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Abstract: Across many resting-state electroencephalography (EEG) studies, dementia is associated
with changes to the power spectrum and fractal dimension. Here, we describe a novel method to
examine changes in the fractal dimension over time and within frequency bands. This method, which
we call fractal dimension distributions (FDD), combines spectral and complexity information. In
this study, we illustrate this new method by applying it to resting-state EEG data recorded from
patients with subjective cognitive impairment (SCI) or dementia. We compared the performance
of FDD with the performance of standard fractal dimension metrics (Higuchi and Katz FD). FDD
revealed larger group differences detectable at greater numbers of EEG recording sites. Moreover,
linear models using FDD features had lower AIC and higher R2 than models using standard full
time-course measures of the fractal dimension. FDD metrics also outperformed the full time-course
metrics when comparing SCI with a subset of dementia patients diagnosed with Alzheimer’s disease.
FDD offers unique information beyond traditional full time-course fractal analyses and may help to
identify dementia caused by Alzheimer’s disease and dementia from other causes.

Keywords: Alzheimer’s disease; dementia; subjective cognitive impairment; electroencephalography;
fractal dimension

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia and the seventh most
common cause of death in the United States [1]. The risk of developing AD grows with
age; about 10% of adults aged 65 or older have Alzheimer’s dementia, and that percentage
passes 25% for those aged 85 or older [2,3]. AD is ultimately fatal, with no cure and mostly
symptomatic treatments [4]. The annual incidence of AD is projected to double by 2050
due to increasing life expectancies [5], necessitating new methods to treat and test for
the disease.

Most AD patients first experience a stage of mild cognitive impairment (MCI), where
memory loss and other cognitive changes are pronounced enough to register on clinical
assessments, but not so extreme as to interfere with independent daily functioning. Before
being diagnosed with MCI, some patients report worsening cognitive abilities despite
scoring within healthy ranges on clinical assessments [6]; this condition is referred to
as subjective cognitive impairment (SCI). AD is primarily diagnosed through clinical
cognitive assessments [7], which may not always catch early-stage cognitive impairment
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or distinguish between different forms of dementia [8]. Historically, AD diagnoses were
only confirmed post-mortem through an autopsy. There has been a push to incorporate
more objective biomarker-based tests into clinical practice and research [9], but these
tests are often invasive (e.g., a lumbar puncture) or expensive (e.g., positron emission
tomography). While new plasma biomarkers have demonstrated excellent accuracy at
detecting amyloid and tau pathology [10], these methods can take time to compute and
may not be strongly associated with cognitive impairment. A growing body of research
positions the electroencephalogram (EEG) as a fast, inexpensive, non-invasive biomarker
for AD [11].

AD patients present with a number of EEG abnormalities, one of which is reduced
signal complexity [12–14]. Complexity in brain signals arises from interacting neural circuits
operating over multiple spatial and temporal scales. A variety of complexity methods
have been previously used, including entropy, Hurst exponent, correlation dimension, and
fractal dimension (reviewed in [13]). The fractal dimension (FD) is a nonlinear measure
that expresses how the details of a self-similar form are altered by the scale at which
they are measured [15]. In this study, we utilize both the Katz fractal dimension (KFD)
and the Higuchi fractal dimension (HFD) methods. KFD calculates the fractal dimension
by comparing distances along the waveform [16], whereas HFD approximates the box-
counting dimension in time-series data by repeatedly downsampling a waveform and
comparing the length of the subsampled waveforms to the downsampling factor [17].
Though KFD tends to underestimate FD, KFD is sometimes better at discriminating between
different brain states than HFD [18].

Diminished HFD and KFD are observed in the EEG and magnetoencephalography
(MEG) of individuals with AD and dementia [19–23]. While EEG signal complexity drops
after age 60 even in the absence of disease, AD is associated with a decrease in FD beyond
what is observed in healthy, age-matched controls [21]. HFD and KFD have been used
in conjunction with machine learning algorithms to distinguish between AD and healthy
controls with high accuracy and specificity, making them a prime candidate for an EEG-
based AD biomarker [24–26]. These algorithms can be improved by computing FD within
distinct frequency bands (e.g., delta, theta, alpha) rather than in broadband EEG [25,27].
For instance, Nobukawa and colleagues [22] found that the difference in a modified HFD
between AD and healthy controls was greater at higher frequencies than lower frequencies.

We propose that the predictive capability of EEG could be further improved by an-
alyzing the distribution of FD over the course of an EEG session [28,29]. A common
implementation of HFD and KFD algorithms compute a single value summarizing the
entire time series, meaning any changes in FD over time are lost. Some previous work
calculated FD within moving windows but discarded information about potential changes
in FD over time by averaging the resulting values together [23,26]. However, the distribu-
tion of FD over time may contain valuable information. Here we develop a new technique
called fractal dimension distributions (FDD). Rather than assessing FD using the full EEG
time-course, FDD slides a moving window across the full time-course, computes FD (HFD
or KFD) within each window, and then summarizes the distribution of FD values across
time windows (e.g., mean, standard deviation). We provide an initial demonstration of
this approach by calculating FDD in participants with SCI or dementia. We then evaluate
whether FDD carries more information about dementia than traditional full time-course
metrics of FD.

