Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov
Abstract
:1. Introduction
2. Theories and Experimental Methods
3. Synthetic Polymers
4. Protein Solutions
5. DNA Layers at the Liquid Surface
6. Fullerene Layers
7. Surface Properties of Protein Aggregate Dispersions
8. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labetoulle, M.; Benitez-Del-castillo, J.M.; Barabino, S.; Vanrell, R.H.; Daull, P.; Garrigue, J.S.; Rolando, M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int. J. Mol. Sci. 2022, 23, 2434. [Google Scholar] [CrossRef] [PubMed]
- Autilio, C.; Pérez-gil, J. Understanding the Principle Biophysics Concepts of Pulmonary Surfactant in Health and Disease. Arch. Dis. Child Fetal Neonatal. Ed. 2019, 104, F443–F451. [Google Scholar] [CrossRef]
- Gong, L.; Liao, G.; Luan, H.; Chen, Q.; Nie, X.; Liu, D.; Feng, Y. Oil Solubilization in Sodium Dodecylbenzenesulfonate Micelles: New Insights into Surfactant Enhanced Oil Recovery. J. Colloid Interface Sci. 2020, 569, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Q.; Zhang, L.; Li, Z.Q.; Luo, L.; Zhao, S. Interfacial Dilational Rheology Related to Enhance Oil Recovery. Soft Matter 2011, 7, 7601–7611. [Google Scholar] [CrossRef]
- Buckley, T.; Xu, X.; Rudolph, V.; Firouzi, M.; Shukla, P. Review of Foam Fractionation as a Water Treatment Technology. Sep. Sci. Technol. 2022, 57, 929–958. [Google Scholar] [CrossRef]
- Santini, E.; Nepita, I.; Bykov, A.G.; Ravera, F.; Liggieri, L.; Dowlati, S.; Javadi, A.; Miller, R.; Loglio, G. Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. Colloids Interfaces 2022, 6, 81. [Google Scholar] [CrossRef]
- Murray, B.S. Recent Developments in Food Foams. Curr. Opin. Colloid Interface Sci. 2020, 50, 101394. [Google Scholar] [CrossRef]
- Dickinson, E. Advances in Food Emulsions and Foams: Reflections on Research in the Neo-Pickering Era. Curr. Opin. Food Sci. 2020, 33, 52–60. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Liu, B.; Li, Y.; Essers, J.; Yang, J.; Mo, A.; Hi, E.; Berton-carabin, C.; Schroen, K. Dynamic Heterogeneity in Complex Interfaces of Soft Interface-Dominated Materials. Sci. Rep. 2019, 9, 2938. [Google Scholar] [CrossRef] [Green Version]
- Forth, J.; Kim, P.Y.; Xie, G.; Liu, X.; Helms, B.A.; Russell, T.P. Building Reconfigurable Devices Using Complex Liquid—Fluid Interfaces. Adv. Mater. 2019, 31, e1806370. [Google Scholar] [CrossRef]
- Masuda, T.; Takai, M. Design of Biointerfaces Composed of Soft Materials Using Controlled Radical Polymerizations. J. Mater. Chem. B 2022, 10, 1473–1485. [Google Scholar] [CrossRef]
- Jaensson, N.O.; Anderson, P.D.; Vermant, J. Journal of Non-Newtonian Fluid Mechanics Computational Interfacial Rheology. J. Nonnewton. Fluid Mech. 2021, 290, 104507. [Google Scholar] [CrossRef]
- Guzm, E. Current Perspective on the Study of Liquid—Fluid Interfaces: From Fundamentals to Innovative Applications. Coatings 2022, 12, 841. [Google Scholar] [CrossRef]
- Wei, Y.; Tong, Z.; Dai, L.; Wang, D.; Lv, P.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Influence of Interfacial Compositions on the Microstructure, Physiochemical Stability, Lipid Digestion and β-Carotene Bioaccessibility of Pickering Emulsions. Food Hydrocoll. 2020, 104, 105738. [Google Scholar] [CrossRef]
- Arabadzhieva, D.; Tchoukov, P.; Mileva, E. Impact of Adsorption Layer Properties on Drainage Behavior of Microscopic Foam Films: The Case of Cationic/Nonionic Surfactant Mixtures. Colloids Interfaces 2020, 4, 53. [Google Scholar] [CrossRef]
