Advances in Quaternary Studies: The Contribution of the Mammalian Fossil Record
Funding
Conflicts of Interest
References
- Barnosky, A.D. Transforming the global energy system is required to avoid the sixth mass extinction. MRS Energy Sustain. 2015, 2, 1–13. [Google Scholar] [CrossRef]
- McCallum, M.L. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers. Conserv. 2015, 24, 2497–2519. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R. The misunderstood sixth mass extinction. Science 2018, 360, 1080–1081. [Google Scholar] [PubMed]
- Keller, G.; Mateo, P.; Punekar, J.; Khozyem, H.; Gertsch, B.; Spangenberg, J.; Bitchong, A.M.; Adatte, T. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Res. 2018, 56, 69–89. [Google Scholar] [CrossRef]
- Sigwart, J.D.; Bennett, K.D.; Edie, S.M.; Mander, L.; Okamura, B.; Padian, K.; Wheeler, Q.; Winston, J.; Yeung, N. Measuring Biodiversity and Extinction–Present and Past. Integr. Comp. Biol. 2018, icy113. [Google Scholar] [CrossRef]
- Colbert, J.; Baguette, M.; Benton, T.G.; Bullock, J.M. (Eds.) Dispersal Ecology and Evolution; Oxford University Press: Oxford, UK, 2012; 462p. [Google Scholar]
- Palombo, M.R. Discrete dispersal bioevents of large mammals in Southern Europe in the post-Olduvai Early Pleistocene: A critical overview. Quat. Int. 2017, 431, 3–19. [Google Scholar] [CrossRef]
- Williams, J.E.; Blois, J.L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 2018, 45, 2175–2189. [Google Scholar] [CrossRef]
- Navarro, N.; Montuire, S.; Laffont, R.; Steimetz, E.; Onofrei, C.; Royer, A. Identifying Past Remains of Morphologically Similar Vole Species Using Molar Shapes. Quaternary 2018, 1, 20. [Google Scholar] [CrossRef]
- Athanassiou, A. A Villafranchian Hipparion-Bearing Mammal Fauna from Sésklo (E. Thessaly, Greece): Implications for the Question of Hipparion–Equus Sympatry in Europe. Quaternary 2018, 1, 12. [Google Scholar] [CrossRef]
- Pueyo, E.L.; Muñoz, A.; Laplana, C.; Parés, J.M. The Last Appearance Datum of Hipparion in Western Europe: Magnetostratigraphy along the Pliocene-Pleistocene boundary in the Villarroya Basin (northern Spain). Int. J. Earth Sci. 2016, 105, 2203–2220. [Google Scholar] [CrossRef]
- Rook, L.; Cirilli, O.; Bernor, R.L. A Late Occurring “Hipparion” from the middle Villafranchian of Montopoli, Italy (early Pleistocene; MN16b; ca. 2.5 Ma). Boll. Soc. Paleontol. Ital. 2017, 56, 333–339. [Google Scholar]
- Bernor, R.L.; Sun, B. Morphology through ontogeny of Chinese Proboscidipparion and Plesiohipparion and observations on their Eurasian and African relatives. Vertebr. Palasiat. 2015, 5, 73–92. [Google Scholar]
- Bernor, R.L.; Meshida, K.; Sun, B. Phylogenetic signature in the juvenile skulls and cheek teeth of Pleistocene Proboscidipparion sinense, China. Riv. Ital. Paleontol. Stratigr. 2015, 121, 255–264. [Google Scholar]
- Bertini, A.; Ciaranfi, N.; Marino, M.; Palombo, M.R. Proposal for Pliocene and Pleistocene land–sea correlation in the Italian area. Quat. Int. 2010, 219, 95–108. [Google Scholar] [CrossRef]
