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Highlights:

What are the main findings?

• Visceral fat is more related to impairment of the lung function and mechanics than subcutaneous
or total fat in women.

• Visceral fat strong correlates to impairment of pulmonary immune response in overweight and
obese women.

• Visceral fat strong correlates to impairment of systemic immune response in overweight and
obese women.

Abstract: Beyond the common comorbidities related to obesity, such as type 2 diabetes and car-
diovascular diseases, impaired lung function is already known, but whether the fat distribution
(sub-cutaneous, visceral) affects the lung function and pulmonary immune response are poorly
known. Few evidence has shown that visceral fat is associated with insulin resistance, low-grade
inflammation, and reduced lung function. In the present study, the body composition and fat dis-
tribution were evaluated by multi-frequency octopolar bioimpedance. This study demonstrated
a possible association of increased visceral fat with impaired lung function in obesity grade I
(n = 28; 45.46 ± 10.38 years old) women that was not observed in normal weight (n = 20;
43.20 ± 10.78 years old) and in overweight women (n = 30; 47.27 ± 10.25 years old). We also
identified a negative correlation in FVC% (R2 = 0.9129; p < 0.0236), FEV1% (R2 = 0.1079; p < 0.0134),
PEF% (R2 = 0.1673; p < 0.0018), and VC IN% (R2 = 0.1330; p < 0.0057) in the obesity grade I group,
clearly demonstrating that higher levels of visceral fat correlate with reduced lung function, but
not with sub-cutaneous fat. In addition, for the first time, a negative correlation among anti-fibrotic
protein klotho (R2 = 0.09298; p < 0.0897) and anti-inflammatory IL-10 (R2 = 0.1653; p < 0.0487) in
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plasma was observed, in contrast to increased visceral fat. On the contrary, in breath condensate, a
positive correlation for adiponectin (R2 = 0.5665; p < 0.0120), IL1-Ra (R2 = 0.2121; p < 0.0544), and
IL1-Beta (R2 = 0.3270; p < 0.0084) was found. Thus, increased visceral fat directly influences the
impairment of lung function and the systemic and pulmonary immune response of women with
obesity grade I.

Keywords: overweight; obesity; visceral fat; lung function; inflammation; lung mechanics

1. Introduction

Obesity is recognized as a global epidemic by international health agencies, impacting
over two billion individuals, or roughly 30% of the global population [1]. This growing
public health challenge extends beyond obesity to include overweight, both of which are
strongly linked to various health complications such as cardiovascular disease, diabetes,
hypertension [2], and gastrointestinal disorders [3]. Additionally, less commonly studied
comorbidities including pulmonary dysfunction and immunological impairments further
underscore the complexity and breadth of obesity’s health impact.

Obesity is associated with complications and an increased risk factor for the develop-
ment and impairment of lung diseases such as asthma, obstructive sleep apnea, obesity
hyperventilation syndrome as well as making individuals more susceptible to respiratory
inflammation, in addition to reduced lung volumes and changes in lung mechanics [4,5].
Obesity is a significant factor contributing to the reduction in forced vital capacity (FVC), a
key measure of pulmonary function [6]. Excess adipose tissue, particularly in the abdomi-
nal and thoracic regions, imposes mechanical restrictions on the chest wall and diaphragm,
reducing lung compliance and overall respiratory efficiency [6]. This leads to diminished
lung expansion during inhalation, resulting in lower FVC values [6]. Additionally, obesity
is often associated with chronic low-grade inflammation, which can exacerbate respiratory
dysfunction [7]. These effects are more pronounced in individuals with severe obesity,
where the combination of mechanical limitations and metabolic disturbances further com-
promises lung volumes, increasing the risk of conditions like obesity hypoventilation
syndrome and restrictive lung disease [8].

The accumulation of fat in the abdominal region, especially visceral fat, has been
associated with impaired pulmonary function, mediated by increased inflammation due to
the increased number and activation of macrophages present in the visceral fat, which result
in increased synthesis and the release of higher amounts of pro-inflammatory mediators,
such as IL-1beta, IL-6, TNF-alpha, resistin, and leptin in the blood (serum or plasma), which
can impair lung function [9].

However, considering that not only obesity, but overweight results in the increased
accumulation of visceral fat, the present study investigated for the first time, whether
the possible accumulation of visceral fat in overweight and not only in obesity grade I
women could be associated with the impairment of lung function, lung mechanics, and
pulmonary and systemic immune response. In addition, this study investigated for the first
time whether this pro-inflammatory response was also present in the lungs of women with
overweight and obesity.

