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Abstract: 4-Nitroaniline (PNA) is a toxic organic compound commonly found in wastewater, posing
significant environmental concerns due to its toxicity and potential carcinogenicity. In this study, the
recovery of PNA from aqueous solutions was investigated using a supported liquid membrane (SLM).
The membrane, which consists of polypropylene Celgard 2500 (PP-Celg), was embedded with the
extractant tributyl phosphate (TBP). Various factors influencing the efficiency of PNA transportation
were studied, including the concentration of PNA in the source phase, pH of the source phase, NaOH
concentration in the receiving phase, and choice of stripping agents. Optimal conditions for the
experiment were determined to be a source phase PNA concentration of 20 ppm at pH 7, distilled
water as the receiving phase, TBP as the carrier in the organic phase, and a transport time of 8 h.
The extraction process was conducted under ambient temperature and pressure conditions, yielding
results indicative of a first-order linearized reaction. Additionally, membrane stability and liquid
membrane loss were evaluated.

Keywords: 4-Nitroaniline (PNA); supported liquid membrane (SLM); polypropylene Celgard 2500
(PP-Celg); tributyl phosphate (TBP); separation

1. Introduction

PNA is an organic compound that is an intermediate in synthesizing pharmaceuticals,
drugs, gasoline, and dyes. It is a solid powder with a bright yellow color and a slight
ammonia-like odor. Due to its classification as a toxic compound particular handling, use,
and disposal procedures must be in place for this substance [1,2]. It belongs to refractory
pollutants commonly found in wastewater and, because of their toxicity and probable
carcinogenic consequences, pose a serious threat to the environment.

The release of PNA during its production and utilization poses a serious environmental
problem. It may cause long-term adverse effects in terms of hepatoxicity, splenotoxicity,
and nephrotoxicity [3,4]. According to the United States Environmental Protection Agency
(UEPA), this material is the top contaminant in water because of its toxicity, carcinogenicity,
and mutagenicity. PNA metabolites are nonbiodegradable or slowly degradable and have
varying toxicities to aquatic life and organisms. PNA is resistant to chemical and biological
oxidation degradation due to a nitro group linked to the aromatic ring [5].

Treating wastewater containing PNA prevents environmental pollution and protects
human health. Various methods have been developed for PNA removal. Wastewater
containing PNA can be treated using physicochemical methods, such as adsorption, pho-
todegradation, biodecomposition, and electrochemical treatment. Adsorption is the most
effective method because it is easy to use, even when treating enormous amounts of wastew-
ater. But adsorption methods for treating wastewater suffer from issues like high reagent
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consumption (e.g., adsorbents and catalysts) [6–8]. Also, a bioreactor widely used world-
wide in methods for wastewater treatment is the biological aerated filter (BAF). Through
carrier filtration and biodegradation, BAF can eliminate contaminants. BAF, a biofiltration-
based wastewater treatment technique, has the features of high biomass retention, toxin
tolerance, superior removal efficiency, and slurry separation [9,10]. However, bubble aera-
tion in a BAF may lead to the stripping of volatile toxic and hazardous substances by air,
resulting in secondary pollution [11]. The oxidation process (AOP), one of the technologies
used in wastewater treatment, generates hydroxyl radicals (OH•), crucial oxidants in the
breakdown of organic molecules. The final products of AOP include water, carbon dioxide,
and various mineral ions, none of which are harmful to the environment. Despite having a
high degrading capacity, AOP has drawbacks such as poor COD removal, poor stability,
and expensive wastewater treatment in industrial applications. As a result, research has
focused on creating novel techniques for treating water and wastewater to remove harmful
industrial waste and organic chemicals [12–14].

