2 a | −0.77 ± 0.04 c | 8.05 ± 0.16 b | 84.42 ± 0.24 a |
1.5 | 86.5 ± 0.1 ab | −0.83 ± 0.01 c | 8.71 ± 0.01 b | 83.89 ± 0.07 a |
Hydrocolloid | K (Pa s) | n (-) | η10s−1 (Pa s) | G′ (Pa) | G″ (Pa) | tan δ (-) | η* (Pa s) | |
---|---|---|---|---|---|---|---|---|
Type | Concentration (% w/w) | |||||||
Carrageenan | 0.5 | 6.2 ± 0.2 c | 0.17 ± 0.01 c | 0.97 ± 0.02 b | 155 ± 9 d | 66 ± 5 d | 0.40 ± 0.05 a | 25 ± 1 d |
1.5 | 16.8 ± 0.8 a | 0.28 ± 0.01 b | 3.26 ± 0.26 a | 2269 ± 45 b | 537 ± 28 a | 0.21 ± 0.01 b | 328 ± 6 b | |
Agar | 1.0 | 2.8 ± 0.2 d | 0.45 ± 0.04 a | 0.77 ± 0.05 b | 682 ± 58 c | 163 ± 3 c | 0.24 ± 0.02 b | 103 ± 11 c |
1.5 | 10.0 ± 0.8 b | 0.43 ± 0.01 a | 3.02 ± 0.33 a | 2597 ± 38 a | 484 ± 24 b | 0.20 ± 0.01 b | 378 ± 11 a |
Hydrocolloid | Hardness (N/m2) | Adhesiveness (J/m2) | Cohesiveness (-) | Springiness (-) | |
---|---|---|---|---|---|
Type | Concentration (% w/w) | ||||
Carrageenin | 0.5 | 251.8 ± 24.5 b | 0.02 ± 0.002 c | 0.24 ± 0.02 b | 0.56 ± 0.01 b |
1.5 | 438.7 ± 26.6 a | 0.05 ± 0.002 b | 0.46 ± 0.02 a | 0.83 ± 0.01 a | |
Agar | 1.0 | 152.1 ± 3.9 b | 0.05 ± 0.005 b | 0.14 ± 0.01 c | 0.53 ± 0.02 b |
1.5 | 216.2 ± 16.9 b | 0.09 ± 0.007 a | 0.21 ± 0.03 b | 0.82 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riquelme, N.; Savignones, C.; López, A.; Zúñiga, R.N.; Arancibia, C. Effect of Gelling Agent Type on the Physical Properties of Nanoemulsion-Based Gels. Colloids Interfaces 2023, 7, 49. https://doi.org/10.3390/colloids7030049
Riquelme N, Savignones C, López A, Zúñiga RN, Arancibia C. Effect of Gelling Agent Type on the Physical Properties of Nanoemulsion-Based Gels. Colloids and Interfaces. 2023; 7(3):49. https://doi.org/10.3390/colloids7030049
Chicago/Turabian StyleRiquelme, Natalia, Constanza Savignones, Ayelén López, Rommy N. Zúñiga, and Carla Arancibia. 2023. "Effect of Gelling Agent Type on the Physical Properties of Nanoemulsion-Based Gels" Colloids and Interfaces 7, no. 3: 49. https://doi.org/10.3390/colloids7030049
APA StyleRiquelme, N., Savignones, C., López, A., Zúñiga, R. N., & Arancibia, C. (2023). Effect of Gelling Agent Type on the Physical Properties of Nanoemulsion-Based Gels. Colloids and Interfaces, 7(3), 49. https://doi.org/10.3390/colloids7030049