2. Materials and Methods
2.1. Study Population

All patients were adults over the age of 55 who visited a specialty memory clinic
(Pacific Brain Health Center in Santa Monica, CA, USA) for memory complaints. Adults
were evaluated by a dementia specialist during their visit. Evaluations included behavioral
testing and EEG recordings. Patients with SCI or dementia were selected retrospectively by
reviewing charts for patients seen between July 2018 and February 2021. Full data were
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available from 148 adults (see Table 1 for demographic information). Groups were divided
into adults diagnosed with SCI (N = 97) or dementia (N = 51). Within the dementia group,
38 individuals were diagnosed with AD. The remaining individuals were diagnosed with
Lewy body dementia (n = 4), vascular dementia (n = 2), frontotemporal dementia (n = 2),
Parkinson’s disease (n = 2), or unknown (n = 3). All procedures aligned with the Helsinki
Declaration of 1975 and were approved by the Institutional Review Board at the St. John’s
Cancer Institute. All patients provided informed consent.

Table 1. Demographic information.

Group

Variable Full Sample SCI Dementia AD-Dementia

N 148 97 51 38
Age (Mean [SD]) 71.3 (7.5) 70.2 (7.1) 73.7 (7.8) 74.2 (7.1)

Female (%) 91 (61.4%) 59 (60.8%) 32 (62.7%) 26 (68.4%)

2.2. Clinical Diagnosis

Patient diagnosis was based on consensus of a panel of board-certified dementia
specialists using the 2011 guidelines proposed by the National Institute of Aging and
the Alzheimer’s Association (NIA-AA). Diagnoses utilized standard clinical methods for
neurological examinations, cognitive testing (MMSE [30] or MoCA [31]), clinical history
(e.g., depression, diabetes, head injury, hypertension), and laboratory testing (e.g., thyroid-
stimulating hormone levels, rapid plasma reagin testing, vitamin B-12 levels). Cognitive
impairment was diagnosed on the basis of the MMSE (or MoCA scores converted to
MMSE [32]). MCI was diagnosed according to the criteria established by Langa and
Levine [33], and distinguished from dementia on the basis of preserved functional abilities
and independence together with a lack of significant impairment in occupational or social
functioning. SCI was diagnosed based on subjective complaints without evidence of MCI.

2.3. EEG Collection

EEG data were recorded using a 19-channel eVox System (Evoke Neuroscience) at
the Pacific Neuroscience Institute. Electrodes were positioned in a cap according to the
international 10–20 system (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4,
P8, O1, and O2). Data were collected at 250 Hz while patients completed two resting-state
recordings—five minutes each of eyes closed and eyes open—and a 15 min Go/No-Go task.
For this study, we used only the eyes-closed resting-state data.

2.4. EEG Preprocessing

EEG data were re-referenced offline to the average of all channels using the MNE
python library (version 1.0.0). Jump artifacts were defined as large deviations in global field
power over a short period of time. Global field power was calculated as the standard devia-
tion across all channels at each timepoint. Jumps were defined as global field power more
than 10 standard deviations from the mean persisting across no more than 10 consecutive
samples (40 ms). Wherever a jump artifact was detected, those samples were replaced with
a linear interpolation between the nearest samples that were not contaminated by the jump
artifact, and computed separately for each channel. Ocular artifacts were removed with the
aid of Independent Component Analysis (ICA). In total 18 ICA components were extracted,
then compared to templates of stereotypical ocular artifacts for horizontal and vertical eye
movement. Components with a high correlation with either eye movement template were
excluded, then the remaining components were projected back into sensor space.

For the broadband analysis, we filtered data with a 1–50 Hz zero-phase finite impulse
response bandpass to help attenuate line noise. In the banded analysis, we applied separate
bandpass filters for the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13Hz), beta (13–30 Hz),
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and gamma (30–50 Hz) frequency bands. After filtering, we segmented the data into 1 s
duration epochs, with a 0.5 s overlap.

2.5. Fractal Dimension

We calculated KFD and HFD using the AntroPy package (version 0.1.4). Katz’s
method [16] calculates the sum—i.e., length (L)—and average (a) Euclidean distance be-
tween successive points in the time series, as well as the maximum distance from the first
point in the time series to any other point in the time series (d). The fractal dimension of
the time series (FD) is then calculated as follows:

KFD =
log10(L/a)
log10(d/a)

. (1)

Thus, Katz’s method relies only on the raw time series itself. However, Higuchi’s
method [17] begins by subsampling a time series across progressive smaller time scales,
then examining how the length of time series is related to the scaling. Given a time series
X : {1, ..., N} → R with N sample points and kmax ≥ 2, Higuchi’s method begins by first
calculating the length of a curve, Xm

k , across a range of values based on initial time (m) and
interval time (k). This length, Lm(k), is defined as follows:

Lm(k) =
N − 1⌊
N−m

k

⌋
k2

⌊ N−m
k ⌋

∑
i=1

|XN(m + ik)− XN(m + (i − 1) · k)| (2)

for each m ∈ {1, ..., k} and k ∈ {1, ..., kmax}. Then, the length L(k) is the average:

L(k) =
1
k

k

∑
m=1

Lm(k) (3)

and HFD is the slope of the best-fit line through points
{(

log 1
k , log L(k)

)}
.

