Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Superhydrophobic Copper
2.2. Image Processing
2.3. Model Development
3. Results and Discussion
3.1. Area Coverage of Drops on Different Samples
3.2. Sweep Events
3.3. Model Validation
3.4. Drop Growth and Cooling Water Temperature
3.5. Heat Transfer Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, M.; Hill, R.M.; Minglin, M.H.; Randal, M. Superhydrophobic Surfaces; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006; Volume 11. [Google Scholar]
- Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progess in superhydrophobic surface development. Soft Matter 2008, 4, 224–240. [Google Scholar] [PubMed]
- Abdulhussein, A.T.; Kannarpady, G.K.; Wright, A.B.; Ghosh, A.; Biris, A.S. Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces. Appl. Surf. Sci. 2016, 384, 311–332. [Google Scholar]
- Sanjay, S.L.; Annaso, B.G.; Chavan, S.M.; Rajiv, S.V. Recent progress in preparation of superhydrophobic surfaces: A review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2012, 76–94. [Google Scholar]
- Yan, Y.Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. [Google Scholar] [PubMed]
- Nakajima, A. Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater. 2011, 3, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, K.J. Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces. J. Heat Transf. 2011, 133, 081502. [Google Scholar] [CrossRef]
- Graham, C.; Griffith, P. Drop size distributions and heat transfer in dropwise condensation. Int. J. Heat Mass Transf. 1973, 16, 337–346. [Google Scholar] [CrossRef]
- Mikic, B.B. On mechanism of dropwise condensation. Int. J. Heat Mass Transf. 1969, 12, 1311–1323. [Google Scholar] [CrossRef]
- Rose, J.W. Effect of condenser tube material on heat transfer during dropwise condensation of steam. Int. J. Heat Mass Transf. 1978, 21, 835–840. [Google Scholar] [CrossRef]
- Aksan, S.N.; Rose, J.W. Dropwise Condensation—The Effect Thermal Properties of the Condenser Material. Int. J. Heat Mass Transf. 1973, 16, 461–467. [Google Scholar] [CrossRef]
- Griffith, P.; Lee, M.S. The Effect of Surface Thermal Properties and Finish on Dropwise Condensation. Int. J. Heat Mass Transf. 1967, 10, 697–707. [Google Scholar] [CrossRef]
- Berndt, V.; Zunft, S. Theoretical and Experimental Study on Dropwise Condensation in Plate Heat Exchanger. In Proceedings of the 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands, 18–22 May 2008. [Google Scholar]
- Bonner, R.R.W. Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transf. 2013, 61, 245–253. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, K.; Jeong, J.H. Determination of the adhesion energy of liquid droplets on a hydrophobic flat surface considering the contact area. Int. J. Heat Mass Transf. 2016, 102, 826–832. [Google Scholar] [CrossRef]
- Sikarwar, B.S.; Muralidhar, K.; Khandekar, S. Effect of drop shape on heat transfer during dropwise condensation underneath inclined surfaces. Interface Phenom. Heat Transf. 2013, 1, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Reza, H.; Bahrami, T.; Saffari, H. Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube. Int. J. Refrig. 2017, 75, 141–154. [Google Scholar]
- Kananeh, A.B.; Rausch, M.H.; Fröba, A.P.; Leipertz, A. Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes. Int. J. Heat Mass Transf. 2006, 49, 5018–5026. [Google Scholar] [CrossRef]
- Wen, R.; Li, Q.; Wu, J.; Wu, G.; Wang, W.; Chen, Y.; Ma, X.; Zhao, D.; Yang, R. Hydrophobic copper nanowires for enhancing condensation heat transfer. Nano Energy 2017, 33, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, P. Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux. Int. J. Heat Mass Transf. 2015, 83, 842–849. [Google Scholar] [CrossRef]
- Fatica, N.; Katz, D.L. Dropwise Condensation. Chem. Eng. Prog. 1949, 45, 661–674. [Google Scholar]
- Maa, J.R. Drop Size Distribution and Heat-Flux of Dropwise Condensation. Chem. Eng. J. Biochem. Eng. J. 1978, 16, 171–176. [Google Scholar] [CrossRef]
- Abu-Orabi, M. Modeling of heat transfer in dropwise condensation. Int. J. Heat Mass Transf. 1998, 41, 81–87. [Google Scholar] [CrossRef]
- Wu, W.H.; Maa, J.R. On the Heat Transfer in Dropwise Condensation. Chem. Eng. J. 1976, 12, 225–231. [Google Scholar]
- Wu, Y.T.; Yang, C.X.; Yuan, X.G. Drop distributions and numerical simulation of dropwise condensation heat transfer. Int. J. Heat Mass Transf. 2001, 44, 4455–4464. [Google Scholar] [CrossRef]
- Rose, J.W.; Glicksman, L.R. Dropwise condensation—The distribution of drop sizes. Int. J. Heat Mass Transf. 1973, 16, 411–425. [Google Scholar] [CrossRef]
- Balbarona, J.A.; Denoga, G.J.C.; Salapare, H.S., III. Influence of surface modification on droplet mobility during dropwise condensation. Materialwiss. Werkstofftech. 2022, 53, 750–761. [Google Scholar] [CrossRef]