2. Material and Methods

All proceedings performed in this study were approved by the ethical committee of
the Federal University of Sao Paulo (registration number 3.411.606).

2.1. Volunteer Recruitment and Selection

Seventy-eight women were enrolled in the study and classified as follows: obesity
grade I (n = 28; 45.46 ± 10.38 years old), normal weight (n = 20; 43.20 ± 10.78 years old),
and overweight (n = 30; 47.27 ± 10.25 years old). All volunteers were recruited through a
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social program held in a public sports park in São José dos Campos, SP, Brazil, in the second
semester of 2019. The socioeconomic factors were also considered, since all volunteers
came from the same neighborhood (Campo dos Alemães neighborhood; with a total area
of ≈ 5 square kilometers). The sample size was a convenience sample as this study was
performed once as part of a social work into a very poor region of the city of Sao Jose
dos Campos, SP, Brazil. The program aims to encourage physical activity, particularly
among individuals with overweight or obesity grade I. The study sample consisted of
women with overweight or obesity grade I who were actively engaged in the program.
Participants were approached voluntarily and fully informed about the study. Afterward,
they signed the informed consent form before being enrolled in the study. Although no
financial incentives were provided (as it is prohibited in Brazil), the participants received
free health examinations and health guidance on physical activity as part of the program.
The exclusion criteria included regular practice of any type of physical activity performed
at least ≥1×/week, musculoskeletal diseases, cardiorespiratory diseases, active smoking,
and former smokers who quit less than 3 years prior to the beginning of the study. We
specifically excluded individuals with these conditions because they are known to directly
influence pulmonary function and respiratory mechanics. We acknowledge that such
factors could potentially affect the outcomes, and we controlled for these factors through
the initial anamnesis. Future studies may further explore the role of these additional factors
in lung function in this population.

2.2. Anthropometric and Body Composition Analysis

Height (cm) and weight (Kg) was measured using a mechanical scale with a stadiome-
ter (Welmy, São Paulo, Brazil). The body mass index (BMI) was calculated according
to the classical formula [BMI = body weight (Kg)/heigh2 (cm)]. For body classification
according to BMI level, we used the following: normal (BMI < 25); overweight (BMI ≥ 25);
obesity I (BMI ≥ 30) [10]. Body composition was analyzed based on weight and height
using octopolar multifrequency bioimpedance (Bioscan 920-II-S, Matron, UK) [11]. This
bioimpedance system displays the whole body and segmented body composition (i.e., total
body fat in % and in Kg, total fat free mass in % and in Kg, specific skeletal muscle in
Kg, body water in % and in litters, specific skeletal muscle hydration in litter, resistance,
reactance, phase angle, and impedance vector length) [11].

2.3. Lung Function and Mechanics

The lung function was evaluated by the spirometry test using a Master Screen spirom-
eter (Jaeger, Frankfurt, Germany) with the forced maneuver pre and post 400 mcg of
bronchodilator (salbutamol sulfate) [11,12]. The parameters evaluated were forced vital
capacity (FVC), forced expiratory volume in the first second (FEV1), the relation FEV1/FVC,
peak expiratory flow (PEF), and maximal expiratory flow at 25%, 50%, and 75% (MEF25%,
MEF50%, and MEF75%) [11,12].

The lung mechanics were evaluated by using the impulse oscillometry system (IOS)
[11,12]. This technique presents great clinical application, and is based on the evalua-
tion of the resistance of the respiratory system at different frequencies (R5 Hz, R20 Hz,
R5 Hz-R20 Hz, etc.), revealing the very specific resistance of the whole respiratory system
(R5 Hz), proximal airways (R20 Hz), distal airways (R5 Hz-R20 Hz), tissue impedance
(Z5 Hz), reactance (X5 Hz), and the resonant frequency (Fres) of the respiratory system. In
addition, this exam identifies the resistance and the elastance of the proximal and peripheral
lung tissue as independent parameters [12,13].

2.4. Systemic Inflammation and Immune Response

Five milliliters of venous blood was collected in a sterile vacuum tube containing
anticoagulant EDTA. After the collection, 25 ul of total blood was used to perform the
whole blood analysis (platelets, white and red cells) using the Sysmex XS-800i automatic
blood analyzer (Sysmex, Europe GmbH, Germany). The blood tube was centrifuged at
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1000× g, 7 min at 4 ◦C and the plasma was stored at −86 ◦C for measurements of the levels
of adiponectin (DY1065), IL-10 (DY217), IGF-1 (DY291), and klotho (DY5334-05) by DuoSet
ELISA (R&D Systems) using a Spectramax I3 multiplate reader (Molecular Devices, San
Jose, CA, USA) [13].

