The Processes of Aggradation and Incision in the Channels in the Terek River Basin, the North Caucasus: The Hydrological Fluvial Archives of the Recent Past
Abstract
:1. Introduction
2. Geographical and Geological Setting
2.1. The Physiography of the Terek River Basin
2.2. The Geological Structure
3. Materials and Methods
4. Results
4.1. The Main Factors of the Channel Bed Deformations
4.1.1. The Main River Longitudinal Profile
4.1.2. The Bed Alluvium Grain Size
4.1.3. Climate and Water Flow
4.2. The Processes of Incision and Aggradation in the River Channels
4.2.1. Tersko–Kuma Lowland
4.2.2. The Kabardian Plain
4.2.3. The Sunzha Ridge
4.2.4. The Ossetian Plain
4.2.5. The Caucasus Mountains
4.2.6. The Kazbegi Gauging Station
4.3. General Pattern of the Channel Bed Deformations in the Terek River Basin
5. Discussion
5.1. The Influence of Climatic Factors
5.2. The Influence of Geologic and Geomorphologic Factors
5.3. The Human Impact
5.4. The Possibilities of Stage–Discharge Method Application
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Struiksma, N.; Olsen, K.W.; Flokstra, C.; De Vriend, H.J. Bed deformation in curved alluvial channels. J. Hydraul. Res. 1985, 23, 57–79. [Google Scholar] [CrossRef]
- Leopold, L.B.; Bull, W.B. Base level, aggradation, and grade. Proc. Am. Philos. Soc. 1979, 123, 168–202. [Google Scholar]
- Schumm, S.A. River response to baselevel change: Implications for sequence stratigraphy. J. Geol. 1993, 101, 279–294. Available online: http://www.jstor.org/stable/30081152 (accessed on 17 June 2023). [CrossRef]
- Rãdoane, M.; Rãdoane, N.; Dumitriu, D. Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 2003, 50, 293–306. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Yi, S.; Miao, X.; Vandenberghe, J.; Li, Y.; Lu, H. Late Quaternary aggradation and incision in the headwaters of the Yangtze River, eastern Tibetan Plateau, China. Geol. Soc. Am. Bull. 2022, 134, 371–388. [Google Scholar] [CrossRef]
- Demoulin, A.; Mather, A.; Whittaker, A. Fluvial archives, a valuable record of vertical crustal deformation. Quat. Sci. Rev. 2017, 166, 10–37. [Google Scholar] [CrossRef]
- Lämmermann-Barthel, J.; Neeb, I.; Hinderer, M.; Frechen, M. Last glacial to Holocene fluvial aggradation and incision in the southern Upper Rhine graben: Climatic and neotectonic controls. Quaternaire 2009, 20, 25-24. [Google Scholar] [CrossRef]
- Fuchs, M.C.; Gloaguen, R.; Krbetschek, M.; Szulc, A. Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces. Geomorphology 2014, 216, 79–92. [Google Scholar] [CrossRef]
- Bridgland, D.G. River terrace systems in north-west Europe: An archive of environmental change, uplift and early human occupation. Quat. Sci. Rev. 2000, 19, 1293–1303. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. Holocene river alluviation in Britain. Z. Für Geomorphol. Suppl.-Bd. 1993, 88, 109–122. [Google Scholar]
- Cordier, S.; Briant, B.; Bridgland, D.; Herget, J.; Maddy, D.; Mather, A.; Vandenberghe, J. The Fluvial Archives Group: 20 years of research connecting fluvial geomorphology and palaeoenvironments. Quat. Sci. Rev. 2017, 166, 1–9. [Google Scholar] [CrossRef]
- Clague, J.J.; Turner, R.J.W.; Reyes, A.V. Record of recent river channel instability, Cheakamus Valley, British Columbia. Geomorphology 2003, 53, 317–332. [Google Scholar] [CrossRef]
- Collins, B.D.; Montgomery, D.R.; Schanz, S.A.; Larsen, I.J. Rates and mechanisms of bedrock incision and strath terrace formation in a forested catchment, Cascade Range, Washington. Geol. Soc. Am. Bull. 2016, 128, 926–943. [Google Scholar] [CrossRef]
- Panin, A.V.; Sidorchuk, A.Y.; Chalov, R.S. Catastrophic rates for the formation of a fluvial relief. Geomorfologiya 1990, 2, 3–11. (In Russian) [Google Scholar]
