Holocene Carbon Burial in Lakes of the Uinta Mountains, Utah, USA
Abstract
:1. Introduction
- What is the Holocene-scale rate of carbon storage in lakes of this study area?
- How does this long-term average rate compare with modern values?
- How much carbon is stored in these lakes?
2. Materials and Methods
2.1. Study Area
2.2. Field Methods
2.3. Analytical Methods
2.3.1. Phase I: Measuring Water and C Content, Estimating Bulk Density
2.3.2. Phase II: Estimation of the Holocene Carbon Accumulation Rate and Carbon Stock
2.3.3. Phase III: Extrapolating Using Spatial Predictors
2.3.4. Phase IV: Extrapolating to Landscape Scale
3. Results
3.1. Phase I: Measuring Water and C Content, Estimating Bulk Density
3.2. Phase II: Estimation of the Holocene Carbon Accumulation Rate and Carbon Stock
3.3. Phase III: Extrapolating Using Spatial Predictors
3.4. Phase IV: Extrapolating to Landscape Scale
3.5. Carbon Content of Modern Sediment
4. Discussion
4.1. Carbon Accumulation Rates
4.2. The Carbon Content of Recent Sediments Relative to the Long-Term Average
4.3. Carbon Pools
4.4. Limitations and Directions for Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnética 2010, 29, 9–24. [Google Scholar]
- Mulholland, P.J.; Elwood, J.W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 1982, 34, 490–499. [Google Scholar] [CrossRef]
- Einsele, G.; Yan, J.; Hinderer, M. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob. Planet. Chang. 2001, 30, 167–195. [Google Scholar] [CrossRef]
- Chmiel, H.E.; Kokic, J.; Denfeld, B.A.; Einarsdóttir, K.; Wallin, M.B.; Koehler, B.; Isidorova, A.; Bastviken, D.; Ferland, M.-È.; Sobek, S. The role of sediments in the carbon budget of a small boreal lake. Limnol. Oceanogr. 2016, 61, 1814–1825. [Google Scholar] [CrossRef]
- Kortelainen, P.; Pajunen, H.; Rantakari, M.; Saarnisto, M. A large carbon pool and small sink in boreal Holocene lake sediments. Glob. Chang. Biol. 2004, 10, 1648–1653. [Google Scholar] [CrossRef]
- Anderson, N.J.; D’andrea, W.; Fritz, S.C. Holocene carbon burial by lakes in SW Greenland. Glob. Chang. Biol. 2009, 15, 2590–2598. [Google Scholar] [CrossRef]
- Kastowski, M.; Hinderer, M.; Vecsei, A. Long-term carbon burial in European lakes: Analysis and estimate. Glob. Biogeochem. Cycles 2011, 25, GB3019. [Google Scholar] [CrossRef]
- Ferland, M.-E.; Giorgio, P.A.; Teodoru, C.R.; Prairie, Y.T. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Glob. Biogeochem. Cycles 2012, 26, GB0E04. [Google Scholar] [CrossRef]
- Dean, W.E., Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. 1974, 44, 242–248. [Google Scholar]
- Dong, X.; Anderson, N.J.; Yang, X.; Shen, J. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Chang. Biol. 2012, 18, 2205–2217. [Google Scholar] [CrossRef]
- Clow, D.W.; Stackpoole, S.M.; Verdin, K.L.; Butman, D.E.; Zhu, Z.; Krabbenhoft, D.P.; Striegl, R.G. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environm. Sci. Technol. 2015, 49, 7614–7622. [Google Scholar] [CrossRef]