- Georgieva, D.; Cagna, A.; Langevin, D. Link between Surface Elasticity and Foam Stability. Soft Matter 2009, 5, 2063–2071. [Google Scholar] [CrossRef]
- Guzmán, E.; Maestro, A.; Carbone, C.; Ortega, F.; Rubio, R.G. Dilational Rheology of Fluid/Fluid Interfaces: Foundations and Tools. Fluids 2022, 7, 335. [Google Scholar] [CrossRef]
- Firouzi, M.; Kovalchuk, V.I.; Loglio, G.; Miller, R. ScienceDirect Salt Effects on the Dilational Viscoelasticity of Surfactant Adsorption Layers. Curr. Opin. Colloid Interface Sci. 2022, 57, 101538. [Google Scholar] [CrossRef]
- El Omari, Y.; Yousfi, M.; Duchet-Rumeau, J.; Maazouz, A. Recent Advances in the Interfacial Shear and Dilational Rheology of Polymer Systems: From Fundamentals to Applications. Polymers 2022, 14, 2844. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, J.H.J.; Vermant, J. Interfacial Rheology of Model Particles at Liquid Interfaces and Its Relation to (Bicontinuous) Pickering Emulsions. J. Phys. Condens. Matter 2018, 30, 023002. [Google Scholar] [CrossRef] [Green Version]
- Dan, A.; Gochev, G.; Krägel, J.; Aksenenko, E.V.; Fainerman, V.B.; Miller, R. Current Opinion in Colloid & Interface Science Interfacial Rheology of Mixed Layers of Food Proteins and Surfactants. Curr. Opin. Colloid Interface Sci. 2013, 18, 302–310. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Aksenenko, E.V.; Krägel, J.; Miller, R. Thermodynamics, Interfacial Pressure Isotherms and Dilational Rheology of Mixed Protein-Surfactant Adsorption Layers. Adv. Colloid Interface Sci. 2016, 233, 200–222. [Google Scholar] [CrossRef]
- Kovalchuk, V.I.; Aksenenko, E.V.; Fainerman, V.B.; Miller, R. Dilation and Shear Rheology of Mixed β-Casein/Surfactant Adsorption Layers. J. Phys. Chem. B 2009, 113, 103–113. [Google Scholar]
- Binks, B.P. Particles as Surfactants—Similarities and Differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Li, C.; Qin, R.; Liu, R.; Miao, S.; Yang, P. Functional Amyloid Materials at Surfaces/Interfaces. Biomater. Sci. 2018, 6, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Krotov, V.V. Basics of Interfacial Rheology; Miller, R., Liggieri, L., Eds.; Brill: Leiden, The Netherlands, 2009; Volume 45. [Google Scholar]
- Chatzigiannakis, E.; Jaensson, N.; Vermant, J. Thin Liquid Films: Where Hydrodynamics, Capillarity, Surface Stresses and Intermolecular Forces Meet. Curr. Opin. Colloid Interface Sci. 2021, 53, 101441. [Google Scholar] [CrossRef]
- Miller, R.; Liggieri, L. Current Opinion in Colloid & Interface Science Interfacial Rheology—The Response of Two-Dimensional Layers on External Perturbations. Curr. Opin. Colloid Interface Sci. 2010, 15, 215–216. [Google Scholar] [CrossRef]
- Ravera, F.; Ferrari, M.; Santini, E.; Liggieri, L. Influence of Surface Processes on the Dilational Visco-Elasticity of Surfactant Solutions. Adv. Colloid Interface Sci. 2005, 117, 75–100. [Google Scholar] [CrossRef]
- Langevin, D. Influence of Interfacial Rheology on Foam and Emulsion Properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Miller, R. Stability of Foam Films and Surface Rheology: An Oscillating Bubble Study at Low Frequencies. J. Phys. Chem. B 2004, 108, 6412–6421. [Google Scholar] [CrossRef]
- Monroy, F.; Ortega, F.; Rubio, R.G.; Velarde, M.G. Surface Rheology, Equilibrium and Dynamic Features at Interfaces, with Emphasis on Efficient Tools for Probing Polymer Dynamics at Interfaces. Adv. Colloid Interface Sci. 2007, 134–135, 175–189. [Google Scholar] [CrossRef]
- Noskov, B.A. Dilational Surface Rheology of Polymer and Polymer/Surfactant Solutions. Curr. Opin. Colloid Interface Sci. 2010, 15, 229–236. [Google Scholar] [CrossRef]
