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Abstract: Quaternary stream sediments and beach black sand in north-western Saudi Arabia (namely
Wadi Thalbah, Wadi Haramil and Wadi Al Miyah) are characterized by the enrichment of heavy
minerals. Concentrates of the heavy minerals in two size fractions (63–125 µm and 125–250 µm) are
considered as potential sources of “strategic” accessory minerals. A combination of mineralogical,
geochemical and spectroscopic data of opaque and non-opaque minerals is utilized as clues for
provenance. ThO2 (up to 17.46 wt%) is correlated with UO2 (up to 7.18 wt%), indicating a possible
uranothorite solid solution in zircon. Hafnoan zircon (3.6–5.75 wt% HfO2) is a provenance indicator
that indicates a granitic source, mostly highly fractionated granite. In addition, monazite characterizes
the same felsic provenance with rare-earth element oxides (La, Ce, Nd and Sm amounting) up to
67.88 wt%. These contents of radionuclides and rare-earth elements assigned the investigated
zircon and monazite as “strategic” minerals. In the bulk black sand, V2O5 (up to 0.36 wt%) and
ZrO2 (0.57 wt%) are correlated with percentages of magnetite and zircon. Skeletal or star-shaped
Ti-magnetite is derived from the basaltic flows. Mn-bearing ilmenite, with up to 5.5 wt% MnO,
is derived from the metasediments. The Fourier-transform infrared transmittance (FTIR) spectra
indicate lattice vibrational modes of non-opaque silicate heavy minerals, e.g., amphiboles. In addition,
the FTIR spectra show O-H vibrational stretching that is related to magnetite and Fe-oxyhydroxides,
particularly in the magnetic fraction. Raman data indicate a Verwey transition in the spectrum
of magnetite, which is partially replaced by possible ferrite/wüstite during the measurements.
The Raman shifts at 223 cm−1 and 460 cm−1 indicate O-Ti-O symmetric stretching vibration and
asymmetric stretching vibration of Fe-O bonding in the FeO6 octahedra, respectively. The ultraviolet-
visible-near infrared (UV-Vis-NIR) spectra confirm the dominance of ferric iron (Fe3+) as well as
some Si4+ transitions of magnetite (226 and 280 nm) in the opaque-rich fractions. Non-opaque heavy
silicates such as hornblende and ferrohornblende are responsible for the 192 nm intensity band.

Keywords: zircon; monazite; Fe-Ti oxides; rare-earth elements (REEs); spectroscopic characterization;
stream sediments; Saudi Arabia

1. Introduction

In arid environments, such as those in the Arabian Peninsula and North Africa, the
Neoproterozoic shield rocks known as “The Arabian-Nubian Shield (ANS)” are dissected
by numerous dry streams or wadis. The study of heavy minerals in stream sediments in
the wadis dissecting the ANS is of great importance because of its benefits in exploration
programs for economic minerals such as gold, rare metals and radioactive materials [1–13].
In addition, the fingerprints of provenance or source areas in hinterlands are controlled by
the geography, environment and alluvial sedimentation in aeolian environs [14–19].

In western Saudi Arabia, the coastal Red Sea sediments comprise consolidated silici-
clastic sandstone (Miocene Raghama Formation) or loose beach sediments. Occasionally,
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sand on the beach shows ripple marks, and is sometimes truncated by batches of black sand,
gravel and oolitic carbonate fragments. Also, siliciclastic rocks extend to the Pliocene and
are used to infer paleo-weathering, the paleo-climate and depositional environment [20,21].
Dry streams are filled with Quaternary alluvium, and in some instances in unconsolidated
wadi terraces.

Spectroscopic methods are non-destructive and therefore they are widely utilized
in earth sciences applications, such as mineralogy and others aiming to identify and
characterize minerals as a function of their crystal chemistry and lattice ordering [22–26].
The applications of spectroscopy in mineralogy and economic geology are helpful for the
study of heavy minerals, and accordingly, it provides precise characterization of minerals,
in addition to details of the internal structure and helpful clues for provenance [22,27,28].