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [PubMed]
- Heathcote, A.J.; Anderson, N.J.; Prairie, Y.T.; Engstrom, D.R.; del Giorgio, P.A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 2015, 6, 10016. [Google Scholar] [CrossRef] [PubMed]
- Dean, W.E.; Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 1998, 26, 535–538. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Sundquist, E.T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 1992, 356, 589. [Google Scholar] [CrossRef]
- Dillon, P.J.; Molot, L.A. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 1997, 36, 29–42. [Google Scholar] [CrossRef]
- Campbell, I.D.; Campbell, C.; Vitt, D.H.; Kelker, D.; Laird, L.D.; Trew, D.; Kotak, B.; LeClair, D.; Bayley, S. A first estimate of organic carbon storage in Holocene lake sediments in Alberta, Canada. J. Paleolimnol. 2000, 24, 395–400. [Google Scholar] [CrossRef]
- Einola, E.; Rantakari, M.; Kankaala, P.; Kortelainen, P.; Ojala, A.; Pajunen, H.; Mäkelä, S.; Arvola, L. Carbon pools and fluxes in a chain of five boreal lakes: A dry and wet year comparison. J. Geophys. Res. Biogeosci. 2011, 116, G03009. [Google Scholar] [CrossRef]
- Menounos, B. The water content of lake sediments and its relationship to other physical parameters: An alpine case study. Holocene 1997, 7, 207–212. [Google Scholar] [CrossRef]
- Bradley, W.H. Geomorphology of the North Flank of the Uinta Mountains; US Government Printing Office: Washington, DC, USA, 1936.
- Sears, J.; Graff, P.; Holden, G. Tectonic evolution of lower Proterozoic rocks, Uinta Mountains, Utah and Colorado. Geol. Soc. Am. Bull. 1982, 93, 990–997. [Google Scholar] [CrossRef]
- Dehler, C.M.; Porter, S.M.; De Grey, L.D.; Sprinkel, D.A.; Brehm, A. The Neoproterozoic Uinta Mountain Group revisited; a synthesis of recent work on the Red Pine Shale and related undivided clastic strata, northeastern Utah, U. S. A. Soc. Sediment. Geol. 2007, 86, 151–166. [Google Scholar]
- Munroe, J.S.; Laabs, B.J.C. Glacial Geologic Map of the Uinta Mountains Area, Utah and Wyoming; Utah Geological Survey: Cedar City, Utah, 2009.
- Munroe, J.; Laabs, B.; Shakun, J.; Singer, B.; Mickelson, D.; Refsnider, K.; Caffee, M. Latest Pleistocene advance of alpine glaciers in the southwestern Uinta Mountains, Utah, USA: Evidence for the influence of local moisture sources. Geology 2006, 34, 841–844. [Google Scholar] [CrossRef]
- Laabs, B.J.C.; Refsnider, K.A.; Munroe, J.S.; Mickelson, D.M.; Applegate, P.J.; Singer, B.S.; Caffee, M.W. Latest Pleistocene glacial chronology of the Uinta Mountains: Support for moisture-driven asynchrony of the last deglaciation. Quat. Sci. Rev. 2009, 28, 1171–1187. [Google Scholar] [CrossRef]
- Atwood, W.W. Lakes of the Uinta Mountains. Bull. Am. Geogr. Soc. 1908, 40, 12–17. [Google Scholar] [CrossRef]
- Atwood, W.W. Glaciation of the Uinta and Wasatch Mountains; US Government Printing Office: Washington, DC, USA, 1909; Volume 61.