Thus, HFD depends on both the number of sample points (N) and the parameter
kmax, which sets the upper limit on the number of time intervals. Some early work sug-
gested using kmax = 6 for time series with 40–1000 points [34]. Other approaches suggest
calculating HFD across multiple kmax values and identifying the value of kmax, at which
HFD plateaus [35,36]. However, HFD is not guaranteed to plateau. Recently, Wanliss and
Wanliss demonstrated that an optimal kmax can be estimated algorithmically based on the
length of the time series [37]. The proposed algorithm uses two sinusoids and three pairs
of parameters with empirically derived distributions. We used this algorithm to estimate
the optimal kmax for the length of the full time-course, and for 1 s windows (Supplementary
Materials). This indicated kmax = 108 for the full sample and kmax = 25 for 1 s windows.

2.5.1. Full Time-Course Fractal Dimension

We calculated the full time-course fractal dimension by applying Katz’s method or
Higuchi’s method (with kmax = 108) to the entire resting-state EEG recording. This analysis
reflects the way prior studies computed FD [19,25].

2.5.2. Fractal Dimension Distributions (FDD)

For the fractal dimension distributions, we first segmented the data using 1 s moving
windows, with a 0.5 s overlap (see Section 3.6 for discussion of other window sizes). We
then extracted the KFD or HFD (kmax = 25) within each window. Finally, we summarized
the distribution of KFD or HFD values across windows using the mean and standard
deviation.
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2.6. Group Differences

We sought to compare the fractal dimension measures between the SCI and dementia.
We used threshold-free cluster enhancement (TFCE) to estimate the difference at each
channel [38,39]. TFCE is a non-parametric technique that computes cluster-level statistics
across a range of cluster-forming thresholds. The channel-level TFCE statistic incorporates
both the strength of the difference at that channel and the spatial extent of any neighboring
clusters that exist in the data. This approach produces one TFCE value per channel. TFCE
values can then be calculated for data that have had labels permuted. The final TFCE-
adjusted t-statistics are thus controlled for multiple comparisons across channels. We used
10,000 permutations as implemented in the permutation_cluster_test function in MNE.
Positive and negative difference were calculated separately, using a step size of 0.2. Group
differences were then visualized by projecting the t-statistics to the scalp with a bilinear
interpolation in MNE, and individually significant channels were identified using alpha
corresponding to corrected p < 0.05. In order to understand whether non-AD dementia and
AD might be associated with different patterns of FD, we repeated this analysis comparing
SCI to AD.

2.7. Logistic Regressions

The TFCE analyses test whether FD metrics in individual channels carry information
about dementia. As a complementary analysis, we used logistic regressions to test how
information can be combined across channels to predict dementia (or AD). We regressed
cognitive status on FD metrics in all channels, using either full time-course FD or FDD
features. All models included age as a covariate. Fractal scores across channels were
correlated (see Supplementary Figures S1–S3), so we used regularized Least Absolute
Shrinkage and Selection Operator (LASSO) regressions as implemented in the statsmodels
package (version 0.13.2). L1 regularization helps to avoid overfitting by penalizing models
with higher complexity. For each set of predictors, a series of logistic regressions were fitted,
with L1 penalty values (alpha) ranging from 0 to 10 in 0.05 step increments. Default values
were used for all other hyperparameters. The model with the lowest Akaike Information
Criterion (AIC) was selected for that set of predictors. Here, our goal was to understand
how variance in group membership was related to variance in fractal features. Each model
was fitted once, using data from all subjects, rather than partitioning data for validation.

We assessed model fit using a chi-square likelihood ratio test (LRT) comparing models
with fractal features to a model with age as the only predictor. This test verifies that
fractal features carry information about dementia beyond the information captured by
age alone. We used the age-only model as the comparison because age is considered
an import predictor of dementia [3]. The LRT is inappropriate for directly comparing
models using full time-course FD to models using FDD features since they are non-nested.
Instead, we used AIC, with lower AIC values indicating a better model. The LRT and AIC
protect against overfitting by penalizing more complicated models. For each model we
also calculated Tjur’s coefficient of determination to obtain pseudo-R2, which reflects how
well the model separates the two classes of patients, with 0 reflecting no separation and 1
reflecting complete separation [40].

3. Results

Before comparing traditional full time-course FD with the novel FDD metric, we
established a baseline model, using age as the only predictor. This model was a better fit to
the data than an intercept-only null model (X2(1) = 7.59, p = 0.006). It served as a reference
when conducting likelihood ratio tests for models using the fractal dimension values.