- Noskov, B.A.; Krycki, M.M. Formation of Protein/Surfactant Adsorption Layer as Studied by Dilational Surface Rheology. Adv. Colloid Interface Sci. 2017, 247, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Smith, K.A.; Hatton, T.A. Photocontrol of Protein Folding: The Interaction of Photosensitive Surfactants with Bovine Serum Albumin. Biochemistry 2005, 44, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Mertens, H.D.T.; Svergun, D.I. Structural Characterization of Proteins and Complexes Using Small-Angle X-Ray Solution Scattering. J. Struct. Biol. 2010, 172, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Otzen, D. Protein-Surfactant Interactions: A Tale of Many States. Biochim. Biophys. Acta 2011, 1814, 562–591. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, J.; Hansen, R.S. Damping of Waves on Monolayer-Covered Surfaces. II. Influence of Bulk-to-Surface Diffusional Interchange on Ripple Characteristics. J. Colloid Interface Sci. 1967, 23, 319–328. [Google Scholar] [CrossRef]
- Noskov, B.A. Dynamic Surface Elasticity of Surfactant Solutions. Colloid J. USSR 1982, 44, 438–443. [Google Scholar] [CrossRef]
- Noskov, B.A. Fast Adsorption at the Liquid-Gas Interface. Adv. Colloid Interface Sci. 1996, 69, 63–129. [Google Scholar] [CrossRef]
- Langevin, D. Light Scattering by Liquid Surfaces and Complementary Techniques. Surfactant Sci. Ser. 1992, 41, 451. [Google Scholar]
- Noskov, B.A. Dynamical Properties of Heterogeneous Surface Layers. Capillary Wave Scattering. Fluid Dyn. 1991, 26, 106–113. [Google Scholar] [CrossRef]
- Noskov, B.A.; Loglio, G. Dynamic Surface Elasticity of Surfactant Solutions. Colloids Surf. A 1998, 143, 167–183. [Google Scholar] [CrossRef]
- Langevin, D. Light Scattering by Liquid Surfaces, New Developments. Adv. Colloid Interface Sci. 2021, 289, 102368. [Google Scholar] [CrossRef]
- Monroy, F. Surface Hydrodynamics of Viscoelastic Fluids and Soft Solids: Surfing Bulk Rheology on Capillary and Rayleigh Waves. Adv. Colloid Interface Sci. 2017, 247, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Alexandrov, D.A.; Miller, R. Dynamic Surface Elasticity of Micellar and Nonmicellar Solutions of Dodecyldimethyl Phosphine Oxide. Longitudinal Wave Study. J. Colloid Interface Sci. 1999, 219, 250–259. [Google Scholar] [CrossRef]
- Noskov, B.A.; Grigoriev, D.O.; Miller, R. Dynamic Surface Properties of Solutions of Phosphine Oxides: A Capillary Wave Study. J. Colloid Interface Sci. 1997, 15, 9–15. [Google Scholar] [CrossRef]
- Noskov, B.A. Kinetics of Adsorption from Micellar Solutions. Adv. Colloid Interface Sci. 2002, 95, 237–293. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A. Dynamic Surface Elasticity of Polymer Solutions. Colloid Polym. Sci. 1995, 273, 263–270. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.M.; Miller, R. Dilational Surface Viscoelasticity of Polymer Solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271. [Google Scholar] [CrossRef]
- de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: London, UK, 1979. [Google Scholar]
- Noskov, B.A.; Bykov, A.G. Dilational Surface Rheology of Polymer Solutions. Russ. Chem. Rev. 2015, 84, 634–652. [Google Scholar] [CrossRef]
- Miller, R.; Wüstneck, R.; Krägel, J.; Kretzschmar, G. Dilational and Shear Rheology of Adsorption Layers at Liquid Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 1996, 111, 75–118. [Google Scholar] [CrossRef]
- Jaensson, N.; Vermant, J. Tensiometry and Rheology of Complex Interfaces. Curr. Opin. Colloid Interface Sci. 2018, 37, 136–150. [Google Scholar] [CrossRef]