- Combourieu-Nebout, N.; Bertini, A.; Russo-Ermolli, E.; Peyron, O.; Klotz, S.; Montade, V.; Fauquette, S.; Allen, J.; Fusco, F.; Goring, S.; et al. Climate changes in the central Mediterranean and Italian vegetation dynamics since the Pliocene. Rev. Palaeobot. Palynol. 2015, 218, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Moreno, G.; Popescu, S.M.; Ivanov, D.; Suc, J.P. Neogene flora, vegetation and climate dynamics in southeastern Europe and the northeastern Mediterranean. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies; Williams, M., Haywood, A.M., Gregory, F.J., Schmidt, D.N., Eds.; The Micropalaeontological Society, Special Publications, The Geological Society: London, UK, 2007; pp. 503–516. [Google Scholar]
- Vlachos, E.; Tsoukala, E.; Crégut-Bonnoure, E.; Guérin, C.; Mol, D. The Paradise Lost of Milia (Grevena, Greece; Late Pliocene, Early Villafranchian, MN15/MN16a): Faunal Composition and Diversity. Quaternary 2018, 1, 13. [Google Scholar] [CrossRef]
- Backman, J.; Jakobsson, M.; Frank, M.; Sangiorgi, F.; Brinkhuis, H.; Stickley, C.; O’Regan, M.; Løvlie, R.; Pälike, H.; Spofforth, D.; et al. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography 2018, 23, PA1S03. [Google Scholar] [CrossRef]
- Whitehead, J.M.; Wotherspoon, S.; Bohaty, S.M. Minimal Antarctic sea ice during the Pliocene. Geology 2005, 33, 137–140. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 2018, 7, 10646. [Google Scholar] [CrossRef] [PubMed]
- Prescott, C.L.; Dolan, A.M.; Haywood, A.M.; Hunter, S.J.; Tindall, J.C. Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3. Glob. Planet. Chang. 2018, 161, 231–243. [Google Scholar] [CrossRef]
- Maslin, M.A.; Brierley, C.M. The role of orbital forcing in the Early Middle Pleistocene Transition. Quat. Int. 2015, 389, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Palombo, M.R. Faunal dynamics in SW Europe during the late Early Pleistocene: Palaeobiogeographical insights and biochronological issues. C. R. Palevol. 2018, 17, 247–261. [Google Scholar] [CrossRef]
- Koufos, G.D. New Material and Revision of the Carnivora, Mammalia from the Lower Pleistocene Locality Apollonia 1, Greece. Quaternary 2018, 1, 6. [Google Scholar] [CrossRef]
- Magri, D.; Palombo, M.R. Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat. Int. 2013, 288, 63–72. [Google Scholar] [CrossRef]
- Markova, A.; Puzachenko, A. Preliminary Analysis of European Small Mammal Faunas of the Eemian Interglacial: Species Composition and Species Diversity at a Regional Scale. Quaternary 2018, 1, 9. [Google Scholar] [CrossRef]
- Royer, A.; Sécher, A.; Langlais, M. A Brief Note on the Presence of the Common Hamster during the Late Glacial Period in southwestern France. Quaternary 2018, 1, 8. [Google Scholar] [CrossRef]
- Crégut-Bonnoure, E.; Boulbes, N.; Desclaux, E.; Marciszak, A. New Insights into the LGM and LG in Southern France (Vaucluse): The Mustelids, Micromammals and Horses from Coulet des Roches. Quaternary 2018, 1, 19. [Google Scholar] [CrossRef]
- Clements, F.E. Plant Succession: An Analysis of the Development of Vegetation; Carnegie Institution of Washington, Cornell University Library: Washington, DC, USA, 1926; pp. 1–658. [Google Scholar]
- Gleason, H.A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 1926, 53, 7–26. [Google Scholar] [CrossRef]
- Bhagwat, S.A.; Willis, K.J. Species persistence in northerly glacial refugia of Europe: A matter of chance or biogeographical traits? J. Biogeogr. 2008, 35, 464–482. [Google Scholar] [CrossRef]
- Godbold, A.; Schoepfer, S.; Shen, S.; Henderson, C.M. Precarious ephemeral refugia during the earliest Triassic. Geology 2017, 45, 607–610. [Google Scholar] [CrossRef]