3.1. FDD Differentiates Dementia Better Than Full Time-Course Fractal Dimension

First, we tried to replicate previous studies by looking for differences in full time-course
HFD and KFD between SCI and dementia [19]. In the broadband data, group differences in
full time-course HFD and full time-course KFD were in the expected direction, but did not
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reach statistical significance. Three electrodes showed a trend towards lower HFD in the
dementia group (Figure 1; O1 t = −1.37, p = 0.099; Pz t = −1.40, p = 0.099, and P3 t = −1.44,
p = 0.089).
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Figure 1. EEG fractal values differ between dementia and SCI groups. Scalp plots show differences
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dimension (left) or Katz fractal dimension (right). Electrodes with significant differences (TFCE FEW
p < 0.05) are marked with white circles.

We next examined the FDD features by calculating the mean and standard deviation
of HFD and KFD across windows. In the broadband data, the mean of windowed HFD did
not significantly differ between groups. In contrast, the standard deviation of windowed
HFD was significantly higher in the dementia group at every electrode (smallest difference
at T8, t = 1.92, p = 0.020, largest difference at T7, t = 2.89, p < 0.001). Furthermore, the
standard deviation of windowed KFD was significantly higher in the dementia group at all
but five electrodes (O1, O2, P3, P7, Cz; all p > 0.08).

A logistic regression model using full time-course HFD showed better performance
than a model using only patients’ age, and both of these were outperformed by a model
using FDD features (Table 2; ∆AIC = −16.7, ∆R2 = 0.16). Similarly, a model using FDD
features based on KFD outperformed a model using the full time-course KFD (Table 3;
∆AIC = −12.7, ∆R2 = 0.24). Interestingly, the lowest AIC across models using full time-
course KFD was a model in which LASSO regularization set all channel coefficients to
0, retaining only age; this indicates that KFD obtained from the full time-course did not
contain enough unique information relating to dementia to be included in the model.

Table 2. Summary of models distinguishing between dementia and SCI using Higuchi fractal
information.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Broadband
Full time-course 180.3 0.290 1.60 11 24.74 0.0033

FDD 163.6 0.446 1.85 6 47.40 0.0111

Delta
Full time-course 178.8 0.425 0.25 19 42.20 0.0006

FDD 176.1 0.397 1.90 19 44.91 0.0003
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Table 2. Cont.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Theta
Full time-course 174.9 0.269 1.70 6 20.13 0.0005

FDD 159.6 0.592 0.85 23 69.44 0.0000

Alpha Full time-course 182.0 0.262 1.85 6 13.04 0.0111
FDD 166.6 0.644 0.75 25 66.42 0.0000

Beta
Full time-course 179.5 0.240 2.15 7 17.57 0.0035

FDD 173.0 0.377 1.90 14 38.05 0.0002

Gamma
Full time-course 184.4 0.298 0.60 14 26.65 0.0087

FDD 184.7 0.220 4.75 5 8.33 0.0396

The number of non-zero parameters in the model (nparams) including the intercept. The X2 statistic and p-value
reflect the likelihood ratio test compared to a model with age as the only predictor. FDD: fractal dimension distri-
butions.

Table 3. Summary of models distinguishing between dementia and SCI using Katz fractal information.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Broadband
Full time-course 189.2 0.058 2.15 7 −2.17 0.0035

FDD 176.5 0.299 0.25 19 16.54 0.0006

Delta
Full time-course 190.8 0.087 3.7 4 0.28 0.8698

FDD 183.0 0.261 3.55 11 22.09 0.0086

Theta
Full time-course 179.6 0.398 0.6 16 35.46 0.0013

FDD 174.8 0.358 2.4 8 24.20 0.0005

Alpha Full time-course 187.0 0.223 3.5 5 6.03 0.1100
FDD 186.1 0.229 5.05 6 8.96 0.0622

Beta
Full time-course 188.1 0.133 2.45 7 8.93 0.1120

FDD 178.9 0.270 4.25 7 18.12 0.0028

Gamma
Full time-course 189.1 0.135 2.85 4 1.99 0.3705

FDD 194.1 0.232 4.7 9 6.98 0.4313

The number of non-zero parameters in the model (nparams) including the intercept. The X2 statistic and p-value
reflect the likelihood ratio test compared to a model with age as the only predictor. FDD: fractal dimension
distributions.

3.2. FDD Is More Informative Than Full Time-Course Fractal Dimension in Most
Frequency Bands

We next compared the fractal dimensions between SCI and dementia within five
frequency bands, calculating either the full time-course FD or FDD (Figure 1). In every band,
more scalp locations showed significant group differences using Higuchi FDD calculated
from full time-course HFD, particularly the windowed mean (Figure 1, left). There were no
significant differences in any band using the full time-course KFD (all ps > 0.187). Using
the Katz FDD, however, several clusters of electrodes showed significant group differences
in the theta, alpha, and beta bands.