- Salapare, H.S., III; Balbarona, J.A.; Clerc, L.; Bassoleil, P.; Zenerino, A.; Amigoni, S.; Guittard, F. Cupric oxide nanostructuress from plasma surface modification of copper. Biomimetics 2019, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Leach, R.N.; Stevens, F.; Langford, S.C.; Dickinson, J.T. Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System. Langmuir 2006, 3, 8864–8872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ucar, I.O.; Erbil, H.Y. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl. Surf. Sci. 2012, 259, 515–523. [Google Scholar] [CrossRef]
- Miljkovic, N.; Enright, R.; Wang, E.N. Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces. ACS Nano 2012, 6, 1776–1785. [Google Scholar] [CrossRef]
- Lo, C.W.; Wang, C.C.; Lu, M.C. Scale Effect on Dropwise Condensation on Superhydrophobic Surfaces. ACS Appl. Mater. Interface 2014, 6, 14353–14359. [Google Scholar] [CrossRef]
- Narhe, R.D.; Beysens, D.A. Growth Dynamics of Water Drops on a Square-Pattern Rough Hydrophobic Surface. Langmuir 2007, 23, 6486–6489. [Google Scholar] [CrossRef]
- Meakin, P. Droplet deposition growth and coalescence. Rep. Prog. Phys. 1992, 55, 157–240. [Google Scholar] [CrossRef]
- McCormick, J.L.; Westwater, J.W. Nucleation sites for dropwise condensation. Chem. Eng. Sci. 1965, 20, 1021–1036. [Google Scholar] [CrossRef]
- Miljkovic, N.; Enright, R.; Wang, E.N. Modeling and Optimization of Superhydrophobic Condensation. J. Heat Transf. 2013, 135, 111004. [Google Scholar] [CrossRef]
- Qi, B.; We, J.; Zhang, L.; Xu, H. A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution. Int. J. Heat Mass Transf. 2015, 83, 259–272. [Google Scholar] [CrossRef]
- Meng, K.; Fan, W.; Wang, H. Dynamic scenario simulation of dropwise condensation on a superhydrophobic surface with droplet jumping. Appl. Therm. Eng. 2019, 148, 316–323. [Google Scholar] [CrossRef]
- Sikarwar, B.S.; Khandekar, S.; Muralidhar, K. Mathematical modelling of dropwise condensation on textured surfaces. Sadhana-Acad. Proc. Eng. Sci. 2013, 38, 1135–1171. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Eimann, F.; Philipp, C.; Fieback, T.; Gross, U. Modeling of heat and mass transfer for dropwise condensation of moist air and the experimental validation. Int. J. Heat Mass Transf. 2018, 120, 879–894. [Google Scholar] [CrossRef]
- Xu, W.; Lan, Z.; Liu, Q.; Du, B.; Ma, X. Droplet size distributions in dropwise condensation heat transfer: Consideration of droplet overlapping and multiple re-nucleatio. Int. J. Heat Mass Transf. 2018, 127, 44–54. [Google Scholar] [CrossRef]
Temperature (°C) | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|
Correlation | 93.066% | 93.504% | 91.631% | 91.495% | 87.768% |
Point | C300a | C300b | C300c | C300d | C300e |
Rk | 1.9262 | 1.0052 | 0.5590 | 0.2526 | 0.2277 |
Rp | 0.8105 | 0.9924 | 1.0000 | 1.1966 | 1.2077 |
Np | 43.4991 | 43.5743 | 26.5615 | 28.2932 | 42.7155 |
Sp | 1.3982 | 1.3560 | 1.1086 | 1.1871 | 1.2679 |
Temperature (°C) | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|
Correlation | 90.990% | 91.190% | 90.322% | 84.363% | 85.191% |
Point | 9003 | 9006 | 9007 | 9009 | 9010 |
Rk | 0.2038 | 0.3097 | 0.3262 | 0.2856 | 0.4810 |
Rp | 1.4922 | 1.3437 | 1.3321 | 1.3010 | 1.0714 |
Np | 42.2757 | 32.5174 | 40.4284 | 45.3860 | 40.5393 |
Sp | 1.4167 | 1.1501 | 1.2731 | 1.1843 | 1.3633 |
Temperature (°C) | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|
Correlation | 95.685% | 94.270% | 89.083% | 92.288% | 89.845% |
Point | 1452 | 1455 | 1460 | 1462 | 1465 |
Rk | 1.2268 | 0.5610 | 0.9559 | 0.2271 | 0.1233 |
Rp | 1.0000 | 1.2206 | 1.0453 | 1.4369 | 1.5692 |
Np | 44.6285 | 35.0476 | 49.5916 | 28.0927 | 40.9657 |
Sp | 1.4348 | 1.1286 | 1.5115 | 0.9640 | 1.1503 |
Temperature (°C) | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|
Correlation | 88.730% | 90.382% | 87.746% | 91.383% | 90.608% |
Point | 5007 | 5008 | 5009 | 5011 | 5012 |
Rk | 4.2109 | 1.1123 | 1.8026 | 1.4054 | 1.0330 |
Rp | 0.8386 | 1.1429 | 1.0223 | 1.0693 | 1.1004 |
Np | 28.0329 | 25.7888 | 27.7379 | 33.2820 | 32.7673 |
Sp | 1.2658 | 0.8684 | 1.3162 | 1.3074 | 1.0510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denoga, G.J.C.; Balbarona, J.A.; Salapare, H.S., III. Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface. Colloids Interfaces 2023, 7, 53. https://doi.org/10.3390/colloids7030053
Denoga GJC, Balbarona JA, Salapare HS III. Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface. Colloids and Interfaces. 2023; 7(3):53. https://doi.org/10.3390/colloids7030053
Chicago/Turabian StyleDenoga, Gerald Jo C., Juvy A. Balbarona, and Hernando S. Salapare, III. 2023. "Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface" Colloids and Interfaces 7, no. 3: 53. https://doi.org/10.3390/colloids7030053
APA StyleDenoga, G. J. C., Balbarona, J. A., & Salapare, H. S., III. (2023). Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface. Colloids and Interfaces, 7(3), 53. https://doi.org/10.3390/colloids7030053