- Ravera, F.; Liggieri, L.; Loglio, G. Dilational Rheology of Adsorbed Layers by Oscillating Drops and Bubbles. In Interfacial Rheology; Miller, R., Liggieri, L., Eds.; Brill: Leiden, The Netherlands, 2009; pp. 137–177. ISBN 9789047429302. [Google Scholar]
- Kotsmár, C.; Grigoriev, D.O.; Makievski, A. V Drop Profile Analysis Tensiometry with Drop Bulk Exchange to Study the Sequential and Simultaneous Adsorption of a Mixed β-Casein/C12DMPO System. Colloid Polym. Sci. 2008, 286, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Ravera, F.; Loglio, G.; Pandolfini, P.; Santini, E.; Liggieri, L. Determination of the Dilational Viscoelasticity by the Oscillating Drop/Bubble Method in a Capillary Pressure Tensiometer. Colloids Surf. A Physicochem. Eng. Asp. 2010, 365, 2–13. [Google Scholar] [CrossRef]
- Kale, S.K.; Cope, A.J.; Goggin, D.M.; Samaniuk, J.R. A Miniaturized Radial Langmuir Trough for Simultaneous Dilatational Deformation and Interfacial Microscopy. J. Colloid Interface Sci. 2021, 582, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Pepicelli, M.; Verwijlen, T.; Tervoort, T.A.; Vermant, J. Characterization and Modelling of Langmuir Interfaces with Finite Elasticity. Soft Matter 2017, 13, 5977–5990. [Google Scholar] [CrossRef] [Green Version]
- Zamora, J.M.; Marquez, R.; Forgiarini, A.M.; Langevin, D.; Salager, J.L. Interfacial Rheology of Low Interfacial Tension Systems Using a New Oscillating Spinning Drop Method. J. Colloid Interface Sci. 2018, 519, 27–37. [Google Scholar] [CrossRef]
- Schurch, S.; Bachofen, H.; Goerke, J.; Possmayer, F. A Captive Bubble Method Reproduces the in Situ Behavior of Lung Surfactant Monolayers. J. Appl. Physiol. 1989, 67, 2389–2396. [Google Scholar] [CrossRef]
- Bykov, A.G.; Guzmán, E.; Rubio, R.G.; Krycki, M.M.; Milyaeva, O.Y.; Noskov, B.A. Influence of Temperature on Dynamic Surface Properties of Spread DPPC Monolayers in a Broad Range of Surface Pressures. Chem. Phys. Lipids 2019, 225, 104812. [Google Scholar] [CrossRef]
- Ravera, F.; Miller, R.; Zuo, Y.Y.; Noskov, B.A.; Bykov, A.G.; Kovalchuk, V.I.; Loglio, G.; Javadi, A.; Liggieri, L. Methods and Models to Investigate the Physicochemical Functionality of Pulmonary Surfactant. Curr. Opin. Colloid Interface Sci. 2021, 55, 101467. [Google Scholar] [CrossRef]
- Bykov, A.G.; Liggieri, L.; Noskov, B.A.; Pandolfini, P.; Ravera, F.; Loglio, G. Surface Dilational Rheological Properties in the Nonlinear Domain. Adv. Colloid Interface Sci. 2015, 222, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Sagis, L.M.C.; Fischer, P. Nonlinear Rheology of Complex Fluid–Fluid Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 520–529. [Google Scholar] [CrossRef]
- Loglio, G.; Pandolfini, P.; Miller, R.; Makievski, A.V.; Ravera, F.; Noskov, B.A. Perturbation—Response Relationship in Liquid Interfacial Systems: Non-Linearity Assessment by Frequency—Domain Analysis. Colloids Surf. A Physicochem. Eng. Aspects 2005, 261, 57–63. [Google Scholar] [CrossRef]
- Bykov, A.G.; Loglio, G.; Ravera, F.; Liggieri, L.; Miller, R.; Noskov, B.A. Dilational Surface Elasticity of Spread Monolayers of Pulmonary Lipids in a Broad Range of Surface Pressure. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 137–144. [Google Scholar] [CrossRef]
- de Groot, A.; Yang, J.; Sagis, L.M.C. Surface Stress Decomposition in Large Amplitude Oscillatory Interfacial Dilatation of Complex Interfaces. J. Colloid Interface Sci. 2023, 638, 569–581. [Google Scholar] [CrossRef]