The present study does not aim to characterize the mineralogical composition of the
investigated heavy fractions only but to give additional clues for provenance and economic
potentiality. In recent years, international scholars have been interested in several mineral
resources of the north-western territory of Saudi Arabia in the context of urban expansion,
geotourism and the use of natural resources. Nowadays, international mining companies
need detailed mineralogical and spectroscopic studies to integrate the exploration programs
and the exploitation of heavy minerals in Saudi Arabia, particularly the so-called “strategic
minerals”. For this reason, the present work presents the first spectroscopic identification
and characterization of potential economic minerals in the heavy concentrates along the
Red Sea coast. The authors focus on the integration of the mineralogical, chemical and
spectroscopic data of “strategic” minerals that would bear useful elements (e.g., U, Th and
rare-earth elements, REEs). Also, it is aimed to benefit from the obtained analytical data
for provenance characterization, and to connect them with Neoproterozoic rocks (Arabian
Shield) and Phanerozoic volcanic fields (Saudi Harrats) in the hinterland.

2. Study Areas and Sampling

The Wadi Thalbah, Wadi Haramil and Wadi Al Miyah dissect Neoproterozoic rocks
of the Madyan terrane of the ANS in north-western Saudi Arabia [29,30] (Figure 1). The
Neoproterozoic rocks comprise a mafic–ultramafic association, island–arc plutonic and
volcanic rocks, intra-mountainous molasse-type sediments, syn-collisional mafic and fel-
sic plutonism, intra-plate felsic magmatism and finally Teriary to Neogene basalts of
the Harrat Volcanic Fields (HVFs). In the study area, the oldest lithology is represented
by layered/metamorphosed rocks as low-grade, greenschist facies metasediments and
metavolcanics (Figure 1c). Intrusive arc-related rocks are dominated by gabbro, diorite
and microdiorite. In contrast, the syn- and post-collisional stages are dominated by a fresh
association of felsic intrusives known as the “younger granites”, which include monzogran-
ite, syenogranite and alkali feldspar granite. The “younger granites” are preceded by the
so-called “Thalbah Group”, which represents the molasses-type sediments that comprise
conglomerate, mudstone and siltstone [29–32].

The investigated wadis are underlain by Quaternary and Neogene loose sediments
in the form of wadi alluvium, wadi terraces and beach sediments. Stream sediments in
the three wadis were previously explored for the potentiality of opaque minerals and gold.
Moufti [9,31] focused on the recognition of Fe-Ti oxides and their primary and secondary
intergrowths. In addition, ref. [31] paid attention to their abundance with respect to total
opaque percentage in terms of the “figure index” and other sedimentological parameters
such as sorting and skewness. Moufti [9] reported placer gold up to ~29 g/t in the finest
silt fraction (<40 µm) extracted from the beach sands and wadi alluvium. In addition to the
beach sediments, which comprise black sand batches on the narrow coastal plain, there is
the Raghama Formation of Miocene clastic sedimentary rocks resting on the Neoproterozoic
rocks non-conformably.

In the present study, loose sediments from five sites are investigated because they have
a considerable heavy mineral concentrate. Amounts of heavy minerals obtained from the
other sites are much smaller. As shown in Table 1, they comprise either black sand or wadi
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alluvium in two size fractions within two ranges (63–125 µm and 125–250 µm, respectively).
The heavy minerals percentage in the black sand samples lies in a narrow range (13.7
to 14.3%), whereas it is wider in the wadi alluvium (3.9 to 8.6%) (Table 1). The sample
locations are shown in Figure 1b. Additionally, Table 1 provides additional information
about the size and categorization of heavy minerals into opaque and non-opaque. Not
all samples are categorized based on size because some of them are almost free of heavy
mineral concentrate in the coarse fraction.
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Figure 1. (a) Location map of the study area in north-western Saudi Arabia; (b) Sample locations in
three investigated wadis shown on a Google-based satellite image; (c) Modified geological map of Al
Wajh quadrangle based on lithological boundaries from [32] and updated nomenclature from [30].

