Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Formulations
2.3. Stationary and Oscillatory Rheology
2.4. 1H Self-Diffusion NMR
2.5. Cleaning Efficiency and Qualitative Oil-Uptake Performance
3. Results
3.1. The Effect of Dodecanol on Triton® CG-110 Micellar Phase
3.2. Self-Diffusion NMR and Obstruction Factor
3.3. Cleaning Efficiency and Oil-Uptake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, R.; Ingenito, L.; Cavasso, D.; Siciliano, A.; Alfieri, M.L.; Chiappisi, L.; Fragneto, G.; Ottaviani, M.F.; Guida, M.; Paduano, L.; et al. Rhamnolipid–SLES Aqueous Mixtures: From the Molecular Self-Aggregation to the Functional and Ecotoxicological Properties. J. Mol. Liq. 2022, 367, 120547. [Google Scholar] [CrossRef]
- Esposito, R.; Speciale, I.; De Castro, C.; D’Errico, G.; Russo Krauss, I. Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure–Property Relationships. Int. J. Mol. Sci. 2023, 24, 5395. [Google Scholar] [CrossRef] [PubMed]
- Baccile, N.; Seyrig, C.; Poirier, A.; Alonso-De Castro, S.; Roelants, S.L.K.W.; Abel, S. Self-Assembly, Interfacial Properties, Interactions with Macromolecules and Molecular Modelling and Simulation of Microbial Bio-Based Amphiphiles (Biosurfactants). A Tutorial Review. Green Chem. 2021, 23, 3842–3944. [Google Scholar] [CrossRef]
- Müller, M.M.; Kügler, J.H.; Henkel, M.; Gerlitzki, M.; Hörmann, B.; Pöhnlein, M.; Syldatk, C.; Hausmann, R. Rhamnolipids—Next Generation Surfactants? J. Biotechnol. 2012, 162, 366–380. [Google Scholar] [CrossRef]
- Otzen, D.E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta (BBA)-Biomembr. 2017, 1859, 639–649. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Maria da Gloria, C.S.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Scheibel, J.J. The Evolution of Anionic Surfactant Technology to Meet the Requirements of the Laundry Detergent Industry. J. Surfactants Deterg. 2004, 7, 319–328. [Google Scholar] [CrossRef]
- Cornwell, P.A. A Review of Shampoo Surfactant Technology: Consumer Benefits, Raw Materials and Recent Developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- Rosen, M.; Kunjappu, J. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9786468600. [Google Scholar] [CrossRef]
- Tadros, T. Polymeric Surfactants: Dispersion Stability and Industrial Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Pradip; Rai, B. Design of Tailor-Made Surfactants for Industrial Applications Using a Molecular Modelling Approach. Colloids Surf. A Physicochem. Eng. Asp. 2002, 205, 139–148. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shrivastava, S.; Kakati, A.; Sangwai, J.S. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022, 61, 21–64. [Google Scholar] [CrossRef]
- Marques, L.; Dias Rodrigues, P.; Simonelli, G.; de Jesus Assis, D.; Quintella, C.M.; de Carvalho Lima Lobato, A.K.; Maria Cordeiro de Oliveira, O.; Santos, L.C.L. Optimization of Enhanced Oil Recovery Using ASP Solution. Heliyon 2023, 9, e21797. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R. Enhanced Oil Recovery by Surfactant Injection Was Improved during the Last 50 Years Thanks to the Multivariable HLD Formulation Equation. Pet. Petrochem. Eng. J. 2023, 7, 1–25. [Google Scholar] [CrossRef]
- Kumar, N.; Tyagi, R. Industrial Applications of Dimeric Surfactants: A Review. J. Dispers. Sci. Technol. 2014, 35, 205–214. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactants-Based Remediation as an Effective Approach for Removal of Environmental Pollutants—A Review. J. Mol. Liq. 2020, 318, 113960. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants Used in Food Industry: A Review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Salager, J.L.; Antón, R.; Bullón, J.; Forgiarini, A.; Marquez, R. How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics 2020, 7, 57. [Google Scholar] [CrossRef]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent Advances in Non-Ionic Surfactant Vesicles (Niosomes): Fabrication, Characterization, Pharmaceutical and Cosmetic Applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef]