- Morales-Barbero, J.; Martinez, P.A.; Ferrer-Castán, D.; Olalla-Tárraga, M.Á. Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography 2028, 41, 607–621. [Google Scholar] [CrossRef]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. Lond. B: Biol. Sci. 2010, 277, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Blois, J.L.; Hadly, E.A. Mammalian response to Cenozoic climate change. Annu. Rev. Earth Planet. Sci. 2009, 37, 181–208. [Google Scholar] [CrossRef]
- Palombo, M.R. Deconstructing mammal dispersals and faunal dynamics in SW Europe during the Quaternary. Quat. Sci. Rev. 2014, 96, 50–71. [Google Scholar] [CrossRef]
- Vrba, E.S. Mass turnover and heterochrony events in response to physical change. Paleobiology 2005, 31, 157–174. [Google Scholar] [CrossRef]
- Woodburne, M.O.; Gunnell, G.F.; Stucky, R.K. Climate directly influences Eocene mammal faunal dynamics in North America. Proc. Natl. Acad. Sci. USA 2009, 106, 13399–13403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croitor, R. A Description of Two New Species of the Genus Rucervus (Cervidae, Mammalia) from the Early Pleistocene of Southeast Europe, with Comments on Hominin and South Asian Ruminants Dispersals. Quaternary 2018, 1, 17. [Google Scholar] [CrossRef]
- Palombo, M.R. Biochronology of terrestrial mammals and Quaternary subdivisions: A case study of large mammals from the Italian peninsula. Il Quat. Ital. J. Quat. Sci. 2009, 22, 291–306. [Google Scholar]
- Rook, L.; Martínez-Navarro, B. Villafranchian: The long story of a Plio-Pleistocene European large mammal biochronologic unit. Quat. Int. 2010, 219, 134–144. [Google Scholar] [CrossRef]
- Agustì, J.; Lordkipanidze, D. Out of Africa: An alternative scenario for the first human dispersal in Eurasia. Mètode Sci. Stud. J.: Ann. Rev. 2018, 8, 98–105. [Google Scholar] [CrossRef]
- Boivin, N.; Petraglia, M. (Eds.) Human Dispersal and Species Movement; Cambridge University Press: Cambridge, UK, 2017; 529p. [Google Scholar]
- Dominguez-Rodrigo, M.; Pickering, T.R. The meat of the matter: An evolutionary perspective on human carnivory. Azania Archaeol. Res. Afr. 2017, 52, 4–32. [Google Scholar] [CrossRef]
- Lamb, H.F.; Bates, C.R.; Bryant, C.L.; Davies, S.J.; Huws, D.G.; Marshall, M.H.; Roberts, H.M. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Sci. Rep. 2018, 8, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, J.F.; Allen, J.; Williams, M.A.; Williams, A.N.; Turney, C.S.; Spooner, N.A.; Kamminga, J.; Brown, G.; Cooper, A. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl. Acad. Sci. USA 2018, 115, 8482–8490. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, J.A. Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 511, 29–51. [Google Scholar] [CrossRef]
- Rodríguez, J.; Mateos, A. Carrying capacity, carnivoran richness and hominin survival in Europe. J. Hum. Evol. 2018, 118, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Szymanek, M.; Julien, M.A. Early and Middle Pleistocene climate-environment conditions in Central Europe and the hominin settlement record. Quat. Sci. Rev. 2018, 198, 56–75. [Google Scholar] [CrossRef]
- Templeton, A.R. Chapter 5 -World Dispersals and Genetic Diversity of Mankind: The Out-of-Africa Theory and Its Challenges. Hum. Nat. 2017, 65–83. [Google Scholar] [CrossRef]
- Nagaoka, L.; Rick, T.; Wolverton, S. The overkill model and its impact on environmental research. Ecol. Evol. 2018, 8, 9683–9696. [Google Scholar] [CrossRef] [PubMed]