- Bykov, A.G.; Loglio, G.; Miller, R.; Milyaeva, O.Y.; Michailov, A.V.; Noskov, B.A. Dynamic Properties and Relaxation Processes in Surface Layer of Pulmonary Surfactant Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 14–21. [Google Scholar] [CrossRef]
- Bykov, A.G.; Milyaeva, O.Y.; Isakov, N.A.; Michailov, A.V.; Loglio, G.; Miller, R.; Noskov, B.A. Dynamic Properties of Adsorption Layers of Pulmonary Surfactants. Influence of Matter Exchange with Bulk Phase. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125851. [Google Scholar] [CrossRef]
- Lucassen, J. Dynamic Dilational Properties of Composite Surfaces. Colloids Surf. 1992, 65, 139–149. [Google Scholar] [CrossRef]
- Noskov, B.A.; Mikhailovskaya, A.A.A. Adsorption Kinetics of Globular Proteins and Protein/Surfactant Complexes at the Liquid–Gas Interface. Soft Matter 2013, 9, 9392–9402. [Google Scholar] [CrossRef]
- Talbot, J.; Tarjus, G.; Van Tassel, P.R.; Viot, P. From Car Parking to Protein Adsorption: An Overview of Sequential Adsorption Processes. Colloids Surf. A Physicochem. Eng. Asp. 2000, 165, 287–324. [Google Scholar] [CrossRef] [Green Version]
- Noskov, B.A.; Akentiev, A.V.; Miller, R. Dynamic Properties of Poly(Styrene)-Poly(Ethylene Oxide) Diblock Copolymer Films at the Air-Water Interface. J. Colloid Interface Sci. 2002, 247, 117–124. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Loglio, G.; Miller, R. Dynamic Surface Properties of Solutions of Poly(Ethylene Oxide) and Polyethylene Glycols. J. Phys. Chem. B 2000, 104, 7923–7931. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Grigoriev, D.O.; Loglio, G.; Zorin, I.M.; Miller, R. Dynamic Surface Properties of Poly(N-Isopropylacrylamide) Solutions. Langmuir 2004, 20, 9669–9676. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Akentiev, A.V.; Grigoriev, D.O.; Loglio, G.; Miller, R. Ellipsometric Study of Nonionic Polymer Solutions. J. Colloid Interface Sci. 2005, 282, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Lin, S.; Loglio, G.; Rubio, R.G.; Miller, R.; Lastruccia, V.; Fiorentino, S.; Complutense, U. V Dilational Viscoelasticity of PEO—PPO—PEO Triblock Copolymer Films at the Air—Water Interface in the Range of High Surface Pressures. Langmuir 2006, 22, 2647–2652. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.B.; Li, Z.X.; Thomas, R.K.; Kingdom, U. Structure of Triblock Copolymers of Ethylene Oxide and Propylene Oxide at the Air/Water Interface Determined by Neutron Reflection. J. Chem. Theory Comput. 2002, 2, 10641–10648. [Google Scholar] [CrossRef]
- Noskov, B.A.; Bykov, A.G. Dilational Rheology of Monolayers of Nano- and Micropaticles at the Liquid-Fluid Interfaces. Curr. Opin. Colloid Interface Sci. 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Martínez-pedrero, F.; Calero, C.; Maestro, A.; Guzm, E. A Broad Perspective to Particle-Laden Fluid Interfaces Systems: From Chemically Homogeneous Particles to Active Colloids. Adv. Colloid Interface Sci. 2022, 302, 102620. [Google Scholar] [CrossRef]
- Pinaud, F.; Geisel, K.; Massé, P.; Catargi, B.; Isa, L.; Richtering, W.; Ravaine, V.; Schmitt, V. Adsorption of Microgels at an Oil-Water Interface: Correlation between Packing and 2D Elasticity. Soft Matter 2014, 10, 6963–6974. [Google Scholar] [CrossRef]
- Picard, C.; Garrigue, P.; Tatry, M.C.; Lapeyre, V.; Ravaine, S.; Schmitt, V.; Ravaine, V. Organization of Microgels at the Air-Water Interface under Compression: Role of Electrostatics and Cross-Linking Density. Langmuir 2017, 33, 7968–7981. [Google Scholar] [CrossRef]