- Ioana-Toroimac, G.; Zaharia, L.; Neculau, G.; Minea, G. Impact of channel incision on floods: A case study in the South–Eastern Subcarpathians (Romania). Geogr. Environ. Sustain. 2020, 13, 17–24. [Google Scholar] [CrossRef]
- Ma, C.; Qiu, D.; Mu, X.; Gao, P. Morphological Evolution Characteristics of River Cross-Sections in the Lower Weihe River and Their Response to Streamflow and Sediment Changes. Water 2022, 14, 3419. [Google Scholar] [CrossRef]
- Herodotus. The History (Translated into English by G.C. Macaulay); MacMillan and Co., Ltd.: London, UK; New York, NY, USA, 1890; Volume II. [Google Scholar]
- Toussoun, O. Memorie sur I’histoire du Nile. Impr. De L’institut Français D’archéologie Orient. 1925, 2, 265–541. [Google Scholar]
- Biswas, A.K. History of Hydrology; North-Holland, Amsterdam, and Elsevier: New York, NY, USA, 1970; p. 336. [Google Scholar]
- Gomez, B.; Rosser, B.J.; Peacock, D.H.; Hicks, D.M.; Palmer, J.A. Downstream fining in a rapidly aggrading gravel bed river. Water Resour. Res. 2001, 37, 1813–1823. [Google Scholar] [CrossRef]
- Nikulin, A.S.; Povolotsky, M.Y.; Sidorchuk, A.Y. Changes in the capacity of the channel in the lower reaches of the Terek River. Vodn. Resur. 1989, 6, 56–61. (In Russian) [Google Scholar]
- Milanovskiy, Y.Y. Neotectonics of Caucasus (Noveyshaya Tektonika Kavkaza); Nedra (Publisher): Moscow, Russia, 1968; p. 483. (In Russian) [Google Scholar]
- Pismenny, A.N.; Gorbachev, S.A.; Vertiy, S.N. State Geological Map of the Russian Federation, Scale 1:200,000; Sheet K-38-IX, XV (Vladikavkaz); Explanatory note; VSEGEI (Publblisher): Moscow, Russia, 2021. (In Russian) [Google Scholar]
- Hydrological Yearbook. Basin of the Caucasian Rivers; Issue 1 (Gidrologicheskiy yezhegodnik. Tom 3. Basseyn Rek Kavkaza. Vypusk 1); Gidrometeoizdat: Leningrad, Russia, 1936–2002; Volume 3. (In Russian) [Google Scholar]
- Automated Information System for State Monitoring of Water Bodies (AIS GMVO) (Avtomatizirovannaya Informatsionnaya Sistema Gosudarstvennogo Monitoringa Vodnykh Ob’yektov (AIS GMVO). Available online: https://gmvo.skniivh.ru/ (accessed on 21 March 2023).
- Simpson, R.G. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California. In Open-File Report U.S. Geological Survey Water Resources Division; United States Geological Survey: Reston, VA, USA, 1972; pp. 1–64. [Google Scholar] [CrossRef]
- Swamee, P. Optimal Irrigation Canal Sections. J. Irrig. Drain. Eng.-ASCE 1995, 121, 467–469. [Google Scholar] [CrossRef]
- Available online: https://hydrowebportal.niwa.co.nz (accessed on 7 January 2023).
- Merkulova, M.A.; Pavlyuk, Y.V. Study of vertical channel deformations within the south of the European Center of Russia. Nauchnyye Vedom. Belgorodskogo Gos. Universiteta. Seriya: Yestestvennyye Nauk. 2018, 42, 203–213. (In Russian) [Google Scholar] [CrossRef]
- Chalov, R.S. Channel Processes (Channel Studies) (Ruslovyye Protsessy (Ruslovedeniye)); INFRA-M (Publisher): Moscow, Russia, 2016; p. 565. (In Russian) [Google Scholar]
- Nádudvari, Á.; Czajka, A.; Wyżga, B.; Zygmunt, M.; Wdowikowski, M. Patterns of recent changes in channel morphology and flows in the Upper and Middle Odra River. Water 2023, 15, 370. [Google Scholar] [CrossRef]
- Lodina, R.V.; Rashutin, D.V.; Sidorchuk, A.Y.; Chalov, R.S. Changes in the morphology of the channel and channel-forming sediments from the source to the mouth (on the example of the Terek River). Geomorfologiya 1987, 1, 86–94. (In Russian) [Google Scholar]
- Bulygina, O.N.; Veselov, V.M.; Razuvaev, V.N.; Aleksandrova, T.M. Description of the Dataset of Observational Data on Major Meteorological Parameters from Russian Weather Stations. Database State Registration Certificate No. 1 49 2014. Available online: http://meteo.ru/data (accessed on 12 June 2023). (In Russian).