- Fait, M.E.; Bakas, L.; Garrote, G.L.; Morcelle, S.R.; Saparrat, M.C.N. Cationic Surfactants as Antifungal Agents. Appl. Microbiol. Biotechnol. 2018, 103, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Colomer, A.; Pinazo, A.; Manresa, M.A.; Vinardell, M.P.; Mitjans, M.; Infante, M.R.; Pérez, L. Cationic Surfactants Derived from Lysine: Effects of Their Structure and Charge Type on Antimicrobial and Hemolytic Activities. J. Med. Chem. 2011, 54, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Dabkowska, A.P.; Hirst, C.; Valldeperas, M.; Clifton, L.A.; Montis, C.; Nöjd, S.; Gentile, L.; Wang, M.; Pálsson, G.K.; Lages, S.; et al. Temperature Responsive Lipid Liquid Crystal Layers with Embedded Nanogels. Chem. Commun. 2017, 53, 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.E.; Gentile, L.; Oliviero Rossi, C.; Tavano, L.; Ranieri, G.A. Gels of Pluronic F127 and Nonionic Surfactants from Rheological Characterization to Controlled Drug Permeation. Colloids Surf. B Biointerfaces 2011, 87, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, A.A.; Lin, J. Biosurfactant: A New Frontier for Greener Technology and Environmental Sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.; Kermanshahi Pour, A.; Beach, E.S.; Zimmerman, J.B. Derivation and Synthesis of Renewable Surfactants. Chem. Soc. Rev. 2012, 41, 1499–1518. [Google Scholar] [CrossRef] [PubMed]
- Rebello, S.; Anoopkumar, A.N.; Sindhu, R.; Binod, P.; Pandey, A.; Aneesh, E.M. Comparative Life-Cycle Analysis of Synthetic Detergents and Biosurfactants—An Overview. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics; Elsevier: London, UK, 2020; pp. 511–521. [Google Scholar] [CrossRef]
- Pardhi, D.S.; Panchal, R.R.; Raval, V.H.; Joshi, R.G.; Poczai, P.; Almalki, W.H.; Rajput, K.N. Microbial Surfactants: A Journey from Fundamentals to Recent Advances. Front. Microbiol. 2022, 13, 982603. [Google Scholar] [CrossRef]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A Review on Natural Surfactants. RSC Adv. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Rodrigues, L.R. Microbial Surfactants: Fundamentals and Applicability in the Formulation of Nano-Sized Drug Delivery Vectors. J. Colloid Interface Sci. 2015, 449, 304–316. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High- and Low-Molecular-Mass Microbial Surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of Synthetic Surfactants on the Environment and the Potential for Substitution by Biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef]
- Drakontis, C.E.; Amin, S. Biosurfactants: Formulations, Properties, and Applications. Curr. Opin. Colloid Interface Sci. 2020, 48, 77–90. [Google Scholar] [CrossRef]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, Natural Alternatives to Synthetic Surfactants: Physicochemical Properties and Applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Bognolo, G. Biosurfactants as Emulsifying Agents for Hydrocarbons. Colloids Surf. A Physicochem. Eng. Asp. 1999, 152, 41–52. [Google Scholar] [CrossRef]
- Sałek, K.; Euston, S.R. Sustainable Microbial Biosurfactants and Bioemulsifiers for Commercial Exploitation. Process Biochem. 2019, 85, 143–155. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current Advances in the Classification, Production, Properties and Applications of Microbial Biosurfactants—A Critical Review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sun, Y.; Cao, M.; Wang, J.; Lu, J.R.; Xu, H. Rational Design, Properties, and Applications of Biosurfactants: A Short Review of Recent Advances. Curr. Opin. Colloid Interface Sci. 2020, 45, 57–67. [Google Scholar] [CrossRef]
- Biosurfactants Market Share, Size & Trends Report, 2023–2032. Available online: https://www.gminsights.com/industry-analysis/biosurfactants-market-report (accessed on 24 August 2023).
