The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sedimentological Analyses
2.3. Luminescence Dating
3. Results
3.1. Luminescence Properties
3.2. Stratigraphy and OSL Ages of Terrace T2/2
3.3. Stratigraphy and OSL Ages of Terrace T2/1
4. Discussion
4.1. Reconstruction of Terrace Development with a Climatic Approach
4.2. The Potential Role of Tectonic Forcing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schumm, S.A. Geomorphic thresholds concept and its applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Gábris, G. A folyóvízi teraszok hazai kutatásának rövid áttekintése—A teraszok kialakulásának és korbeosztásának új magyarázata. Földrajzi Közlemények 2013, 137, 240–247. [Google Scholar]
- Starkel, L.; Michczyńska, D.J.; Gębica, P.; Kiss, T.; Panin, A.; Perşoiu, I. Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8 ka cal BP). Quat. Int. 2015, 388, 97–118. [Google Scholar] [CrossRef]
- Bulla, B. A Magyar medence pliocén es pleisztocén teraszai. Földrajzi Közlemények 1941, 69, 199–230. [Google Scholar]
- Pécsi, M. A Magyarországi Duna-Völgy Kialakulása és Felszínalaktana; Akadémiai Kiadó: Budapest, Hungary, 1959; p. 346. [Google Scholar]
- Vandenberghe, J. Timescales, climate and river development. Quat. Sci. Rev. 1995, 14, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Gábris, G. A magyarországi folyóteraszok kialakulásának és korbeosztásának magyarázata az oxigénizotóp sztratigráfia tükrében. Földrajzi Közlemények 2006, 130, 123–133. [Google Scholar]
- Starkel, L.; Gębica, P.; Superson, J. Last Glacial–Interglacial cycle in the evolution of river valleys in southern and central Poland. Quat. Sci. Rev. 2007, 26, 2924–2936. [Google Scholar] [CrossRef] [Green Version]
- Schumm, S.A.; Dumont, J.F.; Holbrook, J.M. Active Tectonics and Alluvial Rivers; Cambridge University Press: Cambridge, UK, 2002; p. 276. [Google Scholar]
- Necea, D.; Fielitz, W.; Matenco, L. Late Pliocene–Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology. Tectonophysics 2005, 410, 137–156. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Wang, X.; Lu, H. Differential impact of small-scaled tectonic movements on fluvial morphology and sedimentology (the Huang shui catchment, NE Tibet Plateau). Geomorphology 2011, 134, 171–185. [Google Scholar] [CrossRef]
- Pécsi, M. A Dunai Alföld; Akadémia Kiadó: Budapest, Hungary, 1967. [Google Scholar]
- Ruszkiczay-Rüdiger, Z.; Fodor, L.; Bada, G.; Leel-Őssy, S.; Horváth, E.; Dunai, T.J. Quantification of Quaternary vertical movements in the central Pannonian Basin: A review of chronologic data along the Danube River, Hungary. Tectonophysics 2005, 410, 157–172. [Google Scholar] [CrossRef]
- Bulla, B. Folyóterasz-problémák. Földrajzi Közlemények 1956, 80, 121–141. [Google Scholar]
- Schanz, S.A.; Montgomery, D.R.; Collins, B.D.; Duvall, A.R. Multiple paths to straths: A review and reassessment of terrace genesis. Geomorphology 2018, 312, 12–23. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Wulf, H.; Preusser, F.; Strecker, M.R. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth Planet. Sci. Lett. 2015, 428, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Thiede, R.C.; Schildgen, T.F.; Wittmann, H.; Bookhagen, B.; Scherler, D.; Jain, V.; Strecker, M.R. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India. Earth Planet. Sci. Lett. 2016, 449, 321–331. [Google Scholar] [CrossRef]
- Malatesta, L.C.; Avouac, J.-P. Contrasting river incision in north and south Tian Shan piedmonts due to variable glacial imprint in mountain valleys. Geology 2018, 6, 659–662. [Google Scholar] [CrossRef]
- Kiss, T.; Hernesz, P.; Sümeghy, B.; Györgyövics, K.; Sipos, G. The evolution of the Great Hungarian Plain fluvial system—Fluvial processes in a subsiding area from the beginning of the Weichselian. Quat. Int. 2015, 388, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Bendefy, L. A Maros geomorfológiája, Az Erdélyi-medence mai vízrendszerének földtani kialakulása. In Vízrajzi Atlasz Sorozat 19. kötet. Maros 1. Fejezet. Hidrográfia, Geomorfológia; Csoma, J., Laczay, I., Eds.; Országos Vízügyi Főigazgatóság: Budapest, Hungary, 1975; pp. 13–14. [Google Scholar]