Table 1. Sample location and characterization from three wadis *.

Site # Location Identification Size Fraction
Heavy Minerals Content

Heavy Minerals % Opaque %

TH1 26◦39′55′′ N
36◦10′59′′ E Beach black sand 63–125 µm 14.3 53

TH1 26◦39′55′′ N
36◦10′59′′ E Beach black sand 125–250 µm 14.3 55

TH2 26◦39′55′′ N
36◦10′59′′ E Beach black sand 125–250 µm 13.7 57
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Table 1. Cont.

Site # Location Identification Size Fraction
Heavy Minerals Content

Heavy Minerals % Opaque %

TH3 26◦45′39′′ N
36◦18′48′′ E Wadi alluvium 63–125 µm 4.7 35

MH1 26◦13′31′′ N
36◦40′59′′ E Wadi alluvium 63–125 µm 3.9 30

HR1 26◦27′53′′ N
36◦28′14′′ E Wadi alluvium 125–250 µm 8.6 28

* Wadi Thalbah (TH) Wadi Al-Miyah (MH) Wadi Hramil (HR).

3. Materials and Methods

From each sample, heavy mineral concentrate was obtained by the heavy liquid
separation method (bromoform, specific gravity = 2.81 g/cm3). The heavy fractions were
subjected to magnetic fractionation using a Frantz Isodynamic Magnetic Separator (Model
LB 1) under the following conditions: transverse slope 5, longitudinal slope 20 and 0.2 amps
step of current. Then, polished mounts were prepared for ore minerals identification and
textures using a reflected light microscope. In addition, a scanning electron microscope
model Prisma E SEM attached with an energy dispersive X-ray spectrometer (EDS) housed
in the Nuclear Materials Authority of Egypt (NMA) was used for spot chemical analysis
of minerals. Analytical conditions were 25–30 kV accelerating voltages, 1–3 nm beam
resolution and 60–120 s counting time. The chemical composition of the eight studied
samples was obtained by a portable XRF analyser at the Department of Geology, Cairo
University, Egypt. An Oxford portable XRF analyser Model X-MET700 was used to analyse
elements from K to U. The X-ray tube has a 40 kV Rh target, Si-PIN diode as a detector type,
and the measurements were conducted at room temperature. Calibration was performed by
a semi-quantitative method (FP) and quantitative traceable empirical calibrations. The used
XRF analyser is accurate to less than ±0.01% for the measured elements. With respect to
precision, the margin of error was determined based on 99.6% confidence for ±3δ (standard
deviation). Generally, the range of precision lies between ±0.025% and ±0.072% whereas
the margin of error ranges from ±0.0022% to ±0.0032%.

The FTIR analyses were conducted at the Micro-analytical Unit in the Faculty of
Science, Cairo University, using a Jasco spectrophotometer Model 4100 working in the
range 400–4000 cm−1 wave number with potassium bromide as a reference. This machine
has a globar SiC source, a Ge-coated KBr beam splitter, and a liquid N2-cooled HgCdTe
detector. The FTIR spectra were collected under a nitrogen purge at 2 cm−1 pre-selected
resolution at ~64 scans. The samples were pulverised, and discs were prepared by vacuum-
pressing 2 mg of each sample with 198 mg of dried KBr. The KBr has a 100% transmittance
of 100% in the range of Raman shifts 4000–400 cm−1. The Raman analyses were conducted
using a German-made confocal Raman microscope Model WItec 300R housed at the Raman
Laboratory in the National Research Centre of Egypt in Dokki. The micro-Raman system
worked at 473/532/633 nm laser excitation, z-focus, and a software-controlled x-y sample
stage for line scanning and mapping. The obtained spectra were as high as 785 nm excitation
wavelength. The IR beam’s incidence angle was 45◦, and 100 scans were collected at a
resolution of 4 cm−1 and a mirror velocity of 0.6329 cm/s. The spectra were collected
within the range of a 4000–400 cm−1 wave number. The spectra were co-added in order
to improve the signal-to-noise ratio. The UV-Vis-NIR spectra were obtained using a Jasco
double-beam spectrometer Model V770 housed at the National Research Centre of Egypt
in Dokki. The samples were analysed in the 190–2500 nm spectral range, with a spectral
bandwidth of 5 nm for the UV-Vis region and 20 nm for the NIR region. The data interval
was 2 nm, and the scan speed was 1000 nm/min with 0.24 s response for both UV-Vis
and NIR. For the studied heavy concentrates, polarised spectra using a diffraction grating
polarizer were recorded.
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4. Microscopic Investigation
4.1. Beach Black Sand