- Hill, K. Fats and Oils as Oleochemical Raw Materials. J. Oleo Sci. 2001, 50, 433–444. [Google Scholar] [CrossRef]
- Von Rybinski, W. Natural Surfactants. Curr. Opin. Colloid Interface Sci. 2001, 6, 146–147. [Google Scholar] [CrossRef]
- Holmberg, K. Novel Surfactants; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Kjellin, M.; Johansson, I. Surfactants from Renewable Resources; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Ruiz, C.C. Sugar-Based Surfactants Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2008; Volume 143, pp. 21–40. [Google Scholar] [CrossRef]
- Ortiz, M.S.; Alvarado, J.G.; Zambrano, F.; Marquez, R. Surfactants Produced from Carbohydrate Derivatives: A Review of the Biobased Building Blocks Used in Their Synthesis. J. Surfactants Deterg. 2022, 25, 147–183. [Google Scholar] [CrossRef]
- Gaciarz, A.; Khatri, N.K.; Velez-Suberbie, M.L.; Saaranen, M.J.; Uchida, Y.; Keshavarz-Moore, E.; Ruddock, L.W. Efficient Soluble Expression of Disulfide Bonded Proteins in the Cytoplasm of Escherichia Coli in Fed-Batch Fermentations on Chemically Defined Minimal Media. Microb. Cell Factories 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Lang, S.; Wullbrandt, D. Rhamnose Lipids—Biosynthesis, Microbial Production and Application Potential. Appl. Microbiol. Biotechnol. 1999, 51, 22–32. [Google Scholar] [CrossRef]
- Lotfabad, T.B.; Ebadipour, N.; Roostaazad, R. Evaluation of a Recycling Bioreactor for Biosurfactant Production by Pseudomonas Aeruginosa MR01 Using Soybean Oil Waste. J. Chem. Technol. Biotechnol. 2016, 91, 1368–1377. [Google Scholar] [CrossRef]
- Balzer, D.; Lüders, H. Nonionic Surfactants: Alkyl Polyglucosides; CRC Press: Boca Raton, FL, USA, 2001; Volume 123, ISBN 0471196584. [Google Scholar]
- do Vale, T.O.; de Magalhães, R.S.; de Almeida, P.F.; Matos, J.B.T.L.; Chinalia, F.A. The Impact of Alkyl Polyglycoside Surfactant on Oil Yields and Its Potential Effect on the Biogenic Souring during Enhanced Oil Recovery (EOR). Fuel 2020, 280, 118512. [Google Scholar] [CrossRef]
- El-Sukkary, M.M.A.; Syed, N.A.; Aiad, I.; El-Azab, W.I.M. Synthesis and Characterization of Some Alkyl Polyglycosides Surfactants. J. Surfactants Deterg. 2008, 11, 129–137. [Google Scholar] [CrossRef]
- Iglauer, S.; Wu, Y.; Shuler, P.; Tang, Y.; Goddard, W.A. New Surfactant Classes for Enhanced Oil Recovery and Their Tertiary Oil Recovery Potential. J. Pet. Sci. Eng. 2010, 71, 23–29. [Google Scholar] [CrossRef]
- Iglauer, S.; Wu, Y.; Shuler, P.; Tang, Y.; Goddard, W.A. Alkyl Polyglycoside Surfactant–Alcohol Cosolvent Formulations for Improved Oil Recovery. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 48–59. [Google Scholar] [CrossRef]
- Hou, B.; Zhang, F.; Wang, S.; Fan, H.; Wen, D.; Gao, S.; Tian, Y.; Yang, X.; He, H.; Zhang, X. Mechanisms of Spontaneous Imbibition and Wettability Reversal of Sandstone Cores by a Novel Imbibition Agent. Energy Fuels 2022, 36, 1316–1325. [Google Scholar] [CrossRef]
- Li, G.; Chen, L.; Ruan, Y.; Guo, Q.; Liao, X.; Zhang, B. Alkyl Polyglycoside: A Green and Efficient Surfactant for Enhancing Heavy Oil Recovery at High-Temperature and High-Salinity Condition. J. Pet. Explor. Prod. Technol. 2019, 9, 2671–2680. [Google Scholar] [CrossRef]
- Li, Z.; Bai, B.; Xu, D.; Meng, Z.; Ma, T.; Gou, C.; Gao, K.; Sun, R.; Wu, H.; Hou, J.; et al. Synergistic Collaboration between Regenerated Cellulose and Surfactant to Stabilize Oil/Water (O/W) Emulsions for Enhancing Oil Recovery. Energy Fuels 2019, 33, 81–88. [Google Scholar] [CrossRef]
- Nickel, D.; Nitsch, C.; Kurzendörfer, P.; von Rybinski, W. Interfacial Properties of Surfactant Mixtures with Alkyl Polyglycosides. In Trends in Colloid and Interface Science VI; part of the Progress in Colloid & Polymer Science book series; Springer Nature: Cham, Switzerland, 1992; Volume 89, pp. 249–252. [Google Scholar] [CrossRef]
- Von Rybinski, W.; Hill, K. Alkyl Polyglycosides—Properties and Applications of a New Class of Surfactants. Available online: https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291521-3773%2819980605%2937%3A10%3C1328%3A%3AAID-ANIE1328%3E3.0.CO%3B2-9 (accessed on 24 August 2023).