- Berec, B.; Gábris, G. A Maros hordalékkúp bánsági szakasza. In Kárpát-Medence: Természet, Társadalom, Gazdaság (Földrajzi Tanulmányok); Frisnyák, S., Gál, A., Eds.; Nyíregyházi Főiskola Turizmus és Földrajztudományi Intézet; Hajdúböszörményi Bocskai István Gimnázium: Nyíregyháza, Hungary, 2013; pp. 51–64. [Google Scholar]
- Molnár, B. A Maros folyó kialakulása és vízgyűjtő területének földtani felépítése. Hidrológiai Közlöny 2007, 87, 27–30. [Google Scholar]
- Sawicki, L.M. Pryczynki do morfologii Seidemiogrodu.—Beiträge zur Morphologie Siebenbürgens. In Bulletin International De L’académie des Sciences; Impimerie De L’université: Kraków, Poland, 1912. [Google Scholar]
- Pávai Vajna, F. A Maros-völgy kalakulásáról. Földtani Közlöny 1914, 44, 256–280. [Google Scholar]
- Popp, N. Valea hunedoreană a Mureşului. Lucr. Şt. Inst. Ped. Oradea, seria A. Geografie, Ed; Intitutul de Invatamint Superior din Ordadea, Ordadea, Romania, 1977; 171–178. [Google Scholar]
- Mike, K. Magyarország Ősrajza és Felszíni Vizeinek Története; Aqua Kiadó: Budapest, Hungary, 1991; pp. 361–577. [Google Scholar]
- Braumann, S.M.; Neuhuber, S.; Fiebig, M.; Schaefer, J.M.; Hintersberger, E.; Lüthgens, C. Challenges in constraining ages of fluvial terraces in the Vienna Basin (Austria) using combined isochron burial and pIRIR225 luminescence dating. Quat. Int. 2019, 509, 87–102. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Qiu, W.-L.; Hu, G.; Zhou, L.-P. Determining the Age of Terrace Formation Using Luminescence Dating—A Case of the Yellow River Terraces in the Baode Area, China. Methods Protoc. 2020, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Murray, A.S.; Bøtter-Jensen, L. Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments. Quaternaire 2004, 15, 143–157. [Google Scholar] [CrossRef]
- Tóth, O.; Sipos, G.; Kiss, T.; Bartyik, T. Variation of OSL residual doses in terms of coarse and fine grain modern sediments along the Hungarian section of the Danube. Geochronometria 2017, 44, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Anechitei-Deacu, V.; Timar-Gabor, A.; Constantin, D.; Trandafir-Antohi, O.; Valle, L.; Fornós, J.; Gómez-pujol, L.; Wintle, A. Assessing the maximum limit of SAR-OSL dating using quartz of different grain sizes. Geochronometria 2018, 45, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Konecsny, K.; Bálint, G. Low water related hydrological hazards along the lower Mures/Maros River. Riscuri Si Catastr. 2009, 8, 202–207. [Google Scholar]
- Katona, O.; Sipos, G.; Onaca, A.; Ardelean, F. Reconstruction of palaeo-hydrology and fluvial architerture at the Orosháza palaeo-channel of River Maros, Hungary. J. Enviromental Geogr. 2012, 5, 29–38. [Google Scholar] [CrossRef]
- Bartyik, T.; Sipos, G.; Filyó, D.; Kiss, T.; Urdea, P.; Timofte, F. Temporal relationship of increased palaeodischarges and Late Glacial deglaciation phases on the catchment of River Maros/Mureş, Central Europe. J. Environ. Geogr. 2021, 14, 39–46. [Google Scholar] [CrossRef]
- Ianovici, V.; Borcoş, M.; Bleahu, M.; Patrulius, D.; Lupu, M.; Dimitrescu, R.; Savu, H. Geologia Munţilor Apuseni; Edit. Academiei: Bucharest, Romania, 1976; 630p. [Google Scholar]
- Gheorghiu, C.; Calotă, C.; Zberea, A.; Mareş, I. Aspecte Tectonice ale Culoarului Mureşului, Asoc.geol. carp.-balc.; Congresul, V., Ed.; Carpatho-Balkan Geological Association: Bucharest, Romania, 1963; pp. 85–102. [Google Scholar]
- Zugrăvescu, D.; Polonic, G.; Horomnea, M.; Dragomir, V. Recent vertical crustal movements on the Romanian territory, the major tectonic compartments and their relative dynamics. Rev. Roum. Géophysique 1998, 42, 3–14. [Google Scholar]
- Mauz, B.; Bode, T.; Mainz, E.; Blanchard, H.; Hilger, W.; Dikau, R.; Zöller, L. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Anc. TL 2002, 20, 53–61. [Google Scholar]
- Sipos, G.; Kiss, T.; Tóth, O. Constraining the age of floodplain levels along the lower section of river Tisza, Hungary. J. Environ. Geogr. 2016, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Olley, J.; Caitcheon, G.; Murray, A. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Radiat. Meas. 1998, 30, 207–217. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A rewiev of quarzt optically stimulated luminescence characteristics and their relevance in single-aliguit regeneration dating protocols. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Arnold, L.J.; Bailey, R.M.; Tucker, G.E. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quat. Geochronol. 2007, 2, 162–167. [Google Scholar] [CrossRef]