- Akentiev, A.V.; Rybnikova, G.S.; Novikova, A.A.; Timoshen, K.A.; Zorin, I.M.; Noskov, B.A. Dynamic Elasticity of Films Formed by Poly(N-Isopropylacrylamide) Microparticles on a Water Surface. Colloid J. 2017, 79, 571–576. [Google Scholar] [CrossRef]
- Bykov, A.G.; Noskov, B.A.; Loglio, G.; Lyadinskaya, V.V.; Miller, R. Dilational Surface Elasticity of Spread Monolayers of Polystyrene Microparticles. Soft Matter 2014, 10, 6499. [Google Scholar] [CrossRef]
- Bykov, A.G.; Loglio, G.; Miller, R.; Noskov, B.A. Dilational Surface Elasticity of Monolayers of Charged Polystyrene Nano- and Microparticles at Liquid/Fluid Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2015, 485, 42–48. [Google Scholar] [CrossRef]
- Bykov, A.G.; Gochev, G.; Loglio, G.; Miller, R.; Panda, A.K.; Noskov, B.A. Dynamic Surface Properties of Mixed Monolayers of Polystyrene Micro- and Nanoparticles with DPPC. Colloids Surf. A Physicochem. Eng. Asp. 2017, 521, 239–246. [Google Scholar] [CrossRef]
- Noskov, B.A.; Nuzhnov, S.N.; Loglio, G.; Miller, R. Dynamic Surface Properties of Sodium Poly(Styrenesulfonate) Solutions. Macromolecules 2004, 37, 2519–2526. [Google Scholar] [CrossRef]
- Noskov, B.A.; Loglio, G.; Miller, R. Dilational Surface Visco-Elasticity of Polyelectrolyte/Surfactant Solutions: Formation of Heterogeneous Adsorption Layers. Adv. Colloid Interface Sci. 2011, 168, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Goddard, E.D. Polymer/Surfactant Interaction: Interfacial Aspects. J. Colloid Interface Sci. 2002, 256, 228–235. [Google Scholar] [CrossRef]
- Noskov, B.A.; Loglio, G.; Miller, R. Dilational Viscoelasticity of Polyelectolyte/Surfactant Adsorption Films at the Air/Water Interface: Dodecyltrimethylammonium Bromide and Sodium Poly (Styrenesulfonate). J. Phys. Chem. B 2004, 108, 18615–18622. [Google Scholar] [CrossRef]
- Lyadinskaya, V.V.; Bykov, A.G.; Campbell, R.A.; Varga, I.; Lin, S.Y.; Loglio, G.; Miller, R.; Noskov, B.A. Dynamic Surface Elasticity of Mixed Poly(Diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate/NaCl Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 3–10. [Google Scholar] [CrossRef]
- Williams, C.E.; Bergeron, V. Interfacial Microgels Formed by Oppositely Charged Polyelectrolytes and Surfactants. Part 2. Influence of Surfactant Chain Length and Surfactant/Polymer Ratio. Langmuir 2004, 20, 5367–5374. [Google Scholar]
- Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.M.; Lin, S.Y.; Loglio, G.; Miller, R.; Noskov, B.A. Scanning Probe Microscopy of Adsorption Layers of Sodium Polystyrenesulfonate/Dodecyltrimethylammonium Bromide Complexes. Colloid J. 2011, 73, 437–444. [Google Scholar] [CrossRef]
- Bykov, A.G.; Lin, S.-Y.; Loglio, G.; Miller, R.; Noskov, B.A. Kinetics of Adsorption Layer Formation in Solutions of Polyacid/Surfactant Complexes. J. Phys. Chem. C 2009, 113, 5664–5671. [Google Scholar] [CrossRef]
- Bykov, A.G.; Lin, S.Y.; Loglio, G.; Lyadinskaya, V.V.; Miller, R.; Noskov, B.A. Impact of Surfactant Chain Length on Dynamic Surface Properties of Alkyltrimethylammonium Bromide/Polyacrylic Acid Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 382–389. [Google Scholar] [CrossRef]
- Zhang, J.; Thomas, R.K.; Penfold, J. Interaction of Oppositely Charged Polyelectrolyte—Ionic Surfactant Mixtures: Adsorption of Sodium Poly (Acrylic Acid)–Dodecyl Trimethyl Ammonium Bromide Mixtures at the Air—Water Interface. Soft Matter 2005, 1, 310–318. [Google Scholar] [CrossRef]
- Yazhgur, P.A.; Noskov, B.A.; Liggieri, L.; Lin, S.-Y.Y.; Loglio, G.; Miller, R.; Ravera, F. Dynamic Properties of Mixed Nanoparticle/Surfactant Adsorption Layers. Soft Matter 2013, 9, 3305–3314. [Google Scholar] [CrossRef]