Opaque minerals (55–57% out of the total heavy minerals, Table 1) in the fine black
sand (125–250 µm) from the mouth of Wadi Thalbah on the beach are represented mostly
by homogeneous and intergrown Fe-Ti oxides (Figure 2a,b, respectively). Based on the
investigation by the reflected light microscope, the ratio of homogeneous ilmenite to
homogeneous magnetite amounts was 3:1, and some of the magnetite has a skeletal or
star-shaped habit (Figure 2a). The investigated samples contain a variety of primary
Fe-Ti intergrowths, mostly ilmenite-magnetite (ilmenomagnetite) and hematite-ilmenite
(hemo-ilmenite) exsolution textures. Types of the primary ilmenite-magnetite intergrowth
are sandwich, banded, composite, fine network and coarse-trellis exsolution textures. In
this case, the host magnetite is relatively fresher than the exsolved ilmenite lamellae,
which are highly replaced by either titanite or sub-graphic rutile-hematite (i.e., secondary
intergrowth). Titanite is not always an intergrown phase, and it sometimes form a “rind”
or a continuous reaction rim of homogeneous ilmenite (Figure 2c). In a few instances,
homogeneous ilmenite is euhedral and fresh (Figure 2d).
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sub-graphic intergrowth of rutile and hematite (RH), coarse black sand, Wadi Thalbah; (c) Ho-
mogeneous ilmenite (Ilm) with continuous titanite reaction rim (Tnt), fine black sand, Wadi Thal-
bah. (d) Freshness and euhedrality of homogeneous ilmenite (Ilm), fine black sand, Wadi Thalbah;
(e) Coarse-trellis ilmenite (Ilm)-magnetite (Mag) intergrowth, fine wadi alluvium, Wadi Al Miyah.
(f) Banded ilmenite (Ilm)-magnetite (Mag) intergrowth, fine wadi alluvium, Wadi Al Miyah; (g) Fine
exsolved ilmenite (Ilm) confined to the (111) octahedral planes in host magnetite (Mag) forming fine
network intergrowth, coarse wadi alluvium, Wadi Haramil; (h) Alteration of pyrite (Py) to goethite
(Gth) along fractures and peripheries, coarse wadi alluvium, Wadi Haramil.

Sulphides do not exceed 2–3 % of the total opaques, and are represented by pyrite,
which occurs in two different forms. The first form of pyrite is fine sub-rounded inclusions
in homogeneous Fe-Ti oxides, whereas the second form of pyrite occurs as coarse indepen-
dent grains that are extensively replaced by colloform goethite and Fe-oxyhydroxides. In
the very fine black sand (63–125 µm), opaque minerals amount to 53% and the content of
their Fe-Ti oxides is identical to the coarser fraction with the exception of less abundant
hemo-ilmenite. The fine sand lacks any sulphide mineral in addition to noticeable higher
degree of magnetite oxidation to martite.