- Kreutzer, S.; Schmidt, C.; Fuchs, M.C.; Dietze, M.; Fischer, M.; Fuchs, M. Introducing an R package for luminescence dating analysis. Anc. TL 2012, 30, 1–8. [Google Scholar]
- Jain, M.; Murray, A.S.; Bøtter-Jensen, L. Characterisation of blue light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiat. Meas. 2003, 37, 441–449. [Google Scholar] [CrossRef]
- Durcan, J.A.; Duller, G.A.T. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiat. Meas. 2011, 46, 1065–1072. [Google Scholar] [CrossRef]
- Gray, H.J.; Jain, M.; Sawakuchi, A.O.; Mahan, S.A.; Tucker, G.E. Luminescence as a sediment tracer and provenance tool. Rev. Geophys. 2019, 57, 987–1017. [Google Scholar] [CrossRef] [Green Version]
- Bartyik, T.; Magyar, G.; Filyó, D.; Tóth, O.; Blanka-Végi, V.; Kiss, T.; Marković, S.; Persoiu, I.; Gavrilov, M.; Mezősi, G.; et al. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quat. Geochronol. 2021, 64, 101166. [Google Scholar] [CrossRef]
- Liritzis, I.; Stamoulis, K.; Papachristodoulou, C.; Ioannides, K. A re-valuation of radiation dose-rate conversion factors. Mediterr. Archaeol. Archaeom. 2013, 13, 1–15. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long term variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Alexanderson, H. Residual OSL signals from modern Greenlandic river sediments. Geochronometria 2007, 26, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marković, S.B.; Fitzsimmons, K.E.; Sprafke, T.; Gavrilović, D.; Smalley, I.J.; Jović, V.; Svirčev, Z.; Gavrilov, M.B.; Bešlin, M. The history of Danube loess research. Quaternary. Int. 2016, 399, 86–99. [Google Scholar] [CrossRef]
- Van Huissteden, K.; Vandenberghe, J.; Pollard, D. Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope Stage 3 compared with climate model results. J. Quat. Sci. 2003, 18, 453–464. [Google Scholar] [CrossRef]
- Feurdean, A.; Perşoiu, A.; Taţău, I.; Stevens, I.; Magyari, E.K.; Onac, B.P.; Marković, S.; Andrič, M.; Connor, S.; Fărcaş, S.; et al. Climate variaility and associated vegetion repsonse throught Central and Eastern Europe (CCE) between 60 and 8 ka. Quat. Sci. Rev. 2014, 106, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Van Meerbeeck, C.J.; Renssen, H.; Roche, D.M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ?—Perspectives from equilibrium simulations. Clim. Past 2009, 5, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.P.; Martins, A.A.; Buylaert, J.-P.; Murray, A.S.; Gouveia, M.P.; Font, E.; Pereria, T.; Figueirdo, S.; Ferreira, C.; Bridgland, D.R.; et al. The lowermost Tejo River terrace at foz do enxarrique, Portugal: A paleoenvrionmental archive from c. 60-35 ka and its implications for the last neanderthals in Westernmost Iberia. Quaternary 2019, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Winsemann, J.; Lang, J.; Roskosch, J.; Polom, U.; Böhner, U.; Brandes, C.; Glotzbach, C.; Frechen, M. Terrace styles and timing of terrace formation in the Weser and Leine valleys, northern Germany: Response of a fluvial system to climate change and glaciation. Quat. Sci. Rev. 2015, 123, 31–57. [Google Scholar] [CrossRef]
- Olszak, J.; Kukulak, J.; Alexanderson, H. Revision of river terrace geochronology in the Orawa-Nowy Targ Depression, south Poland: Insights from OSL dating. Proc. Geol. Assoc. 2016, 127, 595–605. [Google Scholar] [CrossRef]
- Vassallo, R.; Ritz, J.-F.; Braucher, R.; Jolivet, M.; Carretier, S.; Larroque, C.; Chauvet, A.; Sue, C.; Todbileg, M.; Bourlès, D.; et al. Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia. Tectonics 2007, 26, TC5013. [Google Scholar] [CrossRef] [Green Version]
- Picotti, V.; Pazzaglia, F.J. A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). J. Geophys. Res. Solid Earth 2008, 113, B08412. [Google Scholar] [CrossRef] [Green Version]
- Fuller, T.K.; Perg, L.A.; Willenbring, J.K.; Lepper, K. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology 2009, 37, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Antoine, P.; Lautridou, J.P.; Laurent, M. Long-term fluvial archives in NW France: Response of the seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology 2000, 33, 183–207. [Google Scholar] [CrossRef]