- Hundey, E.J.; Moser, K.A.; Longstaffe, F.J.; Michelutti, N.; Hladyniuk, R. Recent changes in production in oligotrophic Uinta Mountain lakes, Utah, identified using paleolimnology. Limnol. Oceanogr. 2014, 59, 1987–2001. [Google Scholar] [CrossRef]
- Shaw, J.D.; Long, J.N. Forest ecology and biogeography of the Uinta Mountains, USA. Arct. Antarct. Alp. Res. 2007, 39, 614–628. [Google Scholar] [CrossRef]
- Munroe, J.S. Physical, chemical, and thermal properties of soils across a forest-meadow ecotone in the Uinta Mountains, Northeastern Utah, USA. Arct. Antarct. Alp. Res. 2012, 44, 95–106. [Google Scholar] [CrossRef]
- Munroe, J.S.; Mickelson, D.M. Last Glacial Maximum equilibrium-line altitudes and paleoclimate, northern Uinta Mountains, Utah, U.S.A. J.Glaciol. 2002, 48, 257–266. [Google Scholar] [CrossRef]
- Munroe, J.S. Holocene timberline and palaeoclimate of the northern Uinta Mountains, northeastern Utah, USA. Holocene 2003, 13, 175–185. [Google Scholar] [CrossRef]
- Munroe, J.S. Investigating the spatial distribution of summit flats in the Uinta Mountains of northeastern Utah, USA. Geomorphology 2006, 75, 437–449. [Google Scholar] [CrossRef]
- Munroe, J.S. Properties of alpine soils associated with well-developed sorted polygons in the Uinta Mountains, Utah, USA. Arct. Antarct. Alp. Res. 2007, 39, 578–591. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Munroe, J.S. Organic carbon pools and genesis of alpine soils with permafrost: A review. Arct. Antarct. Alp. Res. 2014, 46, 987–1006. [Google Scholar] [CrossRef]
- Reasoner, M.A. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. J. Paleolimnol. 1993, 8, 273–281. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and code for ‘classical’age-modelling of radiocarbon sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Munroe, J.S.; Laabs, B.J. Combining radiocarbon and cosmogenic ages to constrain the timing of the last glacial-interglacial transition in the Uinta Mountains, Utah, USA. Geology 2017, 45, 171–174. [Google Scholar] [CrossRef]
- Munroe, J.S.; Klem, C.M.; Bigl, M.F. A lacustrine sedimentary record of Holocene periglacial activity from the Uinta Mountains, Utah, U.S.A. Quat. Res. 2013, 79, 101–109. [Google Scholar] [CrossRef]
- Blais, J.M.; Kalff, J. The influence of lake morphometry on sediment focusing. Limnol. Oceanogr. 1995, 40, 582–588. [Google Scholar] [CrossRef]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry; an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Pajunen, H. Lake Sediments: Their Carbon Store and Related Accumulation Rates; Special Paper; Geological Survey Of Finland: Espoo, Finland, 2000; pp. 39–70.
- Rea, D.K.; Bourbonniere, R.A.; Meyers, P.A. Southern Lake Michigan sediments: Changes in accumulation rate, mineralogy, and organic content. J. Great Lakes Res. 1980, 6, 321–330. [Google Scholar] [CrossRef]
- Anderson, N.J.; Dietz, R.D.; Engstrom, D.R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131278. [Google Scholar] [CrossRef]
- Corbett, L.B.; Munroe, J.S. Investigating the influence of hydrogeomorphic setting on the response of lake sedimentation to climatic changes in the Uinta Mountains, Utah, USA. J. Paleolimnol. 2010, 44, 311–325. [Google Scholar] [CrossRef]
- Reynolds, R.L.; Mordecai, J.S.; Rosenbaum, J.G.; Ketterer, M.E.; Walsh, M.K.; Moser, K.A. Compositional changes in sediments of subalpine lakes, Uinta Mountains (Utah): Evidence for the effects of human activity on atmospheric dust inputs. J. Paleolimnol. 2010, 44, 161–175. [Google Scholar] [CrossRef]
- Salt Lake Community Corporation Salt Lake City Community Carbon Footprint. Available online: http://www.slcdocs.com/slcgreen/SLC%20Community%20Carbon%20Footprint%20Report%20(2).pdf (accessed on 19 February 2019).
- The World Bank CO2 Emissions (Metric Tons Per Capita). Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC (accessed on 19 February 2019).