Therefore, one alternative approach to existing wastewater treatment methods is
the creation of cost-effective membranes that can adsorb PNA from aqueous solutions.
Membrane processes are used as an environmentally friendly substitute to cleanse, separate,
recover, or eliminate organic or inorganic components from liquid or gas media with
minimal energy consumption, significantly reducing the waste volume without adding
toxic compounds. The membrane technology is modular and able to work continuously.
These processes apply to several economic sectors, such as the environment, energy, health,
water treatment, cosmetics, food, and chemicals [15].

By using liquid membrane (LM) separation processes, a wide variety of organic and
inorganic compounds can be effectively removed from aqueous solutions because of their
simplicity in design, low energy costs, high selectivity, ease of operation, and ability to
combine removal and recovery processes in one step. Heavy metals (although IUPAC
recommends abandoning terms such as “heavy metals” [16]) are toxic environmental
pollutants that accumulate in soil and water systems due to industrial discharges and
agricultural runoff activities. Their presence poses significant health and environmental
risks, necessitating effective recovery methods. Traditional approaches, such as chemical
precipitation, coagulation, and ion exchange, often face challenges like high costs and
sludge production. Advanced membrane technologies, including reverse osmosis and
nanofiltration, offer improved efficiency but can be expensive and unstable.

Supported liquid membranes (SLMs) present a promising alternative due to their
efficiency and cost effectiveness. SLMs require less solvent and fewer operational stages
than traditional solvent extraction methods, leveraging high solute diffusion coefficients
for better metal ion transport. Studies have demonstrated their effectiveness in recovering
various metal ions (for example, metals belong to block d). For instance, research has shown
that chelating oximes and solvating extractants like Cyanex 923 are effective for selective
metal recovery. Additionally, supported ionic liquid membranes (SILMs) have been found
to enhance selectivity and recovery efficiency. One study optimized SLM conditions for
separating chromium (VI), copper, and zinc using D2EHPA as an extractant and acids
as stripping reagents, focusing on parameters such as extraction duration and reagent
concentrations. Another study developed a Fe (III) recovery model from spent alkaline
batteries using Cyanex 923, highlighting SLM’s economic advantages. Furthermore, SLM
technology has proven effective in pre-concentrating trace metals from natural waters
and detecting heavy metals like cadmium (Cd) in seawater, showcasing its versatility in
environmental applications [17–20].

Among the membrane-based separation processes, León et al. used an emulsion
liquid membrane process to remove PNA from aqueous solutions. This optimized the
removal process by analyzing the efficiency of PNA removal from the feed phase and the
initial apparent feed/membrane fluxes and permeabilities under various experiments [21].
In addition, Tao et al. simultaneously performed a two-/three-phase hollow fiber-based
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liquid-phase micro-extraction (HF-LPME) method for the determination of aromatic amines
in environmental water samples, including PNA.

All liquid membranes consist of an extractant agent (carrier) in an organic solvent that
selectively binds to one or a class of components in the aqueous feed phase and transports
it to the aqueous receiving phase through the membrane [22]. The carrier needs to be
highly selective and very specific to the solution that needs to be eliminated. The most
widely utilized carriers include hydro-oximes, amines, crown ethers, and phosphoorganic
molecules. Carriers are mainly divided into three classes based on their functional groups:
acidic, basic, and neutral:

i. Acidic Carriers: they are the most efficient at extracting the cations, as the carriers
do form complex salt with cations with the exchange of protons. The acidic carriers contain
COOH, P (OH), SO3H, or chelating groups. ii. Basic Carriers: The anionic metal complexes
are extracted using the alkaline/basic carriers. The best examples of such carriers are
amines. iii. Neutral Carriers: For the purpose of selectively transporting various metal
ions in LMs, neutral carriers are typically employed as cation carriers. They carry the
metal ions in their cavities. The extraction efficiency of such neutral carriers depends
on the size of their cavity and the size of the inserted ions. An anion and a cation are
transported across the LM simultaneously when these carriers are employed as metal
ion carriers in the membrane phase. The most common neutral carriers in LM processes
are macrocyclic molecules and organic phosphoryl compounds. Tributylphosphate is a
refractory molecule that is particularly difficult to degrade. Kumbasar used the separation
method using emulsion liquid membranes and using TBP as an extractant. TBP is a neutral
extractant. To preserve electrical neutrality, neutral extractants frequently extract cations
or uncharged metal complexes together with the associated anions. Most of the neutral
extractants that have been investigated in the liquid membrane studies are organophosphoryl
compounds, including trioctylphosphine oxide (TOPO), TBP, and tributhylphosphine oxide
(TBPO) [23–25].