4.2. Wadi Alluvium

As shown in Table 1, the lowest number of opaque minerals was in the coarse-sized
concentrate (125–250 µm) from Wadi Haramil (28%). On the other hand, the lowest number
of opaque minerals was observed in the 63–125 µm finer fraction from Wadi Al Miyah (30%)
and Wadi Thalbah (35%). In the coarse-sized concentrate from Wadi Haramil, opaque min-
erals are represented by either homogeneous or ilmenite–magnetite intergrowths that are
commonly partially replaced by titanite and hematite. Some primary ilmenite–magnetite
exsolutions are present, e.g., coarse-trellis, banded and fine network (Figure 2e–g) whereas
hemo-ilmenite is lacking. In a few instances, possible tiny gold is seen in the secondary
titanite forming at the expense of Fe-Ti oxides, mostly Ti-bearing magnetite.

In the fine-sized heavy concentrates from the main courses of Wadi Thalbah and
Wadi Al Miyah, opaque minerals are represented by Fe-Ti oxides, Fe-oxyhydroxides and
sulphides amounting to 85%, 13% and 2%, respectively, of the total opaque percentage. The
Fe-Ti oxides are represented by either homogeneous ilmenite and magnetite or a variety
of their primary and secondary intergrowths. They show variable degrees of alteration.
Homogeneous ilmenite and homogeneous magnetite occur in nearly equal amounts, 44%
and 41% of the total opaque percentage, respectively. In particular, the fine-sized heavy
concentrate from Wadi Al Miyah is characterised by considerable amounts of recrystallised
homogeneous ilmenite with amoeba-like inclusions of silicates. Homogeneous ilmenite
contains nucleus-like inclusions of pyrite. In addition, pyrite alters to goethite and Fe-
oxyhdroxides along the fractures and peripheries (Figure 2h).

5. Chemical Analysis

Table 2 includes six representative analyses of heavy fractions, three from black sand
and three from alluvium. This table distinguishes major oxides (94.6 to 96.9 wt%) from
minor oxides (0.4 to 1.4 wt%). Among the major oxides, the most abundant are SiO2, TiO2,
Al2O3, Fe2O3

t and CaO. The range of silica in the black sand is wide (23.8 to 34.4 wt%)
whereas it is narrow in the wadi alluvium (36.3 to 38.8 wt%). As a function of its content
of Ti-bearing minerals (e.g., ilmenite, Ti-magnetite and titanite), TiO2 content in the black
sand is almost triple the content in the wadi alluvium (up to 4.3 wt% and up to 13.7 wt%,
respectively). There is a relative enrichment of Fe2O3

t in the black sand compared with the
wadi alluvium (28.2 to 33.74 wt% and 31 to 40.3 wt%, respectively). Analyses in Table 2
show that there is little difference in the CaO content in the black sand and wadi alluvium
(8 to 12.1 wt% and 6.6 to 9.4 wt%, respectively). On the other hand, the Al2O3 content
varies distinctly from that of the black sand (6.7 to 8 wt%) to that of the wadi alluvium (9.9
to 13.3 wt%) taking into consideration that the latter is silicate-rich whereas the former is



Quaternary 2024, 7, 46 7 of 19

silicate-poor. Among the minor oxides, contents of V2O5 and ZrO2 are very characteristic
in black sand (up to 0.4 wt% and up to 0.6 wt%, respectively). In contrast, V2O5 is under
the limit of detection whereas the ZrO2 content never exceeds 0.3 wt%.

Some spot EDS-EDX analyses of minerals from the heavy fractions in the five stations
are provided in Table 3. This table distinguishes non-opaque minerals (monazite and
zircon) from opaque minerals (two varieties of ilmenite and two varieties of magnetite).
The monazite s by default has a large content of rare-earth element oxides (up to 67.9 wt%).
In zircon, ThO2 and UO2 amount to 16.1–17.5 wt% and 5.83–7.18 wt%, respectively, due to
an appreciable substitution of Zr4+ by Th4+ and U4+.

Table 2. XRF bulk composition of major and minor oxides.