- Munroe, J.S. Exploring relationships between watershed properties and Holocene loss-on-ignition records in high-elevation lakes, southern Uinta Mountains, Utah, U.S.A. Arct. Antarct. Alp. Res. 2007, 39, 556–565. [Google Scholar] [CrossRef]
- Munroe, J.S. Hydrogeomorphic controls on Holocene lacustrine loss-on-ignition records. J. Paleolimnol. 2019, 61, 53–68. [Google Scholar] [CrossRef]
Lake ID | Lake Name | Latitude North DD MM.mmm | Longitude West DD MM.mmm | Elevation asl m | Water Depth m | Lake Area ha | AW/AL * | Hydrology ** | Core Length cm | Holocene Thickness cm | Water Measurements n | Carbon Measurements n |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4-01 | Marshall | 40° 40.538 | 110° 52.452 | 3043 | 10.7 | 8.0 | 7.5 | 1 | 190 | 150 | 190 | 184 |
04-02 | Hoover | 40° 40.824 | 110° 50.824 | 3018 | 7.9 | 7.8 | 17.8 | 4 | 156 | 127 | 156 | 155 |
04-03 | Pyramid | 40° 39.192 | 110° 54.094 | 2957 | 10.7 | 5.8 | 13.3 | 1 | 180 | 180 | 180 | 179 |
04-04 | Elbow | 40° 47.619 | 110° 02.502 | 3326 | 10.7 | 10.0 | 33.5 | 2 | 217 | 159 | 217 | 215 |
04-06 | Swasey | 40° 40.048 | 110° 28.000 | 3267 | 9.5 | 14.6 | 21.7 | 2 | 198 | 154 | 198 | 192 |
04-07 | Spider | 40° 42.019 | 110° 28.756 | 3316 | 12.8 | 8.1 | 44.8 | 3 | 324 | 324 | 324 | 324 |
04-08 | Little Superior | 40° 44.003 | 110° 28.461 | 3417 | 9.5 | 6.0 | 51.8 | 3 | 264 | 264 | 264 | 263 |
04-09 | North Star | 40° 45.195 | 110° 27.075 | 3474 | 5.8 | 5.8 | 49.7 | 4 | 198 | 183 | 198 | 198 |
05-01 | Reader | 40° 47.445 | 110° 03.583 | 3341 | 4.0 | 4.8 | 11.3 | 2 | 246 | 233 | 246 | 246 |
05-02 | Ostler | 40° 45.579 | 110° 46.749 | 3218 | 5.2 | 5.3 | 21.9 | 2 | 213 | 213 | 212 | 212 |
05-03 | Kermsuh | 40° 44.876 | 110° 49.926 | 3145 | 5.2 | 3.9 | 68.2 | 3 | 219 | 219 | 219 | 219 |
05-04 | Ryder | 40° 43.540 | 110° 49.688 | 3243 | 17.4 | 8.6 | 17.3 | 3 | 347 | 317 | 347 | 347 |
05-05 | Lower Red Castle | 40° 48.793 | 110° 27.762 | 3279 | 9.1 | 17.6 | 65.8 | 4 | 142 | 130 | 142 | 142 |
05-06 | Bald | 40° 52.030 | 110° 29.540 | 3367 | 7.0 | 2.2 | 14.5 | 1 | 355 | 341 | 355 | 355 |
05-07 | Hessie | 40° 52.102 | 110° 25.742 | 3237 | 6.1 | 5.3 | 7.5 | 1 | 258 | 258 | 258 | 258 |
05-08 | Deadhorse | 40° 44.711 | 110° 40.381 | 3316 | 12.5 | 5.8 | 12.8 | 3 | 199 | 205 | 199 | 194 |
05-09d | Island | 40° 49.796 | 110° 08.684 | 3285 | 11.4 | 45.3 | 24.1 | 4 | 308 | 213 | 308 | 308 |
05-10 | Taylor | 40° 47.193 | 110° 05.478 | 3421 | 11.0 | 9.0 | 35.4 | 3 | 270 | 219 | 257 | 257 |
06-01 | Upper Lily Pad | 40° 37.665 | 110° 15.993 | 3129 | 9.8 | 4.0 | 76.3 | 2 | 371 | 245 | 371 | 371 |
