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Abstract: (1) Background: The present study aimed to assess the antifungal effectiveness of a topical
innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the
essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal
mixture design approaches were applied for the development and the optimization of the o/w
nanoemulsion. The optimized formulation (NE) was subjected to physicochemical characterization
and to physical stability studies. In vitro permeation studies were carried out using the Franz cell dif-
fusion system. The antimycotic efficacy against Microsporum canis was carried out in vitro. (3) Results:
Optimal nanoemulsion showed great physical stability and was characterized by a small droplet
size (19.015 nm ± 0.110 nm), a PDI of 0.146 ± 0.011, a zeta potential of −16.067 mV ± 1.833 mV, a
percentage of transmittance of 95.352% ± 0.175%, and a pH of 5.64 ± 0.03. Furthermore, it exhibited
a significant enhancement in apparent permeability coefficient (p < 0.05) compared to the VCZ free
drug. Finally, NE presented the greatest antifungal activity against Microsporum canis in comparison
with VCZ and PSEO tested alone. (4) Conclusions: These promising results suggest that this topical
innovative formulation could be a good candidate to treat onychomycosis. Further ex vivo and
clinical investigations are needed to support these findings.

Keywords: voriconazole; Pinus sylvestris L. essential oil; nanoemulsion; D-optimal mixture design;
permeability; antifungal activity; Microsporum canis

1. Introduction

Fungal infections pose a significant threat to public health. They can vary in severity
and manifest in different clinical forms, ranging from superficial to systemic infections [1].
Cutaneous fungal infections affect around 20–25% of people globally [2]. Onychomycosis
(Tinea ungium) is an extremely common and contagious nail unit fungal infection observed
in clinical practice, which accounts for up to 50% of nail infections. Approximately 10% of
the global population is afflicted with this disorder. Age, diabetes, immunosuppression,
hyperhidrosis, obesity, tinea pedis, contacts with fungal diseases, and direct trauma to the
nail are some risk factors [3]. Onychomycosis causes aesthetic and functional issues with the
nail, such as thickening, yellow or white discoloration, distortion, separating the nail from
the nail bed, and other nail abnormalities [2,3]. Fungal nail infections are mostly resulting
from dermatophytes (60% to 70% of cases) (Epidermophyton floccosum, Trichophyton rubrum,
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Trichophyton mentagrophytes, and Microsporum canis), non-dermatophytes molds, and yeast
(particularly Candida albicans) [2,4]. The treatment of onychomycosis is challenging, and
occurrences of relapse and reinfection are very common [5].

Antifungal agents can be applied either topically or used orally. Mild to moderate
cases of nail fungus are generally treated topically using nail lacquers (ciclopirox 8%,
amorolfine 5%) or topical solutions (efinaconazole 10%, tavaborole 10%), while moderate to
severe onychomycosis cases are typically managed with oral antifungal medications using
griseofulvin, terbinafine, and azoles (itraconazole, fluconazole, and ketoconazole) [3,6–8].

Terbinafine and itraconazole are considered the gold standard of oral treatment; how-
ever, resistant cases of onychomycosis and poor responses to those traditional antifungals
have been reported recently [3,8,9]. In this context, new antifungal agents, including
voriconazole (VCZ), may play a significant role to overcome this threat regarding antifun-
gal resistance [6,8–10].

VCZ, a synthetic second-generation triazole, is commercially available as oral (tablets
and oral suspensions) and intravenous formulations [11]. It is indicated, in adults and
pediatric patients, to treat invasive aspergillosis, disseminated candidiasis, candidaemia in
non-neutropenic patients, and severe fusarium and scedosporium fungal infections [12].
Furthermore, this broad-spectrum antifungal agent has proven efficacy against the more
common fungal pathogens [13,14].

Antifungal medications administered orally require an extended treatment period
to achieve a complete nail cure and pose a risk of serious adverse effects (hepatotoxicity,
gastrointestinal disorder, etc.), as well as drug interactions [3,15].

The use of topical treatments offers the benefit that they minimize the risk of systemic
side effects and thus ensure higher patient compliance since they target, directly, the site of
infection [16]. However, the efficacy of a topical antifungal agent is largely dependent on
its passage at an effective concentration through the nail barrier, which is characterized by
its limited permeability to molecules due to its structure (several layers of compacted kera-
tinized cells) [17]. Numerous strategies have been developed to improve drug permeation
through the nail plate, including the use of o/w nanoemulsions [18].

In the past few years, essential oils (EOs) have gained significant attention as natural
and affordable substitutes or as complements to traditional antifungal medications [19,20].
In addition, because EOs are complex mixtures of organic compounds, the possibility of
microbial resistance to this combination of chemicals is lower than that of a single target [21].
Moreover, several published studies highlighted the synergistic effect of essential oils in
combination with antifungal agents against fungal pathogens such as dermatophytes and
yeasts [22–25].

This current study aimed to develop and characterize an innovative formulation (o/w
nanoemulsion) with Pinus sylvestris L. essential oil (PSEO) and VCZ for topical application and
to explore its antifungal effectiveness compared to the two compounds used alone. According
to our best knowledge, there are few published studies that discuss the antifungal activity
of Pinus sylvestris L. essential oil (PSEO) [23,26], as well as the synergistic antifungal effect of
essential oils or terpenoid compounds with voriconazole [27,28]. Furthermore, there are no
previous works that described the investigation of the potential synergetic effectiveness of the
combination of VCZ-PSEO formulated into an o/w nanoemulsion for the topical treatment
of onychomycosis.

2. Materials and Methods
2.1. Drug and Chemical Reagents

Voriconazole pharmaceutical grade (VCZ) was a gift from Philadelphia Pharma labo-
ratories (Sfax, Tunisia). Pinus Sylvestris L. essential oil (PSEO) was bought from Parachimic
(Sfax, Tunisia). Corn oil was purchased from a local market. Diethylene glycol monoethyl
ether (Transcutol® HP) was obtained from Gattefossé SAS (Saint-Priest, France). Polyoxyl
35 hydrogenated castor oil (Kolliphor® EL) and Sorbitane Monooleate (Span® 80) were
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supplied from Sigma-Aldrich Chemie (Steinheim, Germany) and LobaChemie (Mumbai,
India), respectively. All other reagents or solvents used were of analytical grade.