TBP is the most widely used phosphatic solvent due to its high extraction selectiv-
ity [26]. It is usually used as an extractant to separate metal ions with good extraction
efficiency [27]. Liu et al. used mixed carriers containing trioctylmethylammonium chloride
(Aliquat 336) and TBP and used poly (vinyl) chloride (PVC) as the base polymer for the
recovery of phenolic compounds from aqueous solutions [28]. The transfer of Nb (V) and
Ta (V) ions in a chloride medium across a supported liquid membrane containing TBP as
a carrier has been investigated [29]. Synergistic reactive extraction of platinum (IV) from
aqueous solution was conducted using an organic phase consisting of TBP and bis (2, 4,
4-trimethylpentyl monothiophosphinic acid (Cyanex 302) in kerosene [30].

In this investigation, we will develop an SLM for removing an aromatic compound
PNA from an aqueous solution using TBP as an extractant. An attempt has been made to
optimize this technique’s process parameters to obtain an efficient separation system.

2. Materials and Methods
2.1. Materials

PNA (MERCK-Schuchardt, Switzerland, ≥99%) was dissolved in ultrapure water
(Milli Q Plus Colum, Millipore, Burlington, MA, USA) to create the feed solutions (Table 1).

All chemicals used were of analytical reagent grade. NaOH (CDH, New Delhi, India,
97%), NaCl (Pacegrove, Leicestershire, UK, 99%), and sodium acetate (Loba Chemie,
Mumbai, India, 99%) were used as strippants.
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Table 1. Chemical formula, molecular weight, and chemical structure of 4-nitroaniline.

4-Nitroaniline (MERCK-Schuchardt)

Chemical formula C6H6N2O2
Molecular weight 138.12 g mol−1

Chemical structure
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both aqueous feeding and stripping solutions, magnetic stirring at 600 rpm at 25 °C 
avoided concentration polarization at membrane interfaces and in bulk solutions. The 
schematic illustration of the SLM process is shown in Figure 1. Using a pipette, 0.5 mL of 
the source and receiving solutions were removed hourly during the transport operation 
and diluted to a suitable volume. After that, these solutions were examined at a wave-
length of 379 (Shimadzu UV–visible spectrophotometer 1650, Kyoto, Japan), and a cali-
bration curve was used to determine the concentration of the PNA in each sample. 
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posed membrane area of 3.14 cm2. Source and receiving solutions (50 mL each) were 
placed into two compartments on the device and mixed using two magnetic stirrers. For 
both aqueous feeding and stripping solutions, magnetic stirring at 600 rpm at 25 °C 
avoided concentration polarization at membrane interfaces and in bulk solutions. The 
schematic illustration of the SLM process is shown in Figure 1. Using a pipette, 0.5 mL of 
the source and receiving solutions were removed hourly during the transport operation 
and diluted to a suitable volume. After that, these solutions were examined at a wave-
length of 379 (Shimadzu UV–visible spectrophotometer 1650, Kyoto, Japan), and a cali-
bration curve was used to determine the concentration of the PNA in each sample. 