- Braje, T.J.; Erlandson, J.M. Human acceleration of animal and plant extinctions: A Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 2013, 4, 14–23. [Google Scholar] [CrossRef]
- Grayson, D.K.; Meltzer, D.J. A requiem for North American overkill. J. Archaeol. Sci. 2003, 30, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Lima-Ribeiro, M.S.; Diniz-Filho, J.A.F. Climate change, human overkill, and the extinction of megafauna: A macroecological approach based on pattern-oriented modelling. Evol. Ecol. Res. 2017, 18, 97–121. [Google Scholar]
- MacPhee, R.D.; Greenwood, A.D. Infectious disease, endangerment, and extinction. Int. J. Evol. Biol. 2013, 571939. [Google Scholar] [CrossRef] [PubMed]
- Raczka, M.F.; Bush, M.B.; De Oliveira, P.E. The collapse of megafaunal populations in southeastern Brazil. Quat. Res. 2018, 89, 103–118. [Google Scholar] [CrossRef]
- Řičánková, V.P.; Horsák, M.; Hais, M.; Robovský, J.; Chytrý, M. Environmental correlates of the Late Quaternary regional extinctions of large and small Palaearctic mammals. Ecography 2018, 41, 516–527. [Google Scholar] [CrossRef]
- Sandom, C.; Faurby, S.; Sandel, B.; Svenning, J.C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 2014, 281, 20133254. [Google Scholar] [CrossRef] [PubMed]
- Westaway, M.C.; Olley, J.; Grün, R. At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia. Quat. Sci. Rev. 2017, 157, 206–211. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, G.; Rodríguez, J.; Martín-González, J.A.; Mateos, A. Evaluating the impact of Homo-carnivore competition in European human settlements during the early to middle Pleistocene. Quat. Res. 2017, 88, 129–151. [Google Scholar] [CrossRef]
- Agam, A.; Barkai, R. Elephant and Mammoth Hunting during the Paleolithic: A Review of the Relevant Archaeological, Ethnographic and Ethno-Historical Records. Quaternary 2018, 1, 3. [Google Scholar] [CrossRef]
- Mauch Lenardić, J.; Radović, S.; Oros Sršen, A.; Horvatinčić, N.; Kostešić, P.; Bermanec, V. Mammoths, Deer, and a Dog: Fossil and (Sub) Recent Allochthonous Remains from the Northeastern Croatia (Podravina Region), with the First Radiocarbon Dating of the Croatian Woolly Mammoths (Mammuthus primigenius). Quaternary 2018, 1, 11. [Google Scholar] [CrossRef]
- Valli, A.M. Late Pleistocene Deer in the Region of the National Park “Serra da Capivara” (Piauí, Brazil). Quaternary 2018, 1, 4. [Google Scholar] [CrossRef]
- Mol, D.; Bijkerk, A.; Ballard, J.P. Deciduous Tusks and Small Permanent Tusks of the Woolly Mammoth, Mammuthus primigenius (Blumenbach, 1799) Found on Beaches in The Netherlands. Quaternary 2018, 1, 7. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palombo, M.R. Advances in Quaternary Studies: The Contribution of the Mammalian Fossil Record. Quaternary 2018, 1, 26. https://doi.org/10.3390/quat1030026
Palombo MR. Advances in Quaternary Studies: The Contribution of the Mammalian Fossil Record. Quaternary. 2018; 1(3):26. https://doi.org/10.3390/quat1030026
Chicago/Turabian StylePalombo, Maria Rita. 2018. "Advances in Quaternary Studies: The Contribution of the Mammalian Fossil Record" Quaternary 1, no. 3: 26. https://doi.org/10.3390/quat1030026
APA StylePalombo, M. R. (2018). Advances in Quaternary Studies: The Contribution of the Mammalian Fossil Record. Quaternary, 1(3), 26. https://doi.org/10.3390/quat1030026