In order to visualize the extent to which FDD and full time-course FD discriminate be-
tween SCI and dementia, we plotted the absolute TFCE-t statistic averaged across channels
for the full time-course FD and FDD mean and standard deviation. Figure 2 shows these
values for HFD and KFD (Figure 2) for each frequency band. We then subtracted the full
time-course FD values from the corresponding FDD metrics to obtain a numerical measure
of the increase or decrease in the group difference at each channel—positive values indicate
a larger difference using FDD features compared to full time-course FD features. We plot
these relative TFCE values in each frequency band for HFD and KFD (Figure 2).
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Figure 2. Comparison of group differences for Dem-SCI with full time-course and FDD features. Ab-
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each frequency band (B,D). Box outlines show the interquartile range, central line shows the median,
and whiskers extend to minimum and maximum value.

As in the broadband analysis, we then used logistic LASSO regressions to test whether
using FDD features lead to more accurate models than full time-course FD. For both
the Katz and Higuchi methods, the models using FDD outperformed models using full
time-course FD, though the effect was stronger for HFD (Table 2; average ∆AIC = −7.9,
∆R2 = 0.15) than KFD (Table 3; average ∆AIC = −3.5, ∆R2 = 0.08). The logistic regression
using FDD with Higuchi in the delta band had lower AIC but did not have higher R2 than
the model using full time-course HFD (∆AIC = −2.7, ∆R2 = −0.03). In contrast, regressions
using Higuchi FDD features were universally better in the theta (∆AIC = −15.3, ∆R2 = 0.32),
alpha (∆AIC = −15.4, ∆R2 = 0.38), and beta (∆AIC = −6.5, ∆R2 = 0.14) bands. The model
with full time-course HFD had a slightly lower AIC than the model with FDD in the gamma
band (∆AIC = 0.3, ∆R2 = −0.08).

With Katz’s method, models using FDD had lower AIC and larger R2 than models
using full time-course KFD in delta (∆AIC = −7.8, ∆R2 = 0.17) and beta bands (∆AIC = −9.2,
∆R2 = 0.14). The model using FDD features had lower AIC and slightly larger R2 in the
alpha band (∆AIC = −0.9, ∆R2 = 0.01). In the theta band, the model using FDD features
produced a smaller AIC, but worse R2 (∆AIC = −4.7, ∆R2 = −0.04). As with HFD, in the
gamma band, the model using full time-course KFD outperformed the model using FDD
(∆AIC = 5.0, ∆R2 = 0.10).

Across all models comparing dementia and SCI, the two with the lowest AIC and high-
est R2 used Higuchi FDD features in the alpha band (AIC = 166.6, R2 = 0.644, X2(25) = 66.42,
p < 0.001) or theta band (AIC = 159.6, R2 = 0.592, X2(23) = 69.44, p < 0.001).

3.3. FDD Differentiates Alzheimer’s Disease Better Than Full Time-Course Fractal Dimension

The previous analyses demonstrate that the distribution FD carries additional informa-
tion about dementia beyond the information carried by standard full time-course FD. Next,
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we tested whether this distributional information also helps to specifically distinguish
between SCI and dementia due to Alzheimer’s disease (AD). There were no significant
differences between SCI and AD in full time-course HFD or KFD when estimated from
broadband data (Figure 3; all p > 0.3). There were also no significant differences in mean
HFD or mean KFD at any electrode (all p > 0.2). However, KFD SD was significantly higher
in the AD group at F8 (t = 1.71, p = 0.037) and HFD SD was higher at left and frontal sites,
including F4, Fz, F3, F7, T7, C3 and P3.
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The logistic regression using age to predict AD status was a significantly better fit
than the intercept-only model (X2(1) = 7.22, p = 0.007). Again, while full time-course HFD
improved model fit relative to an age-only model, models with FDD features fit the data
even better (Table 4; ∆AIC = −5.4, ∆R2 = 0.13). Furthermore, the model using Katz FDD
features outperformed the model using full time-course KFD (∆AIC = −10.7, ∆R2 = 0.42).

Table 4. Summary of models distinguishing between AD and SCI using Higuchi fractal information.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Broadband
Full time-course 157.0 0.204 1.45 10 24.40 0.0020

FDD 151.6 0.331 0.85 22 53.77 0.0001

Delta
Full time-course 153.8 0.291 0.05 20 47.60 0.0002

FDD 144.0 0.342 1.80 17 51.40 0.0000
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Table 4. Cont.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Theta
Full time-course 145.6 0.400 0.40 16 47.83 0.0000

FDD 147.5 0.487 0.15 33 79.86 0.0000

Alpha Full time-course 165.3 0.058 1.35 8 12.13 0.0592
FDD 159.8 0.360 0.40 29 59.55 0.0003

Beta
Full time-course 149.7 0.300 0.35 18 47.70 0.0001

FDD 152.9 0.214 1.80 14 36.54 0.0003

Gamma
Full time-course 156.7 0.067 1.30 8 20.74 0.0020

FDD 165.6 0.117 2.25 11 17.84 0.0371

The number of non-zero parameters in the model (nparams) including the intercept. The X2 statistic and p-value
reflect the likelihood ratio test compared to a model with age as the only predictor. FDD: fractal dimension
distributions.