2.5. Pulmonary Humoral Immune Response

The humoral immune response was evaluated through the measurement of adiponectin
(DY1065), IL-10 (DY217), IGF-1 (DY291), and klotho (DY5334-05) in the breath condensate,
which was collected using an RT Tube (Respiratory Research, Austin, TX, USA). The mea-
surements were taken with DuoSet ELISA Kits (R&D Systems; Minneapolis, MN, USA),
and the readings were carried out using a Spectramax I3 multiplate reader (Molecular
Devices, San Jose, CA, USA) [13].

2.6. Statistical Analysis

The software GraphPad Prism 5.0 was used to perform the statistical analysis and
build graphs. The one-way ANOVA followed by Tukey’s test was used to perform the
comparisons among the groups. The statistical correlations were evaluated by Pearson’s
test. The statistical significance was denoted for p < 0.05.

3. Results
3.1. Volunteers’ Anthropometric and Clinical Characteristics

Table 1 shows that there were no differences for the age and height among all groups
(p > 0.05). On the other hand, the body weight (p < 0.001), body mass index (p < 0.001),
visceral fat area (p < 0.001), and fat mass (p < 0.001) were increased when the overweight
and obesity grade I groups were compared with the normal weight group. In addition,
the muscle mass was increased in the overweight (p < 0.05) and obesity grade I (p < 0.001)
groups when compared to the normal weight group.

Table 1. Clinical and anthropometrical characteristics.

Normal Weight p Value Overweight p Value Obesity Grade I p Value

Age 41.56 ± 10.92 p > 0.05 47.26 ± 10.25 p > 0.05 46.23 ± 10.70 p > 0.05

Body weight (Kg) 57.07 ± 6.47 p < 0.001 69.9 ± 5.29 p < 0.001 81.89 ± 8.85 p < 0.0001
Height (m) 1.57 ± 0.06 p > 0.05 1.57 ± 0.06 p > 0.05 1.60 ± 0.07 p > 0.05

BMI (Kg/m2) 22.80 ± 1.82 p < 0.001 28.13 ± 1.43 p < 0.001 32.08 ± 1.44 p < 0.001
Visceral fat area 81.65 ± 31.55 p < 0.001 140.96 ± 53.96 p < 0.001 199.85 ± 53.75 p < 0.001

Fat mass (%) 16.70 ± 70 p < 0.001 36.81 ± 2.87 p < 0.001 42.58 ± 3.56 p < 0.001

Muscle mass 20.99 ± 2.24 p < 0.05 22.78 ± 2.5 p < 0.05 24.27 ± 2.81 p < 0.001

Table 1—kilogram (Kg), meter (m), square meter (m2). The first p value corresponds to the comparison among
normal weight × overweight. The second p value corresponds to overweight × obesity grade I. The third p value
corresponds to normal weight × obesity grade I.

3.2. Possible Association Between Body Composition and Lung Function and Mechanics

Figure 1 shows the possible association of body composition and pulmonary function
and mechanics of women with obesity grade 1, overweight, and normal weight. It was
not possible to observe a significant correlation between visceral fat and lung function
in overweight women, however, the study showed a negative correlation between vis-
ceral fat and lung function in women in the obesity grade I group in Figure 1A FVC%
(R2 = 0.9129; p < 0.0236; 95% CI −0.7621 to −0.1014), Figure 1B FEV1% (R2 = 0.1079;
p < 0.0134; 95% CI −0.8323 to −0.2878), Figure 1C PEF% (R2 = 0.1673; p < 0.0018; 95%
CI −0.6098 to 0.1887), and Figure 1D VC IN% (R2 = 0.1330; p < 0.0057; 95% CI −0.7538 to
−0.08190).



Adv. Respir. Med. 2024, 92 552

Adv. Respir. Med. 2024, 92, FOR PEER REVIEW 5 
 

 

−0.8323 to −0.2878), Figure 1C PEF% (R2 = 0.1673; p < 0.0018; 95% CI −0.6098 to 0.1887), and 
Figure 1D VC IN% (R2 = 0.1330; p < 0.0057; 95% CI −0.7538 to −0.08190). 