2.2. Formulation of VCZ-Based Nanoemulsion
2.2.1. Selection of the Oily Phase Components

Corn oil, Transcutol® HP, Kolliphor® EL (HLB value = 12–14), and Span® 80 (HLB
value = 4.3) were used as solvent, cosolvent (CoS), surfactant, and cosurfactant, respectively.
These excipients were selected for their compatibility, their ability to form stable o/w
nanoemulsions, and their safety toward skin tissues [29–31]. PSEO was chosen, based on
the literature, due to its proven antifungal properties [23,26,32,33].

2.2.2. Pseudo-Ternary Phase Diagrams

Pseudo-ternary phase diagrams were constructed to determine the concentration
ranges of the oily phase components that delimit the nanoemulsion area.

Corn oil and PSEO (oil mixture) were used with a constant ratio of 1:1 (wt/wt) across
all diagrams. Kolliphore® EL and Span® 80 (Smix) were kept constant at a ratio of 5:1
(wt/wt). Smix/CoS were tested at different weight ratios (1:1, 3:1, 5:1; wt/wt).

Pseudo-ternary phase diagrams were prepared using the water titration method
by varying the ratio of corn oil/PSEO and Smix/CoS from 1:9 to 9:1 (wt/wt). For each
combination, water was added dropwise to the oily phase under moderate magnetic
stirring (250 rpm) at room temperature until a milky white emulsion appeared. The region
of nanoemulsion was established using ProSim® Ternary Diagram software (version 1.0.2,
Labège, France). The pseudo-ternary diagram that exhibited the largest nanoemulsion area
was chosen for the optimization step.

2.2.3. Nanoemulsion Optimization Using D-Optimal Mixture Design

D-optimal mixture design was chosen in order to optimize the nanoemulsion formulation.
Three variables, expressed in percentage, were designated as the independent factors in the
experimental design, viz., Smix/CoS amount (A, % wt/wt), water amount (B, % wt/wt), and
corn oil/PSEO amount (C, % wt/wt). The low and high levels of each independent variable
(Table 1) were fixed according to the results obtained from the selected pseudo-ternary phase
diagram. Droplet size (Y1) and polydispersity index (PDI) (Y2) were defined as responses to
assess and optimize the characteristics of the formulated nanoemulsion.

Table 1. D-optimal mixture design: independent and dependent variables.

Independent Variables
Predefined Levels

Low (–1) High (+1)

A: percentage of Smix/CoS (% wt/wt) 15 25
B: percentage of water (% wt/wt) 70 80

C: percentage of corn oil/PSEO (% wt/wt) 3 8.5

Dependent Variables Goals

Y1: droplet size (nm) Minimize
Y2: polydispersity index (PDI) Minimize

Statistical analysis was conducted using the Design Expert® software (Version 12,
Stat-Ease Inc., Minneapolis, MN, USA). Sixteen experimental runs were generated by
the experimental design software (Figure S1—Supplementary Materials; Table 2): eleven
experiments to develop the predictive model and five replicated experiments in the center
of the domain to estimate the experimental error. Analysis of variance (ANOVA) was used
to determine the best fitting mathematical model to establish the polynomial equation for
each response (Y1 and Y2).
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Table 2. Experimental matrix of the mixture design and observed results of each response.

Run A B C Y1 Y2

1 17.87 79.13 3.00 14.63 0.140
2 19.75 74.75 5.50 14.62 0.146
3 19.75 74.75 5.50 15.02 0.128
4 19.75 74.75 5.50 15.34 0.140
5 25.00 70.00 5.00 14.47 0.130
6 15.00 76.50 8.50 52.83 0.657
7 19.75 74.75 5.50 16.10 0.103
8 17.52 74.73 7.75 28.75 0.331
9 19.75 74.75 5.5 16.13 0.122
10 17.16 77.22 5.62 17.39 0.121
11 24.40 72.60 3.00 13.69 0.157
12 15.00 80.00 5.00 17.68 0.138
13 22.10 72.30 5.60 15.42 0.128
14 21.50 70.00 8.50 26.72 0.432
15 20.55 76.45 3.00 15.09 0.183
16 19.63 72.44 7.93 23.53 0.354

A: percentage of Smix/CoS (% wt/wt); B: percentage of water (% wt/wt); C: percentage of corn oil/PSEO (%
wt/wt); Y1: particle size (nm); Y2: polydispersity index (PDI).

The selection of the appropriate mathematical model among those under consideration
(linear, quadratic, special cubic, and cubic models) was based on the comparison of different
statistical parameters, viz., the sequential p-value, the lack of fit p-value, the standard
deviation, the squared correlation coefficient (R2), the adjusted R2 and the predicted R2,
and the predicted residual sum of square (PRESS). Ultimately, the desirability function of
the Design Expert® software was utilized to optimize the three independent variables (A,
B, and C) and determine the optimal nanoemulsion formulation according to the following
two criteria: (1) maximizing the amount of oily phase in order to encapsulate the highest
amount of voriconazole, and (2) minimizing the droplet size (Y1) and the PDI (Y2) to ensure
great stability of the formulation and improve voriconazole transport across the nail barrier.

2.3. Preparation of the Optimized Nanoemulsion

The preparation of the optimal nanoemulsion loaded with 1% (wt/wt) of VCZ was as
follows: first, the oily phase (corn oil + PSEO + Transcutol® HP + Kolliphor® LE + Span®

80) was prepared by mixing all the components together at room temperature under gentle
magnetic stirring (250 rpm) for 5 min. Next, the appropriate amount of VCZ was added
to the previous blend and mixed under the same stirring conditions (250 rpm, at room
temperature) until the drug was completely dissolved. Finally, the required amount of
distilled water was added dropwise, and the preparation was mixed until a translucent
nanoemulsion was obtained.