Lake ID | Lake Name | Holocene C g/cm2 | Predicted C g/cm2 | Accumulation Rate g/m2/yr |
---|---|---|---|---|
04-01 | Marshall Lake | 4.09 | 5.82 | 3.49 |
04-02 | Hoover Lake | 3.63 | 4.4 | 3.10 |
04-03 | Pyramid Lake | 6.27 | 6.77 | 5.36 |
04-04 | Elbow Lake | 8.77 | 7.23 | 7.49 |
04-06 | Swasey Lake | 4.57 | 4.58 | 3.91 |
04-07 | Spider Lake | 9.76 | 10.45 | 8.34 |
04-08 | Little Superior Lake | 7.51 | 6.19 | 6.42 |
04-09 | North Star Lake | 4.04 | 3.84 | 3.45 |
05-01 | Reader Lake | 6.18 | 5.01 | 5.28 |
05-02 | Ostler Lake | 4.91 | 4.53 | 4.20 |
05-03 | Kermsuh Lake | 4.86 | 6.47 | 4.15 |
05-04 | Ryder Lake | 10.87 | 10.42 | 9.29 |
05-05 | Lower Red Castle Lake | 4.51 | 4.17 | -- |
05-06 | Bald Lake | 8.05 | 8.56 | 6.88 |
05-07 | Hessie Lake | 17.02 | 4.74 | -- |
05-08 | Dead Horse Lake | 2.81 | 8.74 | -- |
05-09d | Island Lake | 3.35 | 3.06 | 2.87 |
05-10 | Taylor Lake | 4.40 | 6 | 3.76 |
06-01 | Upper Lily Pad | 9.44 | 7.35 | 8.07 |
Model Term | Coefficient | Significance |
---|---|---|
Intercept | 34.379 | 0.000 |
Lake Area (log10) | −7.193 | 0.000 |
Lake Depth | 0.559 | 0.000 |
Shoreline Complexity (log10) | 11.154 | 0.014 |
Cored Lakes n = 19 | Carbon Stock g/cm2 | Accumulation Rate g/m2/yr | Lakes with Depths n = 414 | Carbon Stock g/cm2 | Accumulation Rate g/m2/yr |
---|---|---|---|---|---|
max | 17.02 | 14.55 | max | 23.99 | 20.51 |
min | 2.81 | 2.40 | min | 0.09 | 0.08 |
median | 4.91 | 4.20 | median | 6.09 | 5.21 |
mean | 6.58 | 5.63 | mean | 6.35 | 5.43 |
Cored Lakes n = 19 | Total Carbon Pool Mt | Accumulation Rate Mt/yr | Lakes with Depths n = 414 | Total Carbon Pool Mt | Accumulation Rate Mt/yr |
---|---|---|---|---|---|
median | 587622 | 50 | median | 729111 | 62 |
mean | 787766 | 67 | mean | 760713 | 65 |
smallest 25% | 800454 | 68 | smallest 25% | 967201 | 83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munroe, J.; Brencher, Q. Holocene Carbon Burial in Lakes of the Uinta Mountains, Utah, USA. Quaternary 2019, 2, 13. https://doi.org/10.3390/quat2010013
Munroe J, Brencher Q. Holocene Carbon Burial in Lakes of the Uinta Mountains, Utah, USA. Quaternary. 2019; 2(1):13. https://doi.org/10.3390/quat2010013
Chicago/Turabian StyleMunroe, Jeffrey, and Quinn Brencher. 2019. "Holocene Carbon Burial in Lakes of the Uinta Mountains, Utah, USA" Quaternary 2, no. 1: 13. https://doi.org/10.3390/quat2010013
APA StyleMunroe, J., & Brencher, Q. (2019). Holocene Carbon Burial in Lakes of the Uinta Mountains, Utah, USA. Quaternary, 2(1), 13. https://doi.org/10.3390/quat2010013