- Kirby, S.M.; Anna, S.; Walker, L. Effect of Surfactant Tail Length and Ionic Strength on the Interfacial Properties of Nanoparticle-Surfactant Complexes. Soft Matter 2017, 14, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A. Protein Conformational Transitions at the Liquid–Gas Interface as Studied by Dilational Surface Rheology. Adv. Colloid Interface Sci. 2014, 206, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Mikhailovskaya, A.A.; Lin, S.-Y.; Loglio, G.; Miller, R. Bovine Serum Albumin Unfolding at the Air/Water Interface as Studied by Dilational Surface Rheology. Langmuir 2010, 26, 17225–17231. [Google Scholar] [CrossRef]
- Noskov, B.A.; Grigoriev, D.O.; Latnikova, A.V.; Lin, S.-Y.; Loglio, G.; Miller, R. Impact of Globule Unfolding on Dilational Viscoelasticity of Beta-Lactoglobulin Adsorption Layers. J. Phys. Chem. B 2009, 113, 13398–13404. [Google Scholar] [CrossRef]
- Tihonov, M.M.; Milyaeva, O.Y.; Noskov, B.A. Dynamic Surface Properties of Lysozyme Solutions. Impact of Urea and Guanidine Hydrochloride. Colloids Surfaces B Biointerfaces 2015, 129, 114–120. [Google Scholar] [CrossRef]
- Campbell, R.A.; Tummino, A.; Varga, I.; Milyaeva, O.Y.; Krycki, M.M.; Lin, S.Y.; Laux, V.; Haertlein, M.; Forsyth, V.T.; Noskov, B.A. Adsorption of Denaturated Lysozyme at the Air-Water Interface: Structure and Morphology. Langmuir 2018, 34, 5020–5029. [Google Scholar] [CrossRef] [Green Version]
- Krycki, M.M.; Lin, S.Y.; Loglio, G.; Michailov, A.V.; Miller, R.; Noskov, B.A. Impact of Denaturing Agents on Surface Properties of Myoglobin Solutions. Colloids Surf. B Biointerfaces 2021, 202, 111657. [Google Scholar] [CrossRef]
- Noskov, B.A.; Milyaeva, O.Y.; Lin, S.Y.; Loglio, G.; Miller, R. Dynamic Properties of β-Casein/Surfactant Adsorption Layers. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 84–91. [Google Scholar] [CrossRef]
- Mikhailovskaya, A.A.; Noskov, B.A.; Lin, S.-Y.; Loglio, G.; Miller, R. Formation of Protein/Surfactant Adsorption Layer at the Air/Water Interface as Studied by Dilational Surface Rheology. J. Phys. Chem. B 2011, 115, 9971–9979. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Latnikova, A.V.; Lin, S.-Y.; Loglio, G.; Miller, R. Dynamic Surface Elasticity of β-Casein Solutions during Adsorption. J. Phys. Chem. C 2007, 111, 16895–16901. [Google Scholar] [CrossRef]
- Milyaeva, O.Y.; Campbell, R.A.; Lin, S.; Loglio, G.; Miller, R.; Tihonov, M.M.; Varga, I.; Volkova, V.; Noskov, B.A. Synergetic Effect of Sodium Polystyrene Sulfonate and Guanidine Hydrochloride on the Surface Properties of Lysozyme Solutions. RSC Adv. 2015, 5, 7413–7422. [Google Scholar] [CrossRef]
- Milyaeva, O.Y.; Noskov, B.A.; Lin, S.Y.; Loglio, G.; Miller, R. Influence of Polyelectrolyte on Dynamic Surface Properties of BSA Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 63–68. [Google Scholar] [CrossRef]
- Noskov, B.A.; Tikhonov, M.M. Effect of Sodium Dodecyl Sulfate on Dynamic Surface Properties of Lysozyme Solutions. Colloid J. 2012, 74, 248–253. [Google Scholar] [CrossRef]
- Latnikova, A.V.; Lin, S.-Y.; Loglio, G.; Miller, R.; Noskov, B.A. Impact of Surfactant Additions on Dynamic Properties of β-Casein Adsorption Layers. J. Phys. Chem. C 2008, 112, 6126–6131. [Google Scholar] [CrossRef]
- Lyadinskaya, V.V.; Lin, S.Y.; Noskov, B.A. Dynamic Surface Elasticity of the Mixed Solutions of DNA and Cetyltrimethylammonium Bromide. Mendeleev Commun. 2016, 26, 64–65. [Google Scholar] [CrossRef]