2.4. Physicochemical Characterization of the Optimal VCZ-Loaded Nanoemulsion
2.4.1. Droplet Size, PDI, and Zeta Potential Determination

Droplet size, expressed in nm, and polydispersity index (PDI) were measured at 25 ◦C
after a dilution to tenth (v/v) in distilled water, using a Nanosizer® instrument (Nano-S,
Malvern Instruments, Malvern, UK). Results were expressed as mean ± standard error of
three repetitions (n = 3).

Zeta potential was determined using a Zetasizer® instrument (Nano-Z, Malvern
Instruments, UK) at 25 ◦C after dilution to the hundredth (v/v) in double distilled water.
The measurements were performed in triplicate (n = 3), and results were expressed in mV
as mean ± standard error.

2.4.2. Percentage of Transmittance

The transparency of the optimal formulation was evaluated at room temperature using
a UV–visible spectrophotometer (Thermo Scientific® Evolution 60, Madison, WI, USA) [34].
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Measurements were carried out at 650 nm after a dilution to tenth (v/v) in distilled water
(the latter was used as the reference). Results were expressed, in percentage (%), as mean ±
standard error of three repetitions (n = 3).

2.4.3. pH Measurement

pH determination was performed in triplicate (n = 3), at room temperature, using a
Thermo Orion® 410 (Thermo Scientific®, Waltham, MA, USA) pH meter [34]. Results were
expressed as mean ± standard error.

2.5. Stability Studies
2.5.1. Stability to Centrifugation

A total of 2 ml of the optimized nanoemulsion was transferred into an Eppendorf
tube and centrifuged at room temperature at 14,000 rpm for 20 min using a Hettich Mikro®

120 Centrifuge (Tuttlingen, Germany). Next, the preparation was visually checked for
possible instabilities (phase separation, VCZ precipitation, etc.).

2.5.2. Stability to Temperature Cycles

Three heating–cooling cycles of 48 h each were performed, alternating 24 h at +45 ◦C
and 24 h at +4 ◦C. The sample was then visually inspected for any sign of instability [34].

2.5.3. Stability to Freeze–Thaw Cycles

The optimal nanoemulsion underwent 3 freeze–thaw cycles of 48 h each, alternating
24 h at −21 ◦C and 24 h at +25 ◦C. The preparation was then subject to a visual inspection
for any sign of instability [34].

2.6. In Vitro Cytotoxicity Assay
2.6.1. Cell Culture

HacaT cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS) and antibiotics (Gentamycin). Cells were
maintained at 37 ◦C in a humidified atmosphere with 5% CO2.

2.6.2. Cell Viability Assay

HacaT cells (104 cells/well in 100 µL medium) were seeded in 96-well plates and
incubated for 24 h. Cells were, then, treated with different concentrations of VCZ, VCZ-
loaded nanoemulsion (NE-VCZ), and unloaded nanoemulsion (NE-Blank) (50, 25, 12.5,
6.25, 3.125, 1.56 µg/mL) for 48 h. The MTT assay, a colorimetric test, was utilized to
determine cell viability. The test measures the ability of living cells to reduce a tetrazolium
salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, due to the presence of
mitochondrial succinate dehydrogenases. Cells were exposed to 40 µL of MTT (1 mg/mL)
for 3 h at 37 ◦C in the appropriate complete medium. The medium was then discarded, and
the formazan blue formed in the cells was solubilized by adding 100 µL DMSO. Negative
control without the tested molecules was prepared in the same manner. Optical density
(OD) was measured at 570 nm.

The viability percentage was ultimately calculated using Equation (1):

Viability(%) =

(
OD test

OD control

)
×100 (1)

with OD test: absorbance of the tested molecule and OD control: absorbance of the
negative control.

Results were represented as the mean ± standard deviation (SD) of three experiments
(n = 3). Statistical analyses were conducted using GraphPad Prism® software (version 8.0.2,
GraphPad Software Inc., La Jolla, CA, USA) using a two-way analysis of variance (ANOVA),
followed by Tukey’s multiple comparison test. Statistical significance was assigned at p
value <0.05.
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2.7. In Vitro Drug Permeation Studies

In vitro permeation studies of the voriconazole free drug (suspension) versus the
VCZ-loaded nanoemulsion were performed using a Franz diffusion cell system. The latter
consists of a donor (upper part) and a receiver (lower portion) compartments separated by a
dialysis membrane (MD34 1M; 7000D MwCO; Spectrum Laboratories, Rancho Dominguez,
CA, USA) (Figure S2—Supplementary Materials).

The donor chamber contains 1 g of the sample to test (1% (wt/wt) of VCZ dispersed
in distilled water or the optimized nanoemulsion loaded with 1% (wt/wt) of VCZ). The
receiver chamber is filled with 5.4 mL of a mixture of pH 7.4 phosphate buffer solution
(PBS) and ethanol absolute prepared at a ratio of 3:1 (v/v). The dialysis membrane is cut
into small discs, inserted between the two compartments, and held in place using a clamp.

The Franz cell system was maintained, during the experiment, at a temperature of
32 ± 0.5 ◦C under a magnetic stirring rate of 250 rpm (Figure S3—Supplementary Materials).

The samples to be tested were added to the donor compartment and, at determined
time intervals (30 min; 1 h; 2 h; 3 h; 4 h; 6 h), all the receptor compartment was withdrawn,
filtered through a 0.45 µm filter, and spectrophotometrically assayed at 256 nm using
a UV spectrophometer (Thermo Scientific® Evolution 60, USA). Moreover, the receiver
compartment was immediately refilled with the same amount of fresh receiver medium.
Results were expressed, in percent, as mean values ± standard error of three determinations
(n = 3).

To compare the diffusion profiles of the VCZ free drug versus the optimized nanoemul-
sion, a model-independent approach using difference factor (f 1) and similarity factor (f 2)
was employed [35]. f 1 and f 2 calculate the difference and similarity in percent between the
two curves at each time point, respectively.

f 1 and f 2 were determined according to Equations (2) and (3), respectively.

f1 =

{
∑n

t=1|Rt − Tt|
∑n

t=1 Rt

}
×100 (2)

f2= 50 × log

{[
1+

1
n∑n

t=1(Rt − Tt)
2
]−0.5

×100

}
(3)

with n: number of time points, Rt: diffusion value of the reference (free drug) at time t, and
Tt: diffusion value of the optimal nanoemulsion at time t.