3.4. FDD Is More Informative for Alzheimer’s Disease in Most Frequency Bands

Next, we examined the difference between SCI and AD when FD metrics were cal-
culated within individual frequency bands. There were no significant differences at any
electrode using full time-course estimates of HFD and KFD in the delta (all p > 0.5), alpha
(all p > 0.5), beta (all p > 0.1) or gamma (all p > 0.3) bands. In the theta band, no electrodes
showed significant differences in full time-course HFD (all p > 0.09).

Within the delta band, mean windowed HFD was significantly higher in the AD group
at frontal and parietal electrodes (all t > 1.63, p < 0.045). The SD of windowed HFD was not
significantly different between groups at any electrodes (all p > 0.1). Similarly, no electrodes
showed significant group differences for either Katz FDD metric in the delta band (all
p > 0.1). In the theta band, every electrode showed reduced Higuchi FDD measures in
AD compared to SCI. Nearly all channels showed significantly lower KFD mean and SD.
Finally, mean HFD was significantly higher in the AD group at central and posterior sites,
as well as at Fp2, F7, and F8 (all t > 1.64, p < 0.049).

As with the Dem-SCI analysis, we plotted the absolute TFCE-t statistics for AD-SCI at
each channel for the full time-course FD compared to TFCE-t scores obtained using FDD
measures (Figure 4), as well as the difference between FDD features and the full time-course
FD metrics. The most pronounced improvement was in the theta band.

Averaging across frequency bands, models using FDD had a lower AIC and higher
R2 than models using full time-course estimates (∆AIC = −2.6, ∆R2 = 0.08). Models using
Higuchi FDD were nearly indistinguishable but had improved class separation relative to
full time-course models (Table 4; average ∆AIC = −0.2, ∆R2 = 0.08), while models using
Katz FDD had lower AIC while showing a minimal increase in class separation. (Table 5;
average ∆AIC = −2.6, ∆R2 = 0.01).

Models using Higuchi FDD outperformed models using full time-course HFD in the
delta (Table 4; ∆AIC = −9.8, ∆R2 = 0.05) and alpha bands (∆AIC = −5.4, ∆R2 = 0.30). In the
theta and gamma bands, the windowed model separated the classes better, but had worse
expected prediction error (∆AIC = 2.0, ∆R2 = 0.09; ∆AIC = 8.9, ∆R2 = 0.05). The model
using FDD features had lower performance than the models using full time-course HFD in
the beta band (∆AIC = 3.2, ∆R2 = −0.09).

The models using KFD were similarly mixed. Models using FDD features outper-
formed models using full time-course FD in the delta (∆AIC = −12.1, ∆R2 = 0.22) and
gamma bands (∆AIC = −6.8, ∆R2 = 0.23), but underperformed models using full time-
course FD in the alpha (∆AIC = 2.2, ∆R2 = −0.06) and beta bands (∆AIC = 4.4, ∆R2 = −0.20).
In the theta band, models based on FDD had lower AIC but also lower class separation
(∆AIC = −2.0, ∆R2 = −0.22).
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Figure 4. Comparison of group differences for AD-SCI with full time-course and FDD features.
Average channel absolute TFCE-t statistic for AD-SCI in each frequency band using Higuchi (A) or
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Table 5. Summary of models distinguishing between AD and SCI using Katz fractal information.

Band Fractal Features AIC Pseudo R2 L1 Penalty nparams X2 p

Broadband
Full time-course 159.6 0.088 2.90 4 9.77 0.0076

FDD 148.9 0.507 0.30 32 76.48 0.0000

Delta
Full time-course 167.6 0.009 2.45 5 3.83 0.2804

FDD 155.5 0.224 2.15 15 35.90 0.0006

Theta
Full time-course 156.8 0.341 0.15 19 42.64 0.0005

FDD 154.8 0.126 2.25 8 22.64 0.0009

Alpha Full time-course 162.7 0.165 1.25 13 24.68 0.0101
FDD 164.9 0.107 2.75 8 12.49 0.0519

Beta
Full time-course 159.1 0.252 0.65 15 32.26 0.0022

FDD 163.6 0.049 4.45 5 7.83 0.0496

Gamma
Full time-course 168.5 0.000 3.80 4 0.93 0.6266

FDD 161.7 0.233 1.20 21 41.69 0.0020

The number of non-zero parameters in the model (nparams) including the intercept. The X2 statistic and p-value
reflect the likelihood ratio test compared to a model with age as the only predictor. FDD: fractal dimension
distributions.

Across all models comparing AD and SCI, the models with the lowest AIC and largest
R2 used Higuchi FDD in the delta band (AIC = 144.0, R2 = 0.342, X2(17) = 51.40, p < 0.001)
or Katz FDD with broadband EEG (AIC = 148.9, R2 = 0.507, X2(32) = 76.48, p < 0.001).