- Wei, P.; Pu, W.; Sun, L.; Zhou, W.; Ji, X. Foam Stabilized by Alkyl Polyglycoside and Isoamyl Alcohol for Enhancing Oil Recovery in the Low-Permeable Reservoir. J. Pet. Sci. Eng. 2018, 171, 1269–1278. [Google Scholar] [CrossRef]
- Yin, D.Y.; Zhang, X.R. Evaluation and Research on Performance of a Blend Surfactant System of Alkyl Polyglycoside in Carbonate Reservoir. J. Pet. Sci. Eng. 2013, 111, 153–158. [Google Scholar] [CrossRef]
- Bartman, M.; Balicki, S.; Hołysz, L.; Wilk, K.A. Benefits of Using Nonionic Saccharide Surfactant-Based Detergents for Nanostructured Fluids as Stubborn Graffiti Paint Remover. J. Surfactants Deterg. 2023, 1–14. [Google Scholar] [CrossRef]
- Dina, S.N.; Shah, Z.A.M.H.; Raudhah, A.N.; Aisah, A.U. Potential of Binary Mixtures of Sodium Lauryl Sulfoacetate (SLSA) and Alkyl Polyglucoside (APG10) as Oil Degreaser. Tenside Surfactants Deterg. 2023, 60, 236–244. [Google Scholar] [CrossRef]
- Chen, C.; Xi, H.; Li, Z.; Zhang, H.; Lin, X.; Wang, Y. Removal of Uranium by APG/TAS Antifreeze Foam Detergent with High Foaming Property. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129589. [Google Scholar] [CrossRef]
- Wei, P.; Li, J.; Xie, Y.; Huang, X.; Sun, L. Alkyl Polyglucosides for Potential Application in Oil Recovery Process: Adsorption Behavior in Sandstones under High Temperature and Salinity. J. Pet. Sci. Eng. 2020, 189, 107057. [Google Scholar] [CrossRef]
- Belhaj, A.F.; Elraies, K.A.; Alnarabiji, M.S.; Abdul Kareem, F.A.; Shuhli, J.A.; Mahmood, S.M.; Belhaj, H. Experimental Investigation, Binary Modelling and Artificial Neural Network Prediction of Surfactant Adsorption for Enhanced Oil Recovery Application. Chem. Eng. J. 2021, 406, 127081. [Google Scholar] [CrossRef] [PubMed]
- Balzer, D. Alkylpolyglucoside—Physikochemische Eigenschaften und Anwendung/Alkylpolyglucosides, Their Physico-Chemical Properties and Their Uses. Tenside Surfactants Deterg. 1991, 28, 419–427. [Google Scholar] [CrossRef]
- Kahlweit, M.; Busse, G.; Faulhaber, B. Preparing Microemulsions with Alkyl Monoglucosides and the Role of N-Alkanols. Langmuir 1995, 11, 3382–3387. [Google Scholar] [CrossRef]
- Kutschmann, E.M.; Findenegg, G.H.; Nickel, D.; von Rybinski, W. Interfacial Tension of Alkylglucosides in Different APG/Oil/Water Systems. Colloid Polym. Sci. 1995, 273, 565–571. [Google Scholar] [CrossRef]
- Dari, C.; Si, Y.; Douliez, J.-P.; Tahon, J.-F.; Benezech, T.; Clegg, P.S.; Fameau, A.-L. Mixture of Fatty Alcohols and Alkyl Polyglucosides Stabilizing Water-in-Water Emulsions. Front. Soft Matter 2023, 3, 1328195. [Google Scholar] [CrossRef]
- Wang, L.; Sun, N.; Wang, Z.; Han, H.; Yang, Y.; Liu, R.; Hu, Y.; Tang, H.; Sun, W. Self-Assembly of Mixed Dodecylamine–Dodecanol Molecules at the Air/Water Interface Based on Large-Scale Molecular Dynamics. J. Mol. Liq. 2019, 276, 867–874. [Google Scholar] [CrossRef]
- Colafemmina, G.; Palazzo, G.; Mateos, H.; Amin, S.; Fameau, A.L.; Olsson, U.; Gentile, L. The Cooling Process Effect on the Bilayer Phase State of the CTAC/Cetearyl Alcohol/Water Surfactant Gel. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124821. [Google Scholar] [CrossRef]
- TRITONTM CG-110 Surfactant. Available online: https://www.dow.com/en-us/pdp.triton-cg-110-surfactant.85698z.html#properties (accessed on 19 August 2023).