The diffusion profiles of the VCZ free drug versus the VCZ nanoemulsion are consid-
ered similar if the f 1 value is less than 15% and the f 2 value is higher than 50%.

The apparent permeability coefficients (Papp) were calculated according to Equa-
tion (4) [36]:

Papp =
dQ
dt

× 1
AC0

(4)

where Papp (cm/s) is the apparent permeability coefficient, A (2.01 cm2) is the effective
surface area of the dialysis membrane exposed to the two chambers, C0 (µg/mL) is the
initial concentration of the drug in the donor compartment, and dQ/dt (µg/s) is the amount
of drug permeated per unit of time.

Data statistical analysis was carried out using Microsoft Office® Excel software (version
2016, Microsoft Inc., Redmond, WA, USA). Student’s t-test was used to compare Papp mean
values of VCZ suspension versus the optimized nanoemulsion. The difference observed
between the two groups was considered significant when p-value ≤ 0.05.

2.8. In Vitro Antifungal Activity
2.8.1. Fungi Strains

The antifungal efficacy of the optimized VCZ-loaded nanoemulsion was tested on
a dermatophyte clinical strain, Microsporum canis (MS 8972), which was isolated from
nails with confirmed onychomycosis diagnostic (local Myco collection, Laboratory of
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Parasitology and Mycology of the Fattouma Bourguiba University Hospital in Monastir,
Tunisia). The fungal strain was maintained on Sabouraud Dextrose Agar (SDA) medium.

2.8.2. Disk Agar Diffusion Assay

A hyphal suspension from a ± 21days dermatophytes culture was utilized to in-
fect Muller–Hinton agar (MHA) plates with 2% glucose. After adjusting the solution to
106 VU/mL, the plates were permitted to air dry for 20 min. Next, 5 µL of voriconazole
suspension (VCZ-SUSP), Pinus sylvestris essential oil (PSEO), VCZ-loaded optimal na-
noemulsion (NE-VCZ), and unloaded nanoemulsion (NE-Blank) were added to Whatman®

grade 1 filter paper 6 mm disks. Disks had been placed in the middle, and MHA plates
were infected. Subsequently, the plates were kept in an incubator at 28 ◦C for three to
seven days. As soon as mycelium growth became apparent, the sizes of the inhibition zone
diameters (IZDs) surrounding the antifungal disks were measured [37].

Results of the inhibition zone diameter were expressed, in mm, as mean values ±
standard error of three determinations (n = 3).

3. Results
3.1. Formulation and Optimization of VCZ-Loaded Nanoemulsion
3.1.1. Pseudo-Ternary Phase Diagrams

Three pseudo-ternary phase diagrams were established using Kolliphore® EL and
Span® 80 (Smix) as surfactant and cosurfactant, respectively, and Transcutol® HP as co-
solvant (CoS) (Figure 1). Smix/CoS were blended at different weight ratios (Figure 1a
= 1:1 (wt/wt); Figure 1b = 3:1 (wt/wt); and Figure 1c = 5:1 (wt/wt)). As can be seen, an
enlargement in the nanoemulsion region was observed when the proportion of Kolliphore®

EL/Span® 80 increased in the Smix/CoS blend from 1:1 (wt/wt) to 5:1 (wt/wt). Thus,
the pseudo-ternary phase diagram obtained using the Smix/CoS ratio of 5:1 (wt/wt) was
retained for the optimization step.
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(1:1; wt/wt) as an oil mixture, Kolliphore® EL (surfactant)/Span® 80 (cosurfactant) (5:1; wt/wt) as
Smix, Transcutol® HP as a cosolvent (CoS), and distilled water as a dispersant. Smix/CoS are tested
at three different weight ratios: (a) (1:1; wt/wt), (b) (3:1; wt/wt), and (c) (5:1; wt/wt).

3.1.2. Experimental Design

A D-optimal mixture design was performed for the optimization of the nanoemulsion.
The percentages of the three components, viz., Kolliphore®EL/Span®80/Transcutol HP®

(A), water (B), and corn oil/PSEO (C), were used as the independent factors. As seen
in Table 1, the low and high levels for A, B, and C were 15–25%, 70–80%, and 3–8.5%,
respectively.

Droplet size (Y1) and PDI (Y2) were defined as responses. The macroscopic as-
pect of the 16 experimental points generated by Design Expert® software is depicted in
Figure S4 (Supplementary Materials). Droplet size and PDI are reported in Table 2. As seen,
the droplet size of the 16 runs was below 100 nm and ranged from 13.69 nm to 52.83 nm.
Their PDI values were between 0.103 and 0.657.

Y1 and Y2 responses were analyzed using the experimental design software to
determine the best-fitting mathematical model and to calculate its coefficients. Ac-
cording to the results of the statistical analysis provided by Design-Expert® software
(Tables S1 and S2—Supplementary Materials), the cubic model was retained for both re-
sponses (droplet size and PDI), since it presented the lowest standard deviation (0.7714
and 0.0174 for Y1 and Y2, respectively), PRESS values (151.45 and 0.049 for Y1 and Y2,
respectively), and the highest squared correlation coefficient (R2) (0.9976 and 0.9949 for Y1
and Y2, respectively) among the other models under consideration. Moreover, for both
responses, the sequential p-values (0.0009 and 0.0413, for Y1 and Y2, respectively) were
significant (<0.05), and the lack of fit p-values (0.2460 and 0.3849 for Y1 and Y2, respectively)
were not significant (>0.05). Finally, the difference between the adjusted R2 (0.9939 and
0.9871 for Y1 and Y2, respectively) and the predicted R2 (0.8972 and 0.8614 for Y1 and Y2,
respectively) was less than 0.2, indicating a good fit of the cubic model.