2.2. Membrane Preparation

Experiments on PNA extraction were performed at about 25 ◦C in a permeation cell.
The organic liquid consisting of TBP was saturated in the membrane for 24 h, a crucial
step ensuring the membrane was fully prepared for extraction. By weighing the polymeric
support before and after immobilization, we determined the amount of TBP that was
immobilized. An additional layer of carrier was removed by wiping it with a soft piece
of paper. The obtained SLM was fixed between the two half-cells of the device, with an
exposed membrane area of 3.14 cm2. Source and receiving solutions (50 mL each) were
placed into two compartments on the device and mixed using two magnetic stirrers. For
both aqueous feeding and stripping solutions, magnetic stirring at 600 rpm at 25 ◦C avoided
concentration polarization at membrane interfaces and in bulk solutions. The schematic
illustration of the SLM process is shown in Figure 1. Using a pipette, 0.5 mL of the source
and receiving solutions were removed hourly during the transport operation and diluted
to a suitable volume. After that, these solutions were examined at a wavelength of 379
(Shimadzu UV–visible spectrophotometer 1650, Kyoto, Japan), and a calibration curve was
used to determine the concentration of the PNA in each sample.
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The E and R (%) were calculated using the following equation:

E% =
[PNA]donor,0 − [PNA]donor,t

[PNA]donor,0
× 100 (1)

R% =
[PNA]receiving,t

[PNA]donor,0
× 100 (2)

where [PNA]donor,0 is the concentration of PNA in the initial source solution, [PNA]donor,t
is the concentration of PNA in the source solution after transport, and [PNA]receiving,t is the
concentration of PNA in the receiving phase after transport.

2.3. Buffer Solution Preparation

Table 4 describes the preparation methods of the two buffers used in this study.

Table 4. Methods for preparing buffer.

Buffer pH = 4 Buffer pH = 12

The buffer solution (pH = 4) is prepared by
mixing a solution of succinic acid 0.2 mol L−1

(V = 25 mL) and a solution of NaOH
0.2 mol L−1 (10 mL). Ultrapure water was

added to the mixture to obtain a
100 mL solution.

The buffer solution (pH = 12) is prepared by
mixing a solution of glycine 0.2 mol L−1

(V = 25 mL) and a solution of NaOH
0.2 mol L−1 (23.35 mL). Ultrapure water was

added to the mixture to obtain a
100 mL solution.

3. Results and Discussion
3.1. Transport of PNA with and without Carrier

The variation in E (%) and R (%) during the 8 h of transport is shown in Figure 2. The
presence of the carrier (TBP) in the polymeric support leads to a noticeable improvement
in the transport of the PNA from the feed to the receiving phase. The E (%) and the R (%)
increase from 6.743 to 68.169 and from 3.053 to 49.2226, respectively, with and without
impregnation. Moreover, after 8 h, the transport stops and the E (%) and R (%) remain
constant. This behavior could be related to the carrier’s loss from the membrane. There
is a possibility that carrier losses are related to its solubility (solubility of TBP in water is
0.4 g L−1 at 25 ◦C), as membrane liquid (ML) is not completely insoluble in an aqueous
solution and some solubility exists at the ML/aqueous solution interface. This influence
can be significant if ML is highly soluble in nearby aqueous solutions [31,32]. In their study
of TBP-mediated transport of phenol, Huidong et al. showed that emulsion formation was
responsible for membrane instability [33]. Based on the thickness d0,A , porosity ϵA, and
tortuosity τA of Accurel® PP support, the experimental (Jexp) and normalized (JN) fluxes for



Colloids Interfaces 2024, 8, 49 6 of 13

PNA were calculated (Jexp = 7 × 10−10 and JN = 0.51 × 10−10 mol m−2 s−1) using Celgard
2500 [24,34].

JN = Jexp
d0τ

ϵ

ϵA
d0,A τA

(3)

where d0, τ, and ϵ represent the membrane thickness, tortuosity, and porosity, respectively.

Jexp =

(
V
A

) (
dC
dt

)
(4)
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Figure 2. Variation in the E and R (%) as a function of the transport time. Feed solution: PNA
20 ppm; receiving solution: distilled water; membrane phase: PP-Celg without TBP and with TBP
as extractant.