3.5. Features Useful for Distinguishing AD and Dementia Partially Overlap

Are the features that are useful for distinguishing between SCI and any dementia the
same as the features that are useful for distinguishing between SCI and AD dementia? To
answer this question, we examined the regression coefficients from each of the final models.
In these LASSO regressions, L1 regularization selects variables that relate to the dependent
variable and sets all other coefficients to zero. We examined which channels, frequencies,
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and FD analysis methods were retained in these models as non-zero coefficients. As shown
in Figure 5, while the regularized logistic regression indicated that some features were
useful for both models, other features were only useful in one of the models but not the
other. Across the fractal variability models, dementia–SCI models used a total of 122 EEG
features while AD-SCI models used 191, with 89 features appearing in both models.
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logistic regression using full time-course FD (left) or FDD (center and right) features calculated using
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3.6. FDD Provides Information about Dementia across Different Window Lengths

To understand whether our results depended on the length of the window used to
calculate FDD features, we repeated the analysis using three other window sizes—0.5 s,
5 s, 10 s—each with a 50% overlap. We estimated the ideal kmax = 25 for the 0.5 s and 5 s
windows, and kmax = 28 for the 10 s windows. Models using FDD continued to generally
outperform models using full time-course FD values, with better performance in broadband
for both dementia–SCI and AD-SCI. (see Supplemental Tables S1–S4). Across analyses
comparing dementia–SCI within specific frequency bands, models using FDD features
calculated with 1 s windows outperformed models using full time-course FD in 8/10 cases.
Similarly, using 0.5 s or 5 s windows resulted in better performance with FDD features
in 9/10 cases and FDD calculated from 10 s windows produced better performance in
6/10 cases. When modeling AD-SCI, FDD with 1 s windows outperformed full time-course
FD in 5/10 models. Changing the window size resulted in similar performance for 0.5 s
(5/10 models), 5 s (4/10 models), or 10 s (6/10) durations.

4. Discussion

In this study, we present the FDD metric, a novel method for quantifying the distri-
bution of the fractal dimension values over time. We then apply FDD to examine signal
complexity in Alzheimer’s disease. We show that FDD carries information above and
beyond the full time-course fractal dimension of a signal, and that FDD features are useful
for distinguishing individuals diagnosed with dementia from individuals with SCI, as well
as individuals with AD dementia from individuals with SCI. Using both Higuchi and Katz
algorithms, FDD calculated from broadband EEG revealed more significant differences
between groups than full time-course fractal values (Figures 1 and 2). Models using FDD
features were also better (as measured by lower AIC and higher R2) than models using
full time-course FD (Tables 2 and 3). FDD features also demonstrated more group differ-
ences, larger effect sizes, and better models across most frequency bands (Tables 2 and 3;
Figures 1 and 2).

When comparing SCI to dementia or SCI to AD dementia, the most widespread group
differences were observed in the theta band (Figures 1 and 3). Theta band activity has
long been associated with memory performance [41]. This is not entirely surprising, since
memory loss is a hallmark of dementia. However, there are many open questions related to
theta oscillations in the human neocortex, such as whether observed associations between
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memory function and theta power arise from focal changes in theta power or rather as an
overall shift in the power spectrum [42].

A second goal of this work was to understand whether the distribution of the fractal
dimension scores could also elucidate characteristics of AD dementia. FDD features again
revealed more electrodes with significant AD-SCI differences than full time-course FD,
both in broadband and the majority of traditional frequency bands (Figures 3 and 4).
Using broadband data, FDD features produced better models for both HFD and KFD
(Tables 4 and 5). Models using FDD to distinguish between AD and SCI were better in the
delta band and slightly better on average.

Previous work has found lower HFD in AD [20–23]. Similarly, prior studies have
examined FD separately within canonical frequency bands, and find lower KFD and HFD
in AD [12,27,43]. Using FDD, we replicate this decrease in FD for the dementia and AD
dementia within the theta and alpha bands. Using full time-course FD, we find non-
significant trends toward decreases in FD using full time-course broadband HFD and
KFD. Why do we find a non-significant trend where other studies showed a significant
decrease? We compare AD dementia to SCI, whereas other work used healthy older adults
recorded in a laboratory setting [12,19]. There may also be an important difference between
FD calculated from EEG compared to MEG [20,21]. Moreover, as discussed above (see
Section 2.3), computing HFD relies on the kmax parameter, and previous investigations of
HFD in dementia did not calculate kmax using the approach based on time-course length [37].
Our proposed FDD metric did reliably identify reduced complexity, for both HFD and KFD.

Our results also highlight the importance of distinguishing between dementia caused
by AD from non-AD dementia. Particularly when using FDD, the dementia and SCI
groups demonstrate significant differences across nearly the entire scalp (Figure 1). In
contrast, significant differences between AD and SCI were restricted to fewer electrodes
and appeared primarily in the theta band (Figures 3 and 4). Moreover, while 73% of the
FDD features that were retained in the dementia–SCI models were also retained in AD-SCI
models (Figure 5), less than half of the features used in the AD-SCI models appeared in
the dementia–SCI models (47%). In other words, while some EEG signals are generally
useful for detecting cognitive impairment, our results suggest that EEG is also sensitive to
additional signals which are uniquely important for detecting AD. Discovering whether
FDD is useful for distinguishing between AD and non-AD dementia cases will require
additional evidence with larger populations of patients with dementia.