The cubic model for Y1 (droplet size) is represented by Equation (5) as follows:

Y1 = −7613.45 × Smix/CoS − 76.8327 × Water + 353,766 × Corn Oil/PSEO
+ 12,779.5 × Smix/CoS × Water − 568,362 × Smix/CoS × Corn Oil/PSEO
− 541,471 × Water × Corn Oil/PSEO + 389,224 × Smix/CoS × Water
× Corn Oil/PSEO + 5042.11 × Smix/CoS × Water × (Smix/CoS-Water)
+ 290,210 × Smix/CoS × Corn Oil/PSEO × (Smix/CoS-Corn Oil/PSEO)
+ 192,047 × Water × Corn Oil/PSEO × (Water-Corn Oil/PSEO)

(5)
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The cubic model for Y2 (PDI) is represented by Equation (6) as follows:

Y2 = −210.813 × Smix/CoS + 2.16032 × Water + 5422.1
× Corn Oil/PSEO + 366.141 × Smix/CoS × Water − 8538.69 × Smix/CoS
× Corn Oil/PSEO − 8329.47 × Water × Corn Oil/PSEO + 6010.28 × Smix/CoS
× Water × Corn Oil/PSEO + 191.341 × Smix/CoS × Water × (Smix/CoS-Water)
+ 4048.7 × Smix/CoS × Corn Oil/PSEO × (Smix/CoS-Corn Oil/PSEO)
+ 2934.39 × Water × Corn Oil/PSEO × (Water-Corn Oil/PSEO)

(6)

To study the effect of Smix/Cos, water, and corn oil/PSEO on the droplet size and the
PDI of VCZ-loaded nanoemulsion, a Cox response trace plot was used (Figure 2).
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According to Figure 2a, an increase in corn oil/PSEO (C) amount from 3% to 8.5% led
to a significant raise in droplet size. In contrast, an increase in Smix/CoS (A) percentage
from 15% to 25% resulted in a significant decrease in the droplet size. Same tendencies
were observed for the PDI (Figure 2b), with an increase in this response when the amount
of oil mixture (C) increased and a decrease in its value when the percentage of Smix/CoS
(B) increased in the formulation. Finally, for both responses (Y1 and Y2), water (B) exhibited
the less pronounced curve among the other studied components when varying from 70%
to 80%, which indicates that the latter has a slight impact on droplet size and PDI.

The desirability function was utilized in optimizing the nanoemulsion formulation.
The optimization aimed to minimize both responses Y1 (<100 nm) and Y2 (<0.3) and to
maximize the percentage of corn oil/PSEO as well as that of Smix/CoS. Design-Expert®

software provided a unique solution taking into account the different criteria cited above.
The proposed optimal formulation was composed of 6.69% oil mixture, 23.31% Smix/CoS,
and 70% water. The predicted droplet size and PDI values for the optimized nanoemulsion
were 13.99 nm and 0.152, respectively, with a good desirability value (0.842). With the aim
of validating the predicted values of both responses, the given formulation by the software
was prepared and assessed for droplet size and PDI. Results were 14.49 nm ± 0.04 nm and
0.182 ± 0.010 for Y1 and Y2, respectively. According to the results of the statistical analysis
generated by Design-Expert® software (Table 3), the proposed optimal formulation was
validated. Thus, it was adopted for further studies.
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Table 3. Results of the statistical analysis for the validation of the predicted responses (Design-Expert®

software).

Solution 1 of
1 Response

Predicted
Mean

Predicted
Median Std Dev SE Pred 95% PI Low Data Mean 95% PI High

Droplet size 13.9909 13.9909 0.771359 2.59257 7.64711 14.4875 20.3347

PDI 0.15236 0.15236 0.0174139 0.058529 0.0091447 0.1815 0.295575

3.2. Characterization of the Optimal VCZ-Loaded Nanoemulsion and Stability Studies

Optimal VCZ-loaded nanoemulsion was composed of 3.345% corn oil, 3.345% PSEO,
3.238% Span® 80, 16.188% Kolliphore® EL, 3.885% Transcutol® HP, 69% water, and 1% VCZ.
It was subject to a physicochemical characterization (macroscopic aspect, droplet size, PDI,
zeta potential percentage of transmittance, and pH) and different thermodynamic stability
tests (centrifugation, freeze–thaw cycles, and heating–cooling cycles). The results of these
studies are summarized in Table 4.

Table 4. Physicochemical characterization and stability tests of the optimal VCZ-loaded nanoemulsion.

Parameters Results

Physicochemical
characterization

Macroscopic aspect Translucent with a typical
blue-shining appearance

Droplet size (nm) 19.067 nm ± 0.138 nm

PDI 0.147 ± 0.010

Zeta potential (mV) −17.433 ± 1.457 mV

Percentage of transmittance
(%) 95.489% ± 0.139%

pH 5.64 ± 0.03

Stability studies
Centrifugation Stable

Freeze–thaw cycles Stable

Heating–cooling cycles Stable

Macroscopically, the optimized formulation appeared translucent with a typical blue-
shining appearance (Figure S5—Supplementary Materials). It presented a droplet size of
19.067 nm ± 0.138 nm (<100 nm), a PDI less than 0.3 (0.147 ± 0.010), a zeta potential of
−17.433 ± 1.457 mV, a percentage of transmittance of 95.489% ± 0.139% (≈100%), and a
pH value of 5.64 ± 0.03.

Moreover, no sign of macroscopic instability (phase separation, creaming, cracking,
etc.) or drug precipitation occurred after the different stability tests, which highlights its
great physical stability.

