Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobson, C.M. Protein Misfolding, Evolution and Disease. Trends Biochem. Sci. 1999, 24, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Jucker, M. The Amyloid State of Proteins in Human Diseases. Cell 2012, 148, 1188–1203. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M. The Amyloid Phenomenon and Its Links with Human Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a023648. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Arai, T.; Miklossy, J.; Mcgeer, P.L. Aβ and Tau Form Soluble Complexes That May Promote Self Aggregation of Both into the Insoluble Forms Observed in Alzheimer ’ s Disease. Proc. Natl. Acad. Sci. USA 2005, 103, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional Amyloid—From Bacteria to Humans. Trends Biochem. Sci. 2007, 32, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mezzenga, R. Food Protein Amyloid Fibrils: Origin, Structure, Formation, Characterization, Applications and Health Implications. Adv. Colloid Interface Sci. 2019, 269, 334–356. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Mezzenga, R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Adv. Mater. 2016, 28, 6546–6561. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhong, C. Amyloid-Directed Assembly of Nanostructures and Functional Devices for Bionanoelectronics. J. Mater. Chem. B 2015, 3, 4953–4958. [Google Scholar] [CrossRef]
- Manea, Y.K.; Khan, A.M.T.; Qashqoosh, M.; Wani, A.A.; Shahadat, M. Ciprofloxacin-Supported Chitosan/Polyphosphate Nanocomposite to Bind Bovine Serum Albumin: Its Application in Drug Delivery. J. Mol. Liq. 2019, 292, 111337. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, A.; Ganguly, P.; Biradar, A.M.; Sharma, V.; Kumar, A.; Ganguly, P.; Biradar, A.M. Highly Sensitive Bovine Serum Albumin Biosensor Based on Liquid Crystal Highly Sensitive Bovine Serum Albumin Biosensor Based on Liquid Crystal. Appl. Phys. Lett. 2014, 104, 043705. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Wang, S.S.-S.; Hsu, T.-L.; Chou, S.-H.; How, S.-C.; Lin, T.-H. Application of Amyloid-Based Hybrid Membranes in Drug Delivery. Polymers 2023, 15, 1444. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Madadlou, A. Technological Functionality and Biological Properties of Food Protein Nanofibrils Formed by Heating at Acidic Condition. Trends Food Sci. Technol. 2018, 75, 115–128. [Google Scholar] [CrossRef]
- Li, C.; Qin, R.; Liu, R.; Miao, S.; Yang, P. Functional Amyloid Materials at Surfaces/Interfaces. Biomater. Sci. 2018, 6, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yue, C.; Xu, H.; Guan, C.; Guo, R.; Yang, X.; Ma, C.; Shao, M. Comparison of Emulsifying Properties of Fibrils Formed from Whey Protein Concentrate Following Induction by Nuclei and Nuclei Fragments. Int. Dairy J. 2021, 123, 105166. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, G.; Pang, X.; Wen, Z.; Yi, J. Physicochemical, Emulsifying, and Interfacial Properties of Different Whey Protein Aggregates Obtained by Thermal Treatment. LWT 2021, 149, 111904. [Google Scholar] [CrossRef]
- Lam, S.; Velikov, K.P.; Velev, O.D. Pickering Stabilization of Foams and Emulsions with Particles of Biological Origin. Curr. Opin. Colloid Interface Sci. 2014, 19, 490–500. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Humblet-Hua, K.N.P.; Kempen, S.E.H.J. van Nonlinear Stress Deformation Behavior of Interfaces Stabilized by Food-Based Ingredients. J. Phys. Condens. Matter 2014, 26, 464105. [Google Scholar] [CrossRef]
- Humblet-Hua, N.P.K.; Van Der Linden, E.; Sagis, L.M.C. Surface Rheological Properties of Liquid-Liquid Interfaces Stabilized by Protein Fibrillar Aggregates and Protein-Polysaccharide Complexes. Soft Matter 2013, 9, 2154–2165. [Google Scholar] [CrossRef]
- Ninham, B.W. The Loss of Certainty. In Progress in Colloid and Polymer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 120, pp. 1–12. [Google Scholar]
- Noskov, B.A.; Akentiev, A.V.; Bykov, A.G.; Loglio, G.; Miller, R.; Milyaeva, O.Y. Spread and Adsorbed Layers of Protein Fibrils at Water—Air Interface. Colloids Surf. B Biointerfaces 2022, 220, 112942. [Google Scholar] [CrossRef]
- Jordens, S.; Ru, P.A.; Sieber, C.; Isa, L.; Fischer, P.; Mezzenga, R. Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir 2014, 30, 10090–10097. [Google Scholar] [CrossRef]
- Rühs, P.A.A.; Scheuble, N.; Windhab, E.J.J.; Fischer, P. Protein Adsorption and Interfacial Rheology Interfering in Dilatational Experiment. Eur. Phys. J. Spec. Top. 2013, 222, 47. [Google Scholar] [CrossRef]
- Jordens, S.; Riley, E.E.; Usov, I.; Isa, L.; Olmsted, P.D.; Mezzenga, R. Adsorption at Liquid Interfaces Induces Amyloid Fibril Bending and Ring Formation. ACS Nano 2014, 8, 11071–11079. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gong, Y.; Lu, W.; Chen, B. Influence of Nano-SiO2on Dilational Viscoelasticity of Liquid/Air Interface of Cetyltrimethyl Ammonium Bromide. Appl. Surf. Sci. 2008, 254, 3380–3384. [Google Scholar] [CrossRef]