A negative correlation was also presented in the group of normal weight women, as 
shown in Figure 1E FVC% (R2 = 0.1087; p <0.0463; 95% CI −0.5677 to −0.004746), Figure 1F 
FEV1% (R2 = 0.3804; p <0, 0001; 95% CI −0.6485 to −0.2353), and a positive correlation in 
Figure 1G in FEV1% CV MAX (L) (R2 = 0.2025; p <0.0356; 95% CI 0.009640 to 0.2493). It was 
not possible to observe significant correlations for the lung mechanics parameters ana-
lyzed by impulse oscillometry. 

 
Figure 1. Effects of visceral fat on the lung function test (spirometry). (A) Correlation of visceral fat 
with FVC% in women with obesity grade 1; (B) correlation of visceral fat with FEV1% in obesity 
grade 1 women; (C) correlation of visceral fat with PEF% in women with obesity grade 1; (D) corre-
lation of visceral fat with VC IN% in women with obesity grade 1; (E) correlation of visceral fat with 
FVC% in normal weight women; (F) correlation of visceral fat with FEV1% in normal weight 
women, and (G) correlation of visceral fat with FEV1% VC MAX (L) in normal weight women. 

Figure 1. Effects of visceral fat on the lung function test (spirometry). (A) Correlation of visceral fat
with FVC% in women with obesity grade 1; (B) correlation of visceral fat with FEV1% in obesity grade
1 women; (C) correlation of visceral fat with PEF% in women with obesity grade 1; (D) correlation of
visceral fat with VC IN% in women with obesity grade 1; (E) correlation of visceral fat with FVC%
in normal weight women; (F) correlation of visceral fat with FEV1% in normal weight women, and
(G) correlation of visceral fat with FEV1% VC MAX (L) in normal weight women.

A negative correlation was also presented in the group of normal weight women, as
shown in Figure 1E FVC% (R2 = 0.1087; p <0.0463; 95% CI −0.5677 to −0.004746), Figure 1F
FEV1% (R2 = 0.3804; p <0, 0001; 95% CI −0.6485 to −0.2353), and a positive correlation in
Figure 1G in FEV1% CV MAX (L) (R2 = 0.2025; p <0.0356; 95% CI 0.009640 to 0.2493). It was
not possible to observe significant correlations for the lung mechanics parameters analyzed
by impulse oscillometry.

3.3. Possible Association Between Body Composition and Systemic Inflammation and Immune
Response

Figure 2 shows the possible association between body composition and the systemic
inflammations’ immune response in women in the obesity grade I group and overweight.
A negative correlation among the anti-fibrotic protein klotho was observed for the first
time, as shown in Figure 2A (R2 = 0.09298; p < 0.0897; 95% CI −0.5555 to 0.04220), and
anti-inflammatory IL-10 (Figure 2B, R2 = 0.1653; p < 0.0487; 95% CI −0.1216 to −0.0003816)
in the plasma, so in contrast to the increased visceral fat. It was also possible to observe a
negative correlation in IL1-Ra, an interleukin-1 receptor antagonist that is responsible for
modulating a variety of immune and inflammatory responses related to IL-1 (Figure 2C,
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R2 = 0.09804; p <0.0385; 95% CI −0.08555 to −0.002424), and a positive correlation in
anti-inflammatory IL-10 (Figure 2D, R2 = 0.2530; p <0.0029; 95% CI 0.06800 to 0.2991) in
overweight women. In addition, a negative correlation was observed in anti-inflammatory
IL-10 (Figure 2E, R2 = 0.5901; p <0.0001; 95% CI −0.5010 to −0.2634) in women in the
normal weight group.
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Figure 2. Effects of visceral fat on systemic immune response. (A) Correlation of visceral fat with
plasma levels of anti-inflammatory and anti-fibrotic protein klotho in women in the obesity grade 1
group; (B) correlation of visceral fat with the plasma levels of the anti-inflammatory cytokine IL-10
in women in the obesity grade 1 group; (C) correlation of visceral fat with the plasma levels of the
natural inhibitor of the pro-inflammatory effect of IL1β cytokine IL1-RA in overweight women;
(D) correlation of visceral fat with the plasma levels of the anti-inflammatory cytokine IL-10 in
overweight women; (E) correlation of visceral fat with the plasma levels of the anti-inflammatory
cytokine IL-10 in the normal weight group.