The receiving phase volume (L), the active area of the membrane (m2), the concen-
tration of PNA (mol L−1), and the transport time (s) are represented by V, A, C, and t,
respectively. The slope dC

dt is determined by the linear variation in the PNA concentration
over time in the receiving phase.

The effect of UV radiation on transport efficiency was investigated (Table 5). Firstly, the
polymeric support was irradiated with UV radiation for 15 min and 180 min, and after that,
it was impregnated with TBP. The obtained system was used as a membrane phase. After
8 h of transport, the R (%) percentages were calculated and found to be 47.72% and 44.61%,
respectively, for 15 and 180 min of irradiation. Therefore, the R (%) values indicate that the
irradiation of the membrane with UV radiation does not affect the transport efficiency.

Table 5. Variation in the E and R (%) as a function of the transport time. Feed solution: PNA
20 ppm; receiving solution: distilled water; membrane phase: PP-Celg without TBP and with TBP
as extractant.

Time of Irradiation (min) R (%)

0 46.59
15 47.72

180 44.61

3.2. Liquid Membrane Loss

The weight of the wet and used membrane supports was measured to calculate the
LM loss, and they were represented as mwet and mused, respectively (see Figure 3). The wet
membrane indicates the polymeric support after impregnation. Following the removal,
the utilized membrane was obtained. It was dried in a silica gel vessel until its mass was
stable. The LM phase loss per unit area was then calculated using the following equation
∆m (%) [35,36]:
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LM phase loss, ∆m (%) = mwet−mused
mwet

× 100
∆m(%) = 0.0293−0.0127

0.0293 × 100
∆m = 56.655

(5)

where mwet and mused are the weights of the wet and used polymeric supports, respectively.
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To mitigate the leaching of TBP, we propose future studies exploring the use of other
types of polymeric support, the use of alternative carriers with lower environmental impact,
the addition of electrolytes in the aqueous phases, the addition of surfactants in the LM, and
the application of a polymeric gel layer on the outer surface of SLM to reduce the emulsion
formation. These steps aim to enhance the sustainability and industrial applicability of the
SLM system.

3.3. Effect of PNA and NaOH Concentration

The percentage of PNA removal by varying initial feed phase concentration from 20
to 80 ppm is shown in Figure 4a. The removal performance was not influenced by an
increase in PNA concentration. The E and R (%) are around 48.8 and 46.5%, respectively. In
fact, TBP is not adequate carrier to transport PNA proportionally. It can be also attributed
to carrier saturation and the smaller effective membrane area because of concentration
boundary layer formation on the interface between the feed and membrane phases, which
cause PNA to remain in feed phase and, accordingly, PNA pertraction remains constant
at higher concentrations. Moreover, solution ionic strength at higher concentrations is
more important. This also causes a lower PNA activity coefficient and hence reduces PNA
activity to form complexes [37–40].
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Figure 4b illustrates the removal efficiency of PNA by varying the concentration of the
stripping agent. It is clear from Figure 4b that the increase in the NaOH in the stripping
phase has no impact on the transport efficiency. The E and R (%) are around 48.75% and
45.75%, respectively. Therefore, the transport of PNA from the organic-phase–receiving-
phase interface occurs without any counter ion.