- Maksimova, T.Y. Silting of the upper pool of the Tersko-Kuma hydroelectric complex in the initial period of its operation. In Soil Erosion and Channel Processes (Eroziya Pochv i Ruslovyye Protsessy); Chalov, R.S., Ed.; Moscow Univ. Press: Moscow, Russia, 1983; Volume 9, pp. 123–126. (In Russian) [Google Scholar]
- Kondratieva, N.V.; Adzhiev, A.K.; Bekkiev, M.Y.; Gedueva, M.M.; Perov, V.F.; Razumov, V.V.; Seinova, I.B.; Khuchunaeva, L.V. Cadastre of Mudflow Hazard in the South of the European Part of Russia (Kadastr Selevoy Opasnosti Yuga Yevropeyskoy Chasti Rossii); Feoriya: Moscow, Russia, 2015; Pechatnyy Dvor: Nalchik, Russia, 2015; p. 148. (In Russian) [Google Scholar]
- Zaporozhchenko, E.V. Kolka Glacier and Genaldon River valley: Yesterday, today, and tomorrow. J. Nepal Geol. Soc. 2005, 31, 1–10. [Google Scholar] [CrossRef]
- Rototaev, K.P.; Hodakov, V.G.; Krenke, A.N. Study of the Surging Kolka Glacier (Issledovaniye Pul’siruyushchego Lednika Kolka); Nauka (Publisher): Moscow, Russia, 1983; p. 169. (In Russian) [Google Scholar]
- Kotlyakov, V.M.; Rototaeva, O.V.; Nosenko, G.A. The September 2002 Kolka Glacier Catastrophe in North Ossetia, Russian Federation: Evidence and Analysis. Mt. Res. Dev. 2004, 24, 78–83. [Google Scholar] [CrossRef]
- Evans, S.G.; Tutubalina, O.V.; Drobyshev, V.N.; Chernomorets, S.S.; McDougall, S.; Petrakov, D.A.; Hungr, O. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 2009, 105, 314–321. [Google Scholar] [CrossRef]
- Haeberli, W.; Huggel, C.; Kääb, A.; Zgraggen-Oswald, S.; Polkvoj, A.; Galushkin, I.; Zotikov, I.; Osokin, N. The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. J. Glaciol. 2004, 50, 533–546. [Google Scholar] [CrossRef]
- Vaskov, I.M. Large-Scale Rock Falls: Geodynamics and Forecast (Krupnomasshtabnyye Obvaly: Geodinamika i Prognoz). Vladikavkaz, LTD. of NPKP "MAVR": Chelyabinsk, Russia, 2016; p. 370. (In Russian) [Google Scholar]
- Chernyshev, I.V.; Arakelyants, M.M.; Lebedev, V.A.; Bubnov, S.N.; Goltsman, Y.V. K-Ar geochronology of eruptions of the recent volcanic centres of the Kazbek region of the Greater Caucasus. Russ. J. Earth Sci. 1999, 1, 485–492. (In Russian) [Google Scholar] [CrossRef]
- Anakhayev, K.N. Validity of geophysical parameters in the mudflow cadastre of the south of Russia. Vestn. MGSU Proc. Mosc. State Univ. Civ. Eng. 2019, 14, 610–620. [Google Scholar] [CrossRef]
- Dramis, F.; Fubelli, G.; Calderoni, G.; Esu, D. Holocene aggradation/degradation phases of tufa dams in northern Ethiopia and central Italy: A palaeoclimatic comparison between East Africa and Mediterranean Europe. Z. Für Geomorphol. 2014, 58, 419–434. [Google Scholar] [CrossRef]
- Innes, J.L. Debris flows. Prog. Phys. Geogr. Earth Environ. 1983, 7, 469–501. [Google Scholar] [CrossRef]
- Tavasiev, R.A.; Galushkin, I.V. Rock-ice collapse from Mount Kazbek on 17 May 2014. Vestn. VNTs RAN Bull. Vladikavkaz Sci. Cent. 2014, 14, 43–45. (In Russian) [Google Scholar]
- Kupriyanov, V.V. (Ed.) Resources of Surface Waters of the USSR, Vol. 8 (the Northern Caucasus); Gidrometeoizdat: Leningrad, Russia, 1973; p. 447. (In Russian) [Google Scholar]
- Available online: https://www.bafg.de/GRDC/EN/Home/homepage_node.html (accessed on 7 August 2023).