- Vo, T.V.; Chou, Y.Y.; Chen, B.H. Preparation of Microemulsion from an Alkyl Polyglycoside Surfactant and Tea Tree Oil. Molecules 2021, 26, 1971. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.; Amin, S. Rheology Primer for Nanoparticle Scientists. In Colloidal Foundations of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2022; pp. 289–306. [Google Scholar] [CrossRef]
- Pelta, M.D.; Barjat, H.; Morris, G.A.; Davis, A.L.; Hammond, S.J. Pulse Sequences for High-Resolution Diffusion-Ordered Spectroscopy (HR-DOSY). Magn. Reson. Chem. 1998, 36, 706–714. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time Dependent Field Gradient. J. Chem. Phys 1965, 42, 288. [Google Scholar] [CrossRef]
- Chidichimo, G.; De Fazio, D.; Ranieri, G.A.; Terenzi, M. Self-Diffusion of Water in a Lamellar Lyotropic Liquid Crystal: A Study by Pulsed Field Gradient NMR. Chem. Phys. Lett. 1985, 117, 514–517. [Google Scholar] [CrossRef]
- Veronico, L.; Gentile, L. Removal of Pollutants by Ferrihydrite Nanoparticles Combined with Brij L4 Self-Assembled Nanostructures. ACS Appl. Nano Mater. 2023, 6, 720–728. [Google Scholar] [CrossRef]
- Cayias, J.L.; Schechter, R.S.; Wade, W.H. Measurement of Low Interfacial Tension via the Spinning Drop Technique; ACS Symposium Series; ACS Publications: Washington, DC, USA, 1974; pp. 234–247. [Google Scholar] [CrossRef]
- Forgiarini, A.M.; Marquez, R.; Salager, J.L. Formulation Improvements in the Applications of Surfactant–Oil–Water Systems Using the HLDN Approach with Extended Surfactant Structure. Molecules 2021, 26, 3771. [Google Scholar] [CrossRef] [PubMed]
- Marquez, R.; Meza, L.; Alvarado, J.G.; Bullón, J.; Langevin, D.; Forgiarini, A.M.; Salager, J.L. Interfacial Rheology Measured with a Spinning Drop Interfacial Rheometer: Particularities in More Realistic Surfactant–Oil–Water Systems Close to Optimum Formulation at HLDN = 0. J. Surfactants Deterg. 2021, 24, 587–601. [Google Scholar] [CrossRef]
- Salager, J.L.; Marquez, R.; Delgado-Linares, J.G.; Rondon, M.; Forgiarini, A. Fundamental Basis for Action of a Chemical Demulsifier Revisited after 30 Years: HLDN as the Primary Criterion for Water-in-Crude Oil Emulsion Breaking. Energy Fuels 2022, 36, 711–730. [Google Scholar] [CrossRef]
- Marquez, R.; Ontiveros, J.F.; Barrios, N.; Tolosa, L.; Palazzo, G.; Nardello-Rataj, V.; Salager, J.L. Advantages and Limitations of Different Methods to Determine the Optimum Formulation in Surfactant–Oil–Water Systems: A Review. J. Surfactants Deterg. 2023, 1–32. [Google Scholar] [CrossRef]
- Tartaro, G.; Gentile, L.; Palazzo, G. Characteristic Length and Curvature of the AOT/Brine/Squalane “Sponge” L3 Phases. JCIS Open 2023, 9, 100077. [Google Scholar] [CrossRef]
- La Mesa, C.; Bonincontro, A.; Sesta, B. Solution Properties of Octyl β-D Glucoside. Part 1: Aggregate Size. Shape and Hydration. Colloid Polym. Sci. 1993, 271, 1165–1171. [Google Scholar] [CrossRef]