AD is a neurodegenerative disease with a distinct progression of physical and cogni-
tive symptoms. Its pathology is characterized by two features: extracellular deposits of
beta-amyloid plaques, and intracellular accumulations of abnormally phosphorylated tau,
called neurofibrillary tangles [44]. Patients with Alzheimer’s dementia exhibit widespread
amyloid plaques and neurofibrillary tangles throughout the brain, but beta-amyloid and tau
start to amass long before severe cognitive symptoms appear [45]. One origin of reduced
EEG complexity in AD patients may be an abnormal cortical excitation/inhibition ratio [46];
beta-amyloid is linked to neuronal hypoactivity, and tau is associated with neuronal hyper-
activity [47]. Decreases in EEG complexity might also arise from general neurodegeneration,
with fewer neurons and fewer interactions between neurons [48]. However, more work is
needed to clarify any associations between beta-amyloid and tau abnormalities, cognitive
decline, and EEG complexity.

Researchers investigating FD in EEG might also benefit from examining FDD features
as a complement to full time-course FD methods. Previous work has used FD in EEG
signals to identify a variety of neuropsychological and neurocognitive conditions. EEG
complexity and FD in schizophrenia has been widely investigated, with studies report-
ing both increased and decreased FD based on symptomatology, age, and medication
status [49–52]. In schizophrenia, the FD also has strong predictive power, and it has been
used to distinguish individuals with schizophrenia from healthy controls with high accu-
racy [53]. Other work has examined FD in mood and cognitive disorders, with increased FD
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reported in depression [49,54,55], bipolar disorder [56], and attention deficit hyperactivity
disorder [57].

Our introduction of FDD is focused on the mean and standard deviation of FD com-
puted across multiple moving windows. However, future work could investigate other
methods of assessing changes in fractal content over time. For instance, higher-order dis-
tributional summary statistics, such as skewness or kurtosis could be included. Similarly,
time-sensitive measures, such as autoregressive variance, might provide additional unique
information that could be used to identify or distinguish neurodegenerative conditions.

One additional potential advantage of FDD over full time-course fractal measures is
that it allows for momentary artifacts to be excluded from the data. If artifacts contaminate
a portion of an EEG recording, that artifact could bias estimates of FD. A windowed
approach like FDD makes it trivially easy to handle events such as jump artifacts or
movement artifacts—simply exclude windows with artifacts from the analysis. Thus, FDD
offers the potential to recover usable EEG recordings from a broader range of patients.

While our results suggest that models trained using FDD could be a useful early
screening tool in clinical settings, future studies will be required to determine optimal
FDD parameters. We expect that FDD will be most useful in a clinical setting when used
alongside other EEG features, such as spectral power, or combined with molecular or
liquid biomarkers.

The current manuscript has several limitations. The dataset contains only 13 patients
with non-AD dementia. This means we were not well positioned to directly address how
well FDD might distinguish between different dementia subtypes. Moreover, our data are
cross-sectional. Longitudinal studies will be needed to assess the prospective utility of
FDD. Our goal was to introduce FDD, rather than propose exact parameters values. Thus,
we did not exhaustively test potential values for parameters, such as window length.

5. Conclusions

We propose a novel method, FDD, to investigate the fractal dimensions within and
across frequency bands in resting-state EEG data. Our results extend previous work
linking differences in EEG spectral content and fractal dimension to Alzheimer’s disease
dementia and dementia without Alzheimer’s disease. In broadband EEG, and within
most of the traditional frequency bands, FDD revealed stronger group differences and
more informative features than full time-course FD for both dementia and AD dementia.
Moreover, regularized linear regressions using FDD features were better at accounting for
differences between unimpaired subjects and subjects with dementia than models using
full time-course fractal dimension. Overall, our findings demonstrate that FDD can provide
information about cognitive status and AD diagnosis from resting-state EEG, above and
beyond traditional full time-course methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ctn8030027/s1, Figure S1. Channel correlations for full time-
course fractal dimension. Heatmap showing channel-by-channel correlations for HFD (upper right
triangle) and KFD (lower left triangle). Note that all resulting correlations are positive; Figure S2.
Channel correlations for windowed fractal mean. Heatmap showing channel-by-channel correlations
for HFD (upper right triangle) and KFD (lower left triangle). Note that all resulting correlations are
positive; Figure S3. Channel correlations for windowed fractal standard deviation. Heatmap showing
channel-by-channel correlations for HFD (upper right triangle) and KFD (lower left triangle). Note
that all resulting correlations are positive; Table S1. Estimates of best fitting parameters for kmax
function; Table S2. Summary of models predicting Dementia vs. SCI using Higuchi fractal information
with different window lengths; Table S3. Summary of models predicting Dementia vs. SCI using
Katz fractal information with different window lengths; Table S4. Summary of models predicting AD
vs. SCI using Katz fractal information with different window lengths; Table S5. Summary of models
predicting AD vs. SCI using Katz fractal information with different window lengths.
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