The River Name/Main River | The Number in Figure 3 | Gauging Station | Distance from the Mouth of the Terek River, km | Basin Area F km2 | Annual Discharge Q m3 s−1 | Annual Suspended Sediment Transport Rate R kg s−1 |
---|---|---|---|---|---|---|
Terek | 1 | Kazbegi | 575 | 778 | 23.8 | 29 |
2 | Vladikavkaz | 530 | 1490 | 35.2 | 62 | |
3 | Elkhotovo | 472 | 6490 | 105 | 77 | |
4 | Kotlyarevskaya | 437 | 8920 | 131 | 130 | |
5 | Mozdok | 359 | 20,600 | 224 | 300 | |
6 | Chervlenaya | 192 | 23,100 | – | – | |
Urukh/Terek | 7 | Khaznidon | 495 | 1150 | 24.2 | 22 |
Belaya/Terek | 8 | Kora Ursdon | 509 | 304 | 6.48 | 2.5 |
Ardon/Terek | 9 | Tamisk | 525 | 1080 | 29.2 | 23 |
Zeyadon/Ardon | 10 | Buron | 553.3 | 100 | 4.03 | _ |
Fiagdon/Ardon | 11 | Tagardon | 525 | 410 | 7.13 | _ |
12 | Michurino | 501 | 474 | 5.1 | _ | |
Gizeldon/Ardon | 13 | Dargavs | 553.2 | 129 | 2.75 | 2.3 |
14 | Gisel | 521.2 | 410 | 8 | _ | |
Genaldon /Gizeldon | 15 | Tmenikau | 551.2 | 55.9 | 2.73 | 8.3 |
16 | Karmadon | 547.2 | 70 | 2.8 | _ | |
Kambileevka /Terek | 17 | Olginskoe | 541 | 359 | 3.15 | 1.6 |
Terchek /Kambileevka | 18 | Tarskoye | 565 | 77 | 1.8 | _ |
The Physiographic Region | Type and the Rate of Channel Bed Deformation | Type and the Rate of Tectonic Movements |
---|---|---|
Tersko-Kuma Lowland | Overall channel natural stability with significant human impact lowered the Tersko–Kuma irrigation system dam: incision at a rate of 76 mm a−1 in the years 1957–1967 and again channel bed aggradation at a rate of 110 mm a−1 in the years 1968–1978 | The subsidence of the Terek fore deep with a mean rate of ~0.4 mm a−1 to the north of Terskiy anticline |
Kabardian Plain | Channel bed natural aggradation at a rate of 14 mm a−1 | The subsidence of the Terek fore deep with a mean rate of ~0.4 mm a−1 in between the Terskiy and Sunza anticlines (Alkhanchurt syncline). |
Sundza Ridge | General channel incision at a rate of 32 mm a−1 | The uplift of the Sunza anticline at a rate of 0.3 mm a−1 |
Ossetian Plain | General incision in the river channels at a rate of 10–25 mm a−1. Locally, the incision was artificially stopped with a series of submerged weirs | The subsidence of the Terek fore deep with a mean rate of ~0.4 mm a−1 to the south of Sunza anticline (Ossetian basin) |
The ridges and basins of the North Caucasus Mountains | Wavelike channel bed deformations. The aggradation was caused by debris flows, while the incisions occurred during periods of mountain slope stability. No visible overall trends in aggradation or incision were registered for a 50–85 year period. | Uplift at a rate of 0.7–0.9 mm a−1 of the tectonic blocks, divided by the faults |
The upper part of the Darialy Gorge | The incision of the Terek River at a rate of 37 mm a−1 into magmatic ridge, which blocked the river in the Middle Pleistocene | The uplift of Kazbek Mountain region at a rate of 0.7 mm a−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorchuk, A. The Processes of Aggradation and Incision in the Channels in the Terek River Basin, the North Caucasus: The Hydrological Fluvial Archives of the Recent Past. Quaternary 2023, 6, 47. https://doi.org/10.3390/quat6030047
Sidorchuk A. The Processes of Aggradation and Incision in the Channels in the Terek River Basin, the North Caucasus: The Hydrological Fluvial Archives of the Recent Past. Quaternary. 2023; 6(3):47. https://doi.org/10.3390/quat6030047
Chicago/Turabian StyleSidorchuk, Aleksey. 2023. "The Processes of Aggradation and Incision in the Channels in the Terek River Basin, the North Caucasus: The Hydrological Fluvial Archives of the Recent Past" Quaternary 6, no. 3: 47. https://doi.org/10.3390/quat6030047
APA StyleSidorchuk, A. (2023). The Processes of Aggradation and Incision in the Channels in the Terek River Basin, the North Caucasus: The Hydrological Fluvial Archives of the Recent Past. Quaternary, 6(3), 47. https://doi.org/10.3390/quat6030047