- Ghadami, S.A.; Ahmadi, Z.; Moosavi-Nejad, Z. The Albumin-Based Nanoparticle Formation in Relation to Protein Aggregation. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 252, 119489. [Google Scholar] [CrossRef] [PubMed]
- Holm, N.K.; Jespersen, S.K.; Thomassen, L.V.; Wolff, T.Y.; Sehgal, P.; Thomsen, L.A.; Christiansen, G.; Andersen, C.B.; Knudsen, A.D.; Otzen, D.E. Aggregation and Fibrillation of Bovine Serum Albumin. Biochim. Biophys. Acta—Proteins Proteom. 2007, 1774, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Jordens, S.; Isa, L.; Usov, I.; Mezzenga, R. Non-Equilibrium Nature of Two-Dimensional Isotropic and Nematic Coexistence in Amyloid Fibrils at Liquid Interfaces. Nat. Commun. 2013, 4, 1917–1918. [Google Scholar] [CrossRef]
- Usov, I.; Adamcik, J.; Mezzenga, R. Polymorphism Complexity and Handedness Inversion in Serum Albumin Amyloid Fibrils. ACS Nano 2013, 7, 10465–10474. [Google Scholar] [CrossRef]
- Usov, I.; Adamcik, J.; Mezzenga, R. Polymorphism in Bovine Serum Albumin Fibrils: Morphology and Statistical Analysis. Faraday Discuss. 2013, 166, 151–162. [Google Scholar] [CrossRef]
- Dahal, E.; Choi, M.; Alam, N.; Bhirde, A.A.; Beaucage, S.L.; Badano, A. Structural Evaluation of an Amyloid Fibril Model Using Small-Angle X-ray Scattering. Phys. Biol. 2017, 14, 046001. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Jansens, K.J.A.; Rombouts, I.; Brijs, K.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Conditions Governing Food Protein Amyloid Fibril Formation. Part II: Milk and Legume Proteins. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1277–1291. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Jain, N.; Mukhopadhyay, S. Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin. J. Phys. Chem. B 2011, 115, 4195–4205. [Google Scholar] [CrossRef] [PubMed]
- Nirwal, S.; Bharathi, V.; Patel, B.K. Amyloid-like Aggregation of Bovine Serum Albumin at Physiological Temperature Induced by Cross-Seeding Effect of HEWL Amyloid Aggregates. Biophys. Chem. 2021, 278, 106678. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, Z.; Rehman, S.U.; Tabish, M.; Shalla, A.H.; Kabir-ud-Din, K.-D. Modulation of Bovine Serum Albumin Fibrillation by Ester Bonded and Conventional Gemini Surfactants. RSC Adv. 2015, 5, 58616–58624. [Google Scholar] [CrossRef]
- Veerman, C.; Sagis, L.M.C.; Heck, J.; Van Der Linden, E. Mesostructure of Fibrillar Bovine Serum Albumin Gels. Int. J. Biol. Macromol. 2003, 31, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Gunes, D.Z.; Mezzenga, R. Interfacial Activity and Interfacial Shear Rheology of Native β -Lactoglobulin Monomers and Their Heat-Induced Fibers. Langmuir 2010, 26, 15366–15375. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Yang, X.; Sagis, L.M.C. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Langmuir 2016, 32, 8092–8101. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.M.; Miller, R. Dilational Surface Viscoelasticity of Polymer Solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271. [Google Scholar] [CrossRef]
- Noskov, B.A.; Isakov, N.A.; Gochev, G.; Loglio, G.; Miller, R. Interaction of Fullerene C60 with Bovine Serum Albumin at the Water—Air Interface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127702. [Google Scholar] [CrossRef]
- Noskov, B.; Mikhailovskaya, A. Adsorption Kinetics of Globular Proteins and Protein/Surfactant Complexes at the Liquid–Gas Interface. Soft Matter 2013, 9, 9392–9402. [Google Scholar] [CrossRef]
- Karaman, M.E.; Ninham, B.W.; Pashley, R.M. Effects of Dissolved Gas on Emulsions, Emulsion Polymerization, and Surfactant Aggregation. J. Phys. Chem. 1996, 100, 15503–15507. [Google Scholar] [CrossRef]
- Milyaeva, O.Y.; Akentiev, A.V.; Bykov, A.G.; Lin, S.; Loglio, G.; Miller, R.; Michailov, A.V.; Rotanova, K.Y.; Noskov, B.A. Spread Layers of Lysozyme Microgel at Liquid Surface. Polymers 2022, 14, 3979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akentiev, A.; Lin, S.-Y.; Loglio, G.; Miller, R.; Noskov, B. Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils. Colloids Interfaces 2023, 7, 59. https://doi.org/10.3390/colloids7030059
Akentiev A, Lin S-Y, Loglio G, Miller R, Noskov B. Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils. Colloids and Interfaces. 2023; 7(3):59. https://doi.org/10.3390/colloids7030059
Chicago/Turabian StyleAkentiev, Alexander, Shi-Yow Lin, Giuseppe Loglio, Reinhard Miller, and Boris Noskov. 2023. "Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils" Colloids and Interfaces 7, no. 3: 59. https://doi.org/10.3390/colloids7030059
APA StyleAkentiev, A., Lin, S. -Y., Loglio, G., Miller, R., & Noskov, B. (2023). Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils. Colloids and Interfaces, 7(3), 59. https://doi.org/10.3390/colloids7030059