3.4. Possible Association Between Body Composition and Pulmonary Humoral Immune Response

Figure 3 shows the possible association between body composition and pulmonary
humoral immune response. We observed, in contrast, the systemic inflammation im-
mune response in the breath condensate, where there was a positive correlation for
Figure 3A adiponectin (R2 = 0.5665; p < 0.0120; 95% CI 0.01218 to 0.07277), Figure 3B IL1-RA
(R2 = 0.2121; p < 0.0544; 95% CI −0.0007360 to 0.06957), and Figure 3C IL1-Beta (R2 = 0.3270;
p < 0.0084; 95% CI 0.004270 to 0.02522). Figure 3D also shows a positive correlation for
adiponectin (R2 = 0.2343; p < 0.0018; 95% CI 0.05153 to 0.2078) and IL-10 (Figure 3E,
R2 = 0.8346; p < 0.0464; 95% CI 0.0007469 to 0.09504) as well as a negative correlation for
IGF-1, (Figure 3F, R2 = 0.1731; p < 0.0022; 95% CI 0.0007469 to 0.09504) in the overweight
group . In addition, a negative correlation was observed in Figure 3G in IL-10 (R2 = 0.4495;



Adv. Respir. Med. 2024, 92 554

p < 0.0001; 95% CI −0.5957 to −0.2639) and IFG-1 (Figure 3H, R2 = 0.4665; p < 0.0001;
95% CI −0.2475 to −0.1110) in women in the normal weight group.
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Figure 3. Effects of visceral fat on pulmonary immune response. (A) Correlation of visceral fat
with the pulmonary levels of the anti-inflammatory adipokine adiponectin in women with obesity
grade 1; (B) correlation of visceral fat with the pulmonary levels of the natural inhibitor of the
pro-inflammatory effect of IL1β cytokine IL1-RA in the group with obesity; (C) correlation of visceral
fat with the pulmonary levels of the pro-inflammatory interleukin IL1-1β in the group with obesity;
(D) correlation of visceral fat with the pulmonary levels of the anti-inflammatory adipokine
adiponectin in overweight women; (E) correlation of visceral fat with levels of the pulmonary
anti-inflammatory cytokine IL-10 in overweight women; (F) correlation of visceral fat with the pul-
monary levels of IGF-1 in the overweight group; (G) correlation of visceral fat with levels of the
pulmonary anti-inflammatory cytokine IL-10 in women in the normal weight group; (H) correlation
of visceral fat with the pulmonary levels of IGF-1 in the normal weight group.

4. Discussion

The results of the present study show a direct influence of the visceral fat on the
impairment of the lung function, lung mechanics, and pulmonary and systemic immune
response of grade I obese women. Such results are totally new, except for lung function,
where the literature has already demonstrated a negative effect of visceral fat accumulation
in a few studies [9,14,15].
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Fat accumulation presents two classical characteristics: central and peripheral. Central
obesity displays fat accumulation mainly in the thorax, abdomen, and visceral organs, while
the peripheral displays more prominent accumulation in the hips, thighs, and subcutaneous
tissue. It is well-established that visceral fat is more metabolically active than subcutaneous
fat, presenting a close relation with the development of metabolic syndrome as well as
an association between metabolic syndrome and respiratory diseases such as asthma and
alterations in pulmonary function [4,16].

Thus, central obesity induces alterations in the respiratory pattern, characterized by
increased airway and respiratory resistance, and intra-abdominal pressure [4,16,17]. Such
alterations impair airflow, resulting in reduced airflow and oxygen deliverance at the alveoli
level. As observed in the present study, the increases in the visceral fat were followed by
reduced forced vital capacity (FVC), forced expired volume in the first second (FEV1), and
peak expiratory flow (PEF) in the group of women with obesity grade I. Therefore, such
impairments in FEV1 and PEF directly reflect an obstructive consequence of central obesity.
In addition, reduced FVC highlights central obesity-induced restrictive disturbance. Asa a
result, the present study showed that central obesity negatively affects both obstructive
and restrictive respiratory patterns.

In addition, individuals with obesity present a classical pattern of chronic sub-clinical
inflammation [18]. Visceral fat is the major player in the release of pro-inflammatory
cytokines in the context of obesity [19]. In the present study, an increase was observed not
only in the pro-inflammatory cytokines, but there was also a reduction in anti-inflammatory
cytokines such as klotho and IL-10 in the women presenting central obesity. Herein, the
present study showed a reduction in the plasma levels of the anti-inflammatory cytokine
IL-10 with an increased rate of visceral fat in women with obesity grade I. Similarly, in the
breath condensate, a reduction in IL-10 was also observed in the central obesity group as
well as in the sedentary normal weight women.