3.3. In Vitro Cytotoxicity Assay

To assess the effect of the VCZ free drug (VCZ), unload nanoemulsion (NE-Blank), and
VCZ-loaded nanoemulsion (NE-VCZ) on HacaT cell viability, a colorimetric MTT assay
was performed. The findings from Figure 3 demonstrated that both NE-VCZ and NE-Blank
formulations showed cell toxicity at concentrations above 12.5 µg/mL, meanwhile VCZ
was safe up to 50 µg/mL.
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3.4. In Vitro Permeability Studies

Figure 4 represents the diffusion profiles of the VCZ free drug (suspension) versus the
optimal nanoemulsion across the dialysis membrane using the Franz diffusion cell system.
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As reported in the graph, the VCZ suspension exhibited a lower diffusion profile in
comparison with the optimized formulation. As an example, at 60 min, 0.171% ± 0.041%
and 2.246% ± 0.316% of drug diffused from donor to receptor compartment for the VCZ
free drug and the VCZ-loaded nanoemulsion, respectively. At the end of the experiment
(360 min), the diffused fraction of VCZ was 0.857% ± 0.167% and 10.218% ± 1.288% for the
VCZ suspension and the optimized formulation, respectively.

The comparison of the diffusion profiles of the two samples (free drug versus na-
noemulsion) was made using the similarity test, which consisted in the determination of
the difference factor (f 1) and the similarity factor (f 2). The calculated values of f 1 and f 2
were 1037.76% (>15%) and 62.74% (>50%), respectively, indicating the non-similarity of the
two profiles.
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Apparent permeability coefficients Papp (cm/s) are depicted in Figure 5. Results were
expressed, in cm/s, as mean ± standard error of three experiments (n = 3).
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Figure 5. Apparent permeability coefficient (Papp) across the dialysis membrane for VCZ pure drug
and VCZ optimal nanoemulsion. Data are presented as mean ± standard error of three determinations
(n = 3). * Significant at the level of 95% (p < 0.05).

The apparent permeability values were 2.142 × 10−7 cm/s ± 0.522 × 10−7 cm/s and
2.573 × 10−6 cm/s ± 0.577 × 10−6 cm/s for VCZ suspension and VCZ-loaded optimal
nanoemulsion, respectively. These results indicate that, compared to the VCZ free drug, a
significant improvement in Papp occurred in the case of the optimized formulation (p ≤ 0.05).

3.5. In Vitro Antifungal Activity

The results of the disk diffusion assay for VCZ-SUSP, PSEO, NE-Blank, and NE-VCZ
are depicted in Figure 6. The inhibition zone diameters (IZDs) were 61.66 mm ± 1.52
mm, 48.33 mm ± 1.52 mm, and 80.33 mm ± 4.61 mm for VCZ-SUSP, PSEO, and NE-
VCZ, respectively, whereas NE-Blank exhibited no activity (IZD = 0 mm). According to
IZD results, the optimized nanoemulsion showed noticeably better antifungal activity
against Microsporum canis in comparison to VCZ or PSEO. This finding suggests that
the nanoemulsion formulation improved voriconazole distribution and effectiveness and
highlights the synergetic effect of PSEO and VCZ since their association resulted in a better
antifungal activity than that of each component used alone.
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4. Discussion

This study aimed to explore the antifungal potential of an innovative formulation
(o/w nanoemulsion) containing VCZ, a triazole antifungal agent with good effectiveness
against a variety of fungi, including Candida species and dermatophytes [6,38], associated
with Pinus sylvestris L. essential oil (PSEO).

In order to delimit the nanoemulsion region and to find the concentration range of
each excipient used for the formulation, various pseudo-ternary phase diagrams were
constructed using the water titration method (a low-energy method). Corn oil (density:
0.915–0.918 g/cm3; viscosity: 37–39 cP) was selected as solvent [39]. It is a vegetable
oil rich in linoleic (C18:2; 34.0–65.6%), oleic (C18:1, 20.0–42.2%), and palmitic (C16:0;
8.6–16.5%) acids [40]. Transcutol® HP was used as cosolvent. It is a nontoxic and good
solubilizing excipient for drugs and a skin penetration enhancer [41]. Kolliphore® EL, a
non-ionic hydrophilic surfactant with a high HLB value of 12–14, was chosen as surfactant
considering the ability of such excipients to facilitate the formation of droplets with a small
size by low-energy methods [42,43]. Finally, Span® 80 (HLB value of 4.3) was used as
cosurfactant. Generally, the use of a single surfactant is not efficient to lower enough the
surface tension at the oil/water interface to obtain droplets with sizes in the nanoscale
range. A cosurfactant will permit to obtain a more fluid and flexible interfacial film by
altering its molecular geometry, allowing for reaching a smaller droplet size [44,45].
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Three pseudo-ternary phase diagrams were established by varying the surfactant/
cosurfactant (Smix) to cosolvent (CoS) weight ratio from 1:1 (wt/wt) to 5:1 (wt/wt). An
enlargement of the nanoemulsion region was noticed as the amount of Smix increased,
which may be explained by the additional lowering in surface tension and a greater increase
in the fluidity of the interfacial film [46]. Consequently, the pseudo-ternary diagram
obtained with a Smix/CoS ratio of 5:1 (wt/wt) was retained for the optimization step.

D-optimal mixture design was used to determine the optimal nanoemulsion composi-
tion by studying the effect of three variables (percentage of Smix/CoS, percentage of water,
and percentage of oil mixture) on two responses, which were droplet size and PDI.