- Roxby, R.W.; Mills, B.P. Micelle Size Distribution and Free Monomer Concentration in Aqueous Solutions of Octyl Glucoside. J. Phys. Chem. 1990, 94, 456–459. [Google Scholar] [CrossRef]
- Giordano, R.; Maisano, G.; Teixeira, J. SANS Studies of Octyl-β-Glucoside and Glycine Micellar Solutions. J. Appl. Crystallogr. 1997, 30, 761–764. [Google Scholar] [CrossRef]
- Kameyama, K.; Takagi, T. Micellar Properties of Octylglucoside in Aqueous Solutions. J. Colloid Interface Sci. 1990, 137, 1–10. [Google Scholar] [CrossRef]
- Jönsson, B.; Wennerström, H.; Nilsson, P.G.; Linse, P. Self-Diffusion of Small Molecules in Colloidal Systems. Colloid Polym. Sci. 1986, 264, 77–88. [Google Scholar] [CrossRef]
- Németh, Z.; Halász, L.; Pálinkás, J.; Bóta, A.; Horányi, T. Rheological Behaviour of a Lamellar Liquid Crystalline Surfactant–Water System. Colloids Surf. A Physicochem. Eng. Asp. 1998, 145, 107–119. [Google Scholar] [CrossRef]
- Gentile, L.; Silva, B.F.B.; Balog, S.; Mortensen, K.; Olsson, U. Structural Transitions Induced by Shear Flow and Temperature Variation in a Nonionic Surfactant/Water System. J. Colloid Interface Sci. 2012, 372, 32–39. [Google Scholar] [CrossRef]
- Gentile, L. Ferrihydrite Nanoparticles Entrapped in Shear-Induced Multilamellar Vesicles. J. Colloid Interface Sci. 2022, 606, 1890–1896. [Google Scholar] [CrossRef]
- Zhu, Y.; Free, M.L. Introduction to Surfactants. In Surfactants in Precision Cleaning; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–53. [Google Scholar] [CrossRef]
- Jain, N.; Trabelsi, S.; Guillot, S.; McLoughlin, D.; Langevin, D.; Letellier, P.; Turmine, M. Critical Aggregation Concentration in Mixed Solutions of Anionic Polyelectrolytes and Cationic Surfactants. Langmuir 2004, 20, 8496–8503. [Google Scholar] [CrossRef]
Label | C8–10Gm (v/v% of the Initial Solution) | C8–10Gm (v/v% of the Surfactant) | C12OH (v/v%) |
---|---|---|---|
CG1 | 1 | 0.64 | - |
CG5 | 5 | 3.2 | - |
CG10 | 10 | 6.4 | - |
CG1C | 1 | 0.64 | 0.25 |
CG5C | 5 | 3.2 | 1.25 |
CG10C | 10 | 6.4 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronico, L.; Colafemmina, G.; Gentile, L. Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation. Colloids Interfaces 2024, 8, 6. https://doi.org/10.3390/colloids8010006
Veronico L, Colafemmina G, Gentile L. Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation. Colloids and Interfaces. 2024; 8(1):6. https://doi.org/10.3390/colloids8010006
Chicago/Turabian StyleVeronico, Lorenzo, Giuseppe Colafemmina, and Luigi Gentile. 2024. "Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation" Colloids and Interfaces 8, no. 1: 6. https://doi.org/10.3390/colloids8010006
APA StyleVeronico, L., Colafemmina, G., & Gentile, L. (2024). Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation. Colloids and Interfaces, 8(1), 6. https://doi.org/10.3390/colloids8010006