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We would like to thank Gebregiorgis et al. for their comments [1].
We contend that Gebregiorgis et al. have misconstrued the significance of the Chinese speleothem

δ18O proxy. On the basis of modern observations, it has long been recognized that variations in the
seasonal pattern of rainfall (cave) δ18O, rather than rainfall amount, drive a large spatial coherency
across the East Asian summer monsoon (EASM) region that is closely and principally linked to the
scale of monsoon circulation (e.g., [2–4]). Correspondingly, it is generally agreed that the “southern
flood–northern drought” dipole pattern reflects a weak EASM scenario and vice versa. Both modern
observations and paleo-reconstructions indicate that a weak (strong) EASM leads to a longer (shorter)
residence of the monsoon rain-belt in South (North) China, which results in the observed dipole pattern
of rainfall amount [5,6].

On orbital–millennial timescales, Chinese speleothem δ18O records also show consistent variations
across the EASM domain; however, the associated spatial changes in rainfall amount may have large
regional differences, as suggested by both model simulations (e.g., [5,7]) and observations (e.g., [5,6]).
Analogous to the seasonal variation, the orbital–millennial variability of Chinese speleothem δ18O was
thus explained as a proxy of broader EASM intensity, rather than local rainfall amount (e.g., [8–11]).
This point was emphasized in Section 4.1, entitled “Significance of speleothem δ18O as a climate proxy
in the EASM area”, of our article [12] and in a number of recent papers (e.g., [11,13]). Along the lines of
this reasoning, evidence of increased rainfall and discharge derived from the Yangtze River Valley into
the East China Sea would suggest a weak EASM scenario. Similarly, more rainfall in the Andaman Sea
might reflect a weak rather than strong Indian summer monsoon (ISM), as shown by model results
(e.g., Figure 1 in [14]). The apparent ~9 kyr lag of the rainfall peak to Northern Hemisphere summer
insolation, inferred from the Andaman Sea record at the precessional band [15], is more plausibly
consistent with, rather than contradictory to, the Chinese cave records, because it may in fact correspond
to a relatively weak ISM state. This interpretation not only reconciles the phase offset between cave and
marine proxy records, but it is broadly consistent with monsoon dynamics (e.g., [13]).

The aim of our article (Zhang et al. (2019)) was to review EASM variability and associated
mechanisms at key timescales from published Chinese cave records (the caves located in Southwest
China are influenced by ISM) as one of the projects of the Speleothem Isotopes Synthesis and Analysis
(SISAL) working group [12]. Therefore, a comprehensive review on marine and other terrestrial proxy
records is clearly beyond the scope of our paper. Nevertheless, we noted that the interpretation of the
Arabian Sea records (i.e., [16,17]) remains inconclusive (i.e., [18–24]). According to model simulations,
rainfall amount variations are not very sensitive to the precession change over a large portion of
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the Chinese Loess Plateau (e.g., [25,26]). Additionally, the recent carbon-isotope record of inorganic
carbonate in Chinese loess (δ13CIC, a proxy of monsoon-induced vegetation density) also revealed
a persistent precession periodicity which is nearly in-phase with Northern Hemisphere summer
insolation [27]. Furthermore, the broad consistency between cave δ18O records across the vast Asian
monsoon domain, including the ISM and EASM regions, precludes the attribution of orbital-scale shifts
in cave δ18O predominantly to changes in moisture sources and pathways. For example, although an
alternation in the moisture source between the proximal Pacific Ocean and the remote Indian Ocean
can theoretically influence EASM cave records, it could not have simultaneously produced the broadly
coherent Holocene pattern observed in cave δ18O records, including those from regions highly sensitive
to the alternation in the moisture source (e.g., [4,13,28]).

In summary, the arguments of Gebregiorgis et al. (2020) [1] regarding the divergence between
Chinese cave δ18O records and marine/loess records stem at least partially from the interpretation
of the monsoon intensity as local rainfall amount. Based on the current understanding of monsoon
dynamics, such a divergence might be explicable [13].

We thank the editor for giving us the opportunity to provide a reply to the letter.
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