3.4. Selection of Stripping Agents

The receiving phase and its concentration play an important role in deciding the final
recovery of the target solute by the SLM process. However, very few reports are available
on the effect of stripping agents on the performance of the SLM process [41]. In this study,
various stripping agents like NaOH, CH3COONa, and NaCl were used as the receiving
phase to evaluate the performance of SLM. Therefore, to achieve complete transport of
PNA and avoid its back transport, we have selected a 0.01 mol L−1 concentration of each
stripping. The feed was kept constant at 20 ppm of PNA (pH 7), the PP polymer was
impregnated with TBP, and the run time was 8 h. The E and R (%) are (47.3966, 46.59),
(55.391, 50.209), (51.079, 48.201), and (50.36, 49.015) for H2O, NaCl, NaOH, and CH3COONa,
respectively (Figure 5). The results indicated a slight E (%) increase when NaCl is used as a
stripping agent. This slight increase could be explained by a better affinity to the counter
ion Cl− than OH− and CH3COO− [42].
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Figure 5. The effect of the strippants’ nature on E and R (%). Feed solution: PNA 20 ppm; receiving
solution: (H2O, NaCl 0.01 mol L−1, NaOH 0.01 mol L−1, CH3COONa 0.01 mol L−1); organic phase:
TBP; membrane (PP-Celg).

3.5. Effect of the Initial pH of the Source Phase

The effect of pH on PNA removal efficiency is shown in Figure 6. The R (%) values are
46.33, 46.59, and 46.46% for pH = 4, pH = 7, and pH = 12, respectively. The obtained values
are almost equal. Hence, the initial pH of the donor phase did not influence the transport
of PNA through the membrane.

At pH < 7, 4-nitroaniline would react with the H3O+ ions in the medium to give its
conjugated acid:
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The potential interaction between PNA and TBP could involve non-covalent interac-
tions, such as hydrogen bonding or van der Waals forces, rather than traditional coordi-
nation bonds in metal complexes. PNA from the aqueous phase (aq) interacts with TBP
in the organic phase (org) to form a complex in the organic phase. It is important to note
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that providing a detailed and accurate representation of the complex formation is easier
with specific experimental data or computational studies. The interactions between organic
compounds like PNA and solvents like TBP can vary widely, and the actual behavior would
need to be determined through experimental investigations or theoretical studies tailored
to the specific system of interest.

Colloids Interfaces 2024, 8, x FOR PEER REVIEW 9 of 13 
 

 

Figure 5. The effect of the strippants’ nature on E and R (%). Feed solution: PNA 20 ppm; receiving 
solution: (H2O, NaCl 0.01 mol.L−1, NaOH 0.01 mol.L−1, CH3COONa 0.01 mol.L−1); organic phase: 
TBP; membrane (PP-Celg). 

3.5. Effect of the Initial pH of the Source Phase 
The effect of pH on PNA removal efficiency is shown in Figure 6. The R (%) values 

are 46.33, 46.59, and 46.46% for pH = 4, pH = 7, and pH = 12, respectively. The obtained 
values are almost equal. Hence, the initial pH of the donor phase did not influence the 
transport of PNA through the membrane. 

At pH < 7, 4-nitroaniline would react with the H3O+ ions in the medium to give its 
conjugated acid: 

+ H2OO2N NH2 + H3O O2N NH3
 

The potential interaction between PNA and TBP could involve non-covalent interac-
tions, such as hydrogen bonding or van der Waals forces, rather than traditional coordi-
nation bonds in metal complexes. PNA from the aqueous phase (aq) interacts with TBP in 
the organic phase (org) to form a complex in the organic phase. It is important to note that 
providing a detailed and accurate representation of the complex formation is easier with 
specific experimental data or computational studies. The interactions between organic 
compounds like PNA and solvents like TBP can vary widely, and the actual behavior 
would need to be determined through experimental investigations or theoretical studies 
tailored to the specific system of interest. 

The mechanism of transport can be summarized in three steps [43–45]: 
Step 1: Formation of a complex between PNA and TBP via hydrogen bond at the first 
interface feed phase-membrane; 
Step 2: Migration of the formed complex through the membrane; 
Step 3: Formation of a complex between water existing in the receiving phase and release 
of the PNA in the receiving phase. 