According to low and high predefined levels for each component, a new experimental
region representing a subregion of the nanoemulsion area was generated and explored.
Sixteen formulations were proposed by the design of experiment software. They were pre-
pared and assessed for their droplet size and PDI. Results of both responses were analyzed
and fitted to numerous mathematical models proposed by Design-Expert® software. The
statistical analysis allowed for identifying the cubic model as the best-fitting mathematical
model for the two studied responses since the latter presented (1) significant sequential
p-values (p < 0.05); (2) non-significant lack of fit p-values (p > 0.05); (3) the lowest stan-
dard deviation values; (4) the highest squared correlation coefficients (R2); (5) differences
between the adjusted R2 and the predicted R2 less than 0.2; and (6) the lowest predicted
residual sum of squares (PRESSs) [47]. The postulated mathematical models were rep-
resented by polynomial equations whose coefficients were used to understand how the
three variables (Smix/CoS, water, and oil mixture) interact with each other and how that
affects the droplet size and the PDI. A high positive coefficient value of a variable signifies a
positive effect on the studied response, while a high negative coefficient value suggests the
opposite effect [47]. The effect of the variable on droplet size and PDI were also investigated
using the Cox response trace plot (graphical analysis) for a better explanation. The latter
shows the influence of each constituent of the mixture on the studied response in relation
to a reference formulation (defined by the center point). The predicted response is traced
by varying the percentage of the studied constituent from the center point while the other
components are held at a fixed level. A curve nearly horizontal indicates that the variable
has a slight effect on the response, while a pronounced deviation of the curve from the x-
axis signifies that the response is sensitive to the change in the components’ proportion [34].
According to our findings, the amount of Smix/CoS or oil mixture significantly affects
both responses. When the proportion of Smix/CoS increased, both droplet size and PDI
decreased (negative effect), whereas an increase in the oil mixture led to an increase in
the two responses (positive effect). These results are in good accordance with previously
published works where the authors reported similar observations [47–50]. A desirability
function was used to optimize both droplet size and PDI simultaneously [47]. Its aim was
to find the proportion of each component (Smix/CoS, water, and oil mixture) that ensures
compliance with the criteria of the two studied responses, with a desirability value closest
to 1 (the closer the obtained value of the desirability is to 1, the more closely the proposed
solution matches the desired optimal formulation [51]). The target of the optimization step
was to minimize both responses in order to improve the stability of the formulation and
to increase drug permeation through the nail barrier while maximizing the amount of oil
mixture (to solubilize the greatest amount of antifungal agent) as well as the proportion of
Smix/CoS.

Optimized VCZ-loaded nanoemulsion was assessed for macroscopic aspect, droplet
size, PDI, zeta potential, pH, percentage of transmittance, and physical stability. Macro-
scopically, it was translucent with a bluish aspect, suggesting the existence of the dispersed
phase on a nanoscale level [52]. It showed a small droplet size that was in the nanometer
range (20–200 nm) [53] and a polydispersity index (PDI) less than 0.3, indicating a narrow
size distribution of the droplets, which reflects the homogeneity of the dispersed phase [34].
The zeta potential value was higher than |15| mV, indicating its good stability [54]. Its pH
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value was within the physiological range of skin (pH 4.0–6.0) [55]. Finally, its percentage of
transmittance was found to be close to 100%, reflecting its high transparency.

Regarding the in vitro cytotoxicity study, different concentrations of VCZ, as well as
unloaded nanoemulsion (NE-Blank) and VCZ-loaded nanoemulsion (NE-VCZ) formu-
lations, were tested using HacaT cells to find out from which concentration a potential
cytotoxicity could appear. According to the cell viability evaluation, we were able to con-
firm that VCZ at the tested concentrations was not toxic to the cells. These results are in
good accordance with a study conducted by Cheaburu-Yilmaz et al., where they showed
that VCZ had no cytotoxic effect on rat embryonic fibroblast cells (NIH-3T3) at 100 µg/mL
concentration [56]. Concerning the formulation of the nanoemulsion, one of the criteria
taken into consideration for the selection of the surfactant (Kolliphor® EL), the cosurfactant
(Span® 80), and the cosolvent (Transcutol® HP) was their low toxicity toward skin tissues.
In fact, these components are widely used to formulate nanosystems (nanoemulsions,
microemulsions, self-emulsifying drug delivery systems, etc.) for different routes (ocu-
lar, topical, oral, etc.) because they are less toxic in comparison to other excipients such
as ionic surfactants. However, certain components, such as nanoemulsion stabilizers or
surfactants, are well recognized to cause toxicity in cultured cells due to their solubilizing
properties [57,58], despite being labeled as biocompatible. The in vitro cytotoxicity assay
showed toxicity concentration-dependence, which occurred at high concentrations (above
12,5 µg/mL) of NE-Blank and NE-VCZ with a decrease in cell viability. These findings
are in accordance with data reported previously. According to the literature, the exposure
of the cellular membrane to non-ionic surfactants such as Polysorbate 80 and Kolliphor®

EL promotes a decrease in their glutathione levels, leading to an increase in hydrogen
peroxide cytotoxicity, which causes oxidative stress [59–61]. A study conducted by Zanatta
et al. demonstrated that Span® 80 had a concentration-dependent toxicity on both skin cell
lines (3T3-L1 and HaCaT cells) [62]. Bunchongprasert et al. highlighted the fact that the
use of Kolliphor® EL in nanosystem formulation caused cytotoxicity that was both time-
and concentration-dependent [63]. Another study conducted by Ruhl et al. revealed that
Kolliphor® EL had no cytotoxic effect on preadipocytes at lower concentrations; however,
as the concentration of the surfactant increased, the viable cell number decreased over
time [64]. Finally, a recent report demonstrated that the microemulsion encapsulating the
Benjakul (BJK) extract used as an active ingredient showed cell toxicity at concentrations
above 20 µg/mL, while BJK was safe up to 50 µg/mL [65].

In vitro permeation studies of a VCZ free drug (suspensions) versus an optimized
VCZ-loaded nanoemulsion were performed using a Franz diffusion cell as a system and
dialysis membrane as a diffusion model. The diffusion profiles (drug diffusion percentage
over time) of both preparations were compared by applying the similarity test (f 1 and f 2).
The obtained results showed a significant difference between the two diffusion curves.
The VCZ nanoemulsion exhibited a higher diffusion profile in comparison with the VCZ
free drug. Same findings were noticed for the coefficient of permeability (Papp), with an
increase of 12-fold for the optimized nanoemulsion when compared to the VCZ suspension.

VCZ is a class II BCS, which means low solubility and high permeability [66]. Poor
aqueous solubility is a limiting factor for drug absorption. The use of an innovative drug
delivery system, viz., nanoemulsion, improved VCZ permeation. This enhancement could
be attributed to (1) its high solubilization capacity of the VCZ and (2) to the nanoscale size
of the dispersed phase, which leads to a large interfacial area in contact with the dialysis
membrane, enabling efficient drug transport [67,68].