- Lyadinskaya, V.V.; Lin, S.Y.; Michailov, A.V.; Povolotskiy, A.V.; Noskov, B.A. Phase Transitions in DNA/Surfactant Adsorption Layers. Langmuir 2016, 32, 13435–13445. [Google Scholar] [CrossRef] [PubMed]
- Lyadinskaya, V.V.; Tseng, W.C.; Lin, S.Y.; Noskov, B.A. Dynamic Surface Properties of DNA/Surfactant Solutions: Impact of DNA Structure. J. Taiwan Inst. Chem. Eng. 2016, 68, 59–63. [Google Scholar] [CrossRef]
- Chirkov, N.S.; Akentiev, A.V.; Campbell, R.A.; Lin, S.Y.; Timoshen, K.A.; Vlasov, P.S.; Noskov, B.A. Network Formation of DNA/Polyelectrolyte Fibrous Aggregates Adsorbed at the Water-Air Interface. Langmuir 2019, 35, 13967–13976. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, N.S.; Campbell, R.A.; Michailov, A.V.; Vlasov, P.S.; Noskov, B.A. DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface. Polymers 2021, 13, 2820. [Google Scholar] [CrossRef]
- Chirkov, N.S.; Michailov, A.V.; Vlasov, P.S.; Noskov, B.A. DNA Penetration into a Monolayer of Amphiphilic Polyelectrolyte. Mendeleev Commun. 2022, 32, 192–193. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Bykov, A.G. Langmuir Layers of Fullerene C60 and Its Mixtures with Amphiphilic Polymers. J. Mol. Liq. 2020, 320, 114440. [Google Scholar] [CrossRef]
- Noskov, B.A.; Isakov, N.A.; Gochev, G.; Loglio, G.; Miller, R. Interaction of Fullerene C60 with Bovine Serum Albumin at the Water—Air Interface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127702. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Akentiev, A.V.; Chirkov, N.S.; Dubovsky, I.M.; Lebedev, V.T.; Lin, S.Y.; Loglio, G.; Miller, R.; Sedov, V.P.; et al. Dynamic Surface Properties of Fullerenol Solutions. Langmuir 2019, 35, 3773–3779. [Google Scholar] [CrossRef]
- Akentiev, A.V.; Gorniaia, S.B.; Isakov, N.A.; Lebedev, V.T.; Milyaeva, O.Y.; Sedov, V.P.; Semenov, K.N.; Timoshen, K.A.; Noskov, B.A. Surface Properties of Fullerenol C60(OH)20 Solutions. J. Mol. Liq. 2020, 306, 112904. [Google Scholar] [CrossRef]
- Timoshen, K.A.; Khrebina, A.D.; Lebedev, V.T.; Loglio, G.; Miller, R.; Sedov, V.P.; Noskov, B.A. Dynamic Surface Properties of Carboxyfullerene Solutions. J. Mol. Liq. 2023, 372, 121174. [Google Scholar] [CrossRef]
- Milyaeva, O.Y.; Akentiev, A.V.; Bykov, A.G.; Lin, S.Y.; Loglio, G.; Miller, R.; Michailov, A.V.; Rotanova, K.Y.; Noskov, B.A. Spread Layers of Lysozyme Microgel at Liquid Surface. Polymers 2022, 14, 3979. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Rafikova, A.R.; Milyaeva, O.Y. β-Lactoglobulin Microgel Layers At the Surface of Aqueous Solutions. J. Mol. Liq. 2022, 351, 118658. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bykov, A.G.; Loglio, G.; Miller, R.; Milyaeva, O.Y. Spread and Adsorbed Layers of Protein Fibrils at Water—Air Interface. Colloids Surf. B Biointerfaces 2022, 220, 112942. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milyaeva, O.; Bykov, A.; Miller, R. Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov. Colloids Interfaces 2023, 7, 55. https://doi.org/10.3390/colloids7030055
Milyaeva O, Bykov A, Miller R. Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov. Colloids and Interfaces. 2023; 7(3):55. https://doi.org/10.3390/colloids7030055
Chicago/Turabian StyleMilyaeva, Olga, Alexey Bykov, and Reinhard Miller. 2023. "Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov" Colloids and Interfaces 7, no. 3: 55. https://doi.org/10.3390/colloids7030055
APA StyleMilyaeva, O., Bykov, A., & Miller, R. (2023). Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov. Colloids and Interfaces, 7(3), 55. https://doi.org/10.3390/colloids7030055