Klotho is a protein with anti-fibrotic and anti-aging properties [20] and as well as
IL-10 is important for controlling and reducing pro-inflammatory cytokines, and main-
taining anti-inflammatory signaling [21]. Specifically, klotho possesses the capability to
down-regulate IGF-1 [22]. In this way, the present study showed that obese women pre-
sented reduced plasma and pulmonary levels of klotho despite increased central obesity.
Furthermore, reduced levels of klotho have been associated with lower levels of IL-10 [23],
as observed in the present study. Such klotho-IGF-1-IL-10 signaling is growing as an im-
portant pathway involved in inflammatory and fibrotic diseases [24]. Beyond that, IL-1RA
is an anti-inflammatory cytokine, which is the active receptor antagonist for the potent
pro-inflammatory cytokine IL-1 [25]. In addition, an imbalance among IL-1 and IL-1RA has
been observed in inflammatory diseases [25], and with a particularly negative correlation
between the reduced plasma levels of IL-1RAd and an increase in visceral fat in overweight
women [25].

Several studies have analyzed the association in the increased levels of visceral fat
and reduction in plasma and serum levels of the anti-inflammatory adipokine adiponectin
[26–29]. The study from Borges et. al. identified a negative correlation between visceral fat
and the levels of plasma adiponectin, and beyond a positive correlation in gluteofemoral
fat, which is considered as a protective fat in the context of metabolic diseases [30]. The
present study went beyond demonstrating such a possible association not only systemically,
but also in the lungs, as measured and analyzed in the breath condensate, particularly in
women in the overweight and obesity grade I groups. These results are of note, as they
revealed for the first time that the classical systemic inflammatory response in overweight
and obesity is also present in the lungs, shedding important light on the role of pulmonary
immune dysregulation with impaired lung function in overweight and obesity.

Furthermore, obese individuals classically present higher levels of pro-inflammatory
cytokines including IL-1β, which is associated with a variety of diseases including can-
cer [31,32]. A positive correlation of IL-1β has been observed with the accumulation of
visceral fat in women with obesity grade I. Labrecque et. al. observed an induction of
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pro-inflammatory IL-1β, especially in the visceral fat obtained from patients submitted
to bariatric surgery [33]. In addition, IL-1β is associated with the triggering of insulin
like growth factor 1 IGF-1 [8–27]. On the other hand, conflicting results are shown in the
literature, some displaying higher [34–36], lower [37,38], or normal [39–41] levels of IGF-1
in overweight and obese individuals. IGF-1 is considered as an important growth factor for
cardiovascular systems, while lower levels of IGF-1 may contribute to an increase in cardio-
vascular and cerebrovascular diseases [42]. In the present study, a negative correlation of
IGF-1 was observed in the breath condensate of normal weight and overweight women.

Although the present study sheds some light on this important theme regarding how
fat distribution may impact lung function and the pulmonary immune response, the present
results should be considered with caution due to the small sample size, uncontrolled use of
medications, dietetic assessment, and enrollment only with women, which constitutes a
study limitation. An additional study limitation is related to the bioimpedance method,
which is weaker in comparison to other methods such as magnetic resonance, computerized
tomography, and dual energy X-ray absorptiometry. Another limitation related to the
bioimpedance method, which, while practical and widely used, is that it is less accurate
compared to more advanced techniques such as magnetic resonance imaging, computerized
tomography, and dual-energy X-ray absorptiometry. Furthermore, there is a potential for
selection bias, as the participants were recruited from a single public sports park. This
recruitment strategy may have led to a sample that is not fully representative of the general
population, potentially limiting the generalizability of the findings.

5. Conclusions

Therefore, we conclude that visceral fat, more than subcutaneous fat, may play a
pivotal role in the impairment of lung function, lung mechanics, and both systemic and
pulmonary immune responses in obese women. This finding underscores the distinct
metabolic and inflammatory profiles of visceral fat compared to subcutaneous fat, high-
lighting its contribution to respiratory dysfunction. Additionally, our results reveal that
the pro- and anti-inflammatory signaling typically observed systemically in individuals
with overweight and obesity is also evident within the lungs. This localized inflammatory
environment, particularly pronounced in obese women, suggests a potential link between
adiposity, lung tissue remodeling, and immune modulation, which may exacerbate respira-
tory compromise in this population.
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