The antifungal effectiveness of the VCZ free drug, Pinus sylvestris L. essential oil,
unloaded nanoemulsion (NE-Blank), and VCZ-loaded nanoemulsion (NE-VCZ) was tested
on a dermatophyte, Microsporum canis, isolated from a nail with onychomycosis diagnosis
(Laboratory of Parasitology and Mycology of the Fattouma Bourguiba University Hospital
in Monastir-Tunisia), using a disk-agar diffusion assay.

VCZ demonstrated good antifungal efficiency. Indeed, a clear inhibition zone was
observed with a diameter of inhibition of 61.66 mm ± 1.52 mm. This finding is in good
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agreement with the literature. In a previous publication, Nweze EI et al. studied the in vitro
antifungal activities of eight antifungal agents, including voriconazole, against 37 strains of
dermatophytes using an agar-based disk diffusion assay. The authors found inhibition zone
diameter values of 38.00 mm ± 2.36 mm, 33.38 mm ± 3.05 mm, 55.50 mm ± 5.43 mm, and
66.67 mm ± 6.83 mm for VCZ (1 µg/disk) against Trichophyton tonsurans, Trichophyton men-
tagrophytes, Microsporum canis, and Epidermophyton floccosum strains, respectively [37]. The
VCZ antifungal mechanism involves the decrease in the synthesis of ergosterol, an essential
component of fungal cell membranes, by inhibiting 14-alpha-lanosterol demethylation,
which leads to a disruption of cell membrane integrity [69].

PSEO showed a good but less strong antimycotic effect than VCZ with an inhibition
zone of 48.33 mm w ± 1.52 mm. Several studies have investigated and highlighted the
antifungal activity of PSEO [23,26,70,71]. Its efficacy could be attributed to the complex
composition of this essential oil. A GC/MS analysis was carried out to identify the chemical
composition of PSEO utilized in our study (unshown data). The major constituents found
included α-Pinene (40.26%), β-Pinene (20.21%), β-Myrcene (2.13%), δ-3-Carene (16.46%),
p-Cymene (1.58%), and Limonene (9.67%) as monoterpene hydrocarbons; Bornyl Acetate
(1.83%) as oxygenated monoterpenes; and β-Caryophyllene (1.82%) as sesquiterpene hy-
drocarbons. These chemical constituents may act by destabilizing the cell membrane
integrity and damaging mitochondria and DNA of the fungus [72–75]. Indeed, α-pinene
and limonene cause impairment to the fungal cell membrane, increasing its permeability, as
well as efficient ions and intracellular macromolecular substances (such as proteins) leakage,
resulting in cell death. They also affect cell growth and morphology. Moreover, limonene
causes failure of ion transfer and generation of ATP. α-pinene acts by binding ergosterol
and by inhibiting phospholipase and esterase enzyme activities [76–78]. β-pinene disrupts
cell membrane integrity by inhibiting the function of fungal mitochondria [79]. Bornyl
acetate impacts cell growth and disrupts membrane structure by affecting enzyme activity,
as well as penetrating the lipids of both mitochondrial and cytoplasmic membranes [78].
Myrcene affects cell integrity and morphology and causes genetic alterations [80]. Finally,
caryophyllene may act by interacting with the structure of the fungal membrane, which
influences the development of its mycelium. It induces damage to the cell wall, affecting the
polar group (phosphate group), leading to a breaking down of the phospholipid molecule
into glycerol, carboxylic acid, and phosphoric acid. As a result, phospholipids are unable
to preserve the integrity of the cell membrane, resulting in cell death [81].

The placebo nanoemulsion (unloaded formulation) did not exhibit any fungicidal
activity, unlike the optimized nanoemulsion, which exhibited the strongest antimycotic
activity among the four tested samples with an inhibition zone of 80.33 mm ± 4.61 mm. This
observation highlights the synergetic effect between PSEO and VCZ. This combination may
improve the antifungal efficacy through synergistic mechanisms, including (1) increased cell
membrane permeability, which allows the antifungal agent to penetrate the fungal cell at a
more effective level and to reach its target sites; (2) inhibition of efflux pumps to overcome
resistance to antifungal molecules; and (3) enhanced ergosterol inhibition [73,75,82].

5. Conclusions

The present study aimed to assess the antimycotic efficacy of a topical o/w nanoemul-
sion formulation containing voriconazole (VCZ) combined with Pinus sylvestris L. essential
oil (PSEO). The formulation of the innovative form was realized in two steps: the use of
the pseudo-ternary phase diagram to delimit the nanoemulsion region, followed by the
application of the D-optimal mixture design for the optimization. The optimized nanoemul-
sion exhibited suitable physicochemical characteristics (droplet size, PDI, percentage of
transmittance, zeta potential, and pH) for topical drug delivery and good physical stability
(absence of any sign of macroscopic instability). In addition, it showed significantly better
in vitro permeation in comparison with the VCZ free drug. Finally, in vitro antifungal
activity has proven the effectiveness of this novel formulation against the Microsporum canis
clinical strain in comparison with VCZ and PSEO used alone, highlighting their synergetic
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effect. Further ex vivo and clinical investigations are needed to support these promising
results in the treatment of onychomycosis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/colloids8050056/s1, Figure S1: Experimental points generated by the Design
of Experiment software in the nanoemulsion region; Figure S2: Franz cell diffusion system: (1) Donor
chamber; (2) Receptor chamber; (3) Franz cell clamp; (4) Dialysis membrane; (5) Stir bar; (6) Sampling
port; Figure S3: Franz cell assembly for in vitro diffusion study of voriconazole: (1) Franz cell diffusion
system; (2) Water bath; (3) Magnetic stirrer; Figure S4: Macroscopic aspect of the sixteen runs generated
by Design-Expert® Software; Figure S5: Macroscopic aspect of the optimal VCZ-loaded nanoemulsion
with a translucent appearance and a bluish brightness; Table S1: Summary of the results of statistical
analyses for response Y1 (Droplet size)—Design-Expert® software; Table S2: Summary of the results of
statistical analyses for response Y2 (PDI)—Design-Expert® software.
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