[PNA]aq + [TBP]org ⇆ [PNA.TBP]org (6) 

[PNA.TBP]org + [H2O] ⇆ [TBP.H2O]org + PNA (7) 

 

4 6 8 10 12
42

44

46

48

50
R

ec
ov

er
y 

ra
te

 (%
)

pH of feed phase solution
Figure 6. Variation in E and R (%). Feed solution: PNA 20 ppm at different pH (pH = 4, pH = 7, and
pH = 12); receiving solution: distilled water; organic phase: TBP; membrane: PP-Celg.

The mechanism of transport can be summarized in three steps [43–45]:

Step 1: Formation of a complex between PNA and TBP via hydrogen bond at the first
interface feed phase-membrane;
Step 2: Migration of the formed complex through the membrane;
Step 3: Formation of a complex between water existing in the receiving phase and release
of the PNA in the receiving phase.

[PNA]aq + [TBP]org ⇄ [PNA.TBP]org (6)

[PNA.TBP]org + [H2O] ⇄ [TBP.H2O]org + PNA (7)

3.6. Membrane Stability

The reusability of the membrane was studied in two manners. Firstly, the stability of
the membrane support was carried out by repeatedly using the same membrane support
without further impregnation with the liquid membrane. Experimental conditions are
as follows: feed phase PNA 20 ppm (pH 7), strip phase distilled water, TBP as carrier,
and transport time 8 h. Fresh feed and strip solutions are used in every cycle. A total of
1 mL of each solution is taken after 8 h to find their concentrations. The R (%) calculations
during four successive cycles demonstrate that the membrane is unstable. The R (%)
decreases significantly from 46.59 to 5.7% for the first and last cycles. This instability could
be attributed to the saturation of the membrane with PNA, slow stripping, and marginal
leaching of TBP. Secondly, membrane stability was developed by re-impregnating the
polymeric support with TBP after each cycle. The same experimental conditions are taken
into consideration. Figure 7 reveals that the R (%) remains almost constant. Therefore,
re-impregnating the membrane after each cycle improves the performance of the elaborated
system. Also, this improvement confirms that the loss of the carrier is one of the reasons
causing the system instability.
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3.7. Extraction Kinetics

Supported liquid membrane (SLM) transport studies were carried out by extracting
PNA under ideal circumstances, 20 ppm (pH 7) of source phase concentration, distilled
water in the receiving phase, carrier TBP as the organic phaser, and a duration of 8 h. PNA
was extracted at room temperature and atmospheric pressure. Samples from the feed
phase were taken every hour and analyzed using UV spectrophotometry. The evaluation
of the PNA extraction kinetics under the operational conditions was estimated by fitting
the time-course performance data with the first-order linearized reaction by the following
equation [46,47]:

Ln
Ct

C0
= −Ka t (8)

where [PNA]donor,t the feed phase concentration at time t, [PNA]donor,0 is the initial feed
phase, and Ka is the apparent rate constant. A plot of ln Ct/C0 versus time shows a straight
line having a slope of 5.28 × 10−5 (Figure 8). Hence, the extraction of PNA using SLM
follows first-order kinetics with the apparent rate constant Ka = 5.28 × 10−5 s−1.
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4. Conclusions

In conclusion, this study elucidates the potential of supported liquid membrane (SLM)
technology for the removal of 4-Nitroaniline (PNA) from aqueous solutions, addressing
the pressing environmental concerns posed by this toxic compound. Through systematic
experimentation and optimization, we identified key factors influencing the transportation
efficiency of PNA, including source phase concentration, pH, choice of carrier, and stripping
agents. Our results demonstrate that under optimal conditions, the extraction and re-
extraction percentages are around 50%. The developed system exhibits first-order linearized
reaction kinetics.

Furthermore, the stability of the membrane and the extent of liquid membrane loss
were evaluated, shedding light on practical considerations for the implementation of SLM
systems in real-world applications. While membrane stability proved to be a challenge,
particularly in terms of carrier leaching and saturation, strategies such as re-impregnation of
the membrane with tributyl phosphate (TBP) after each cycle showed promise in improving
system performance.
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