- Vandenberghe, J. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 2008, 98, 275–284. [Google Scholar] [CrossRef]
- Gábris, G.; Horváth, E.; Novothny, Á.; Ruszkiczay-Rüdiger, Z. Fluvial and aeolian landscape evolution in Hungary—results of the last 20 years research. Netherland J. Geosci. 2012, 91, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Bridgland, D.R. The Middle and Upper Pleistocene sequence in the Lower Thames: A record of Milankovitch climatic fluctuation and early human occupation of southern Britain. Proc. Geol. Assoc. 2006, 117, 281–305. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Huang, W.; Li, A.; Hu, Z.; Huang, X.; Yang, H. 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: Constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin, China. Geomorphology 2020, 348, 106884. [Google Scholar] [CrossRef]
- Urdea, P.; Onaca, A.; Ardelean, M.; Ardelean, M. New Evidence on the Quaternary Glaciation in the Romanian Carpathians, cap. 24. In Quaternary Glaciations—Extent and Chronology. A Closer Look; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 305–322. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Braucher, R.; Madarász, B.; Schimmelpfennig, I. Revised deglaciation history of the Pietrele–Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quat. Int. 2011, 415, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Madarász, B.; Braucher, R. ASTER TEAM Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Souther Carpathians, Romania). Geomorphology 2011, 384, 107719. [Google Scholar] [CrossRef]
- Pazzaglia, F.J. Fluvial terraces. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 379–412. [Google Scholar] [CrossRef]
- Kiss, T.; Sümeghy, B.; Sipos, G. Late Quaternary paleo-drainage reconstruction of the Maros River Alluvial Fan. Geomorphology 2014, 204, 49–60. [Google Scholar] [CrossRef]
- Kasse, C.; Hoek, W.Z.; Bohncke, S.J.P.; Konert, M.; Weijers, J.W.H.; Cassee, M.L.; Van der Zee, R.M. Late Glacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. J. Quat. Sci. 2005, 20, 377–394. [Google Scholar] [CrossRef]
- Necea, D.; Fielitz, W.; Kadereit, A.; Andriessen, P.A.M.; Dinu, C. Middle Pleistocene to Holocene fluvial terrace development and uplift-driven valley incision in the SE Carpathians, Romania. Tectonophysics 2013, 602, 332–354. [Google Scholar] [CrossRef]
- Van Balen, R.T.; Houtgast, R.F.; Van der Wateren, F.M.; Vandenberghe, J.; Bogaart, P.W. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley rift system. Glob. Planet. Chang. 2000, 27, 113–129. [Google Scholar] [CrossRef]
- Gunnell, Y.; Gallagher, K.; Carter, A.; Widdowson, M.; Hurford, A.J. Denudation history of the continental margin of western peninsular India since the early Mesozoic; reconciling apatite fission-track data with geomorphology. Earth Planet. Sci. Lett. 2003, 215, 187–201. [Google Scholar] [CrossRef]
- Pan, B.; Wu, G.; Wang, Y.; Liu, Z.; Guan, Q. Ages and genesis of the Shangou River terraces in eastern Qilian Mountains. Chin. Sci. Bull. 2001, 46, 510–515. [Google Scholar] [CrossRef]
- Tofelde, S.; Schildgen, T.F.; Savi, S.; Pingel, H.; Wickert, A.D.; Bookhagen, B.; Wittmann, H.; Alonso, R.N.; Cottle, J.; Strecker, M.R. 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina. Earth Planet. Sci. Lett. 2017, 473, 141–153. [Google Scholar] [CrossRef]
- Bartyik, T. Reconstruction of Fluvial Processes in the Maros River Basin, with Particular Reference to the Applicability of OSL Sensitivity. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartyik, T.; Urdea, P.; Kiss, T.; Hegyi, A.; Sipos, G. The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary 2023, 6, 35. https://doi.org/10.3390/quat6020035
Bartyik T, Urdea P, Kiss T, Hegyi A, Sipos G. The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary. 2023; 6(2):35. https://doi.org/10.3390/quat6020035
Chicago/Turabian StyleBartyik, Tamás, Petru Urdea, Tímea Kiss, Alexandru Hegyi, and György Sipos. 2023. "The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania" Quaternary 6, no. 2: 35. https://doi.org/10.3390/quat6020035
APA StyleBartyik, T., Urdea, P., Kiss, T., Hegyi, A., & Sipos, G. (2023). The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary, 6(2), 35. https://doi.org/10.3390/quat6020035