Sample No. * TH1 TH2 TH5 TH4 MH6 RH3

Major oxides (wt%)
SiO2 28 34.4 23.8 36.3 38.8 36.7
TiO2 10.5 9.4 13.7 4.3 4 4.3
Al2O3 7.7 8 6.7 9.9 13.3 12.1
Fe2O3

t ** 36 31 40.2 33.1 28.2 33.7
CaO 10.7 12.1 8 9.4 9.1 6.6
MnO 0.8 0.7 0.99 0.7 0.7 0.5
K2O 0.6 0.7 0.5 1 1 1.1
P2O5 0.9 0.6 0.9 1.1 1 0.8
Total *** 95.2 96.9 94.7 95.1 96.1 95.8

Minor oxides (wt%)
RbO 0.02 0.01 n.d. 0.01 0.03 0.01
BaO n.d. n.d. 0.31 n.d. n.d. n.d.
SrO 0.18 0.22 0.13 0.14 0.13 0.11
Cr2O3 0.18 n.d. n.d. n.d. n.d. n.d.
CoO n.d. n.d. n.d. n.d. n.d. 0.4
NiO 0.01 0.01 0.01 0.01 0.01 0.01
V2O5 0.36 n.d. 0.34 n.d. n.d. n.d.
ZrO2 0.14 0.09 0.57 0.26 0.08 0.09
Nb2O5 0.04 0.03 0.04 0.03 0.01 0.01
ZnO 0.05 0.04 0.04 0.05 0.06 0.02
MoO3 0.02 n.d. n.d. n.d. 0.02 n.d.
CdO 0.01 0.01 n.d. n.d. n.d. n.d.
HgO 0.01 n.d. n.d. 0.01 0.01 0.01
Total 1.02 0.41 1.44 0.51 0.35 0.66

* TH1: Beach black sand, Wadi Thalbah (63–125 µm); TH2 and TH5: Beach black sand, Wadi Thalbah (125–250 µm);
TH4: Wadi alluvium, Wadi Thalbah (63–125 µm); MH6: Wadi alluvium, Wadi Al-Miyah (63–125 µm); HR3: Wadi
alluvium, Wadi Haramil (125–250 µm); ** Total iron as ferric and n.d.: not detected; *** Loss on ignition was
not determined.

Table 3. Semi-quantitative SEM-EDX analyses of heavy minerals (non-opaque and opaque).

Non-Opaque Minerals

Monazite Zircon
P2O5 18.9 16 22.7 24.6 23 SiO2 42.1 39.5 37.5 35.1 32.7 44.9 28.8 26

Al2O3 5.4 8.6 n.d.
* 9.2 n.d. ZrO2 52.6 48.4 57.1 61.2 59 46.9 33.7 38.5

SiO2 7 11.7 3.7 5.6 2.2 HfO2 5.6 3.6 5.4 3.7 5.5 3.8 7.7 3.8
ThO2 10.5 6.3 3.6 6 4.1 ThO2 n.d. n.d. n.d. n.d. n.d. n.d. 17.5 16.1
UO2 2.3 1.3 1.2 3.1 1.1 UO2 n.d. n.d. n.d. n.d. n.d. n.d. 5.8 7.2

CaO 2.4 1.1 4.4 3.8 1.6 FeO
** n.d. 5.4 n.d. n.d. 2.8 4.5 2.4 5

FeO ** 1.6 3.8 3.3 2.7 n.d. CaO n.d. 3.2 n.d. n.d. n.d. n.d. 4.1 3.5
REE Oxides 52 51.4 61.1 45.3 67.9
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Table 3. Cont.

Opaque Minerals

Mn-free ilmenite Mn-bearing
ilmenite

TiO2 41.9 40.2 48.6 39.9 48.2 46.2 45.8 TiO2 43 367 45.5

FeO ** 58.1 59.8 51.4 37.3 41.2 43.2 45.2 FeO
** 51.5 58.5 50.6

SiO2 n.d. n.d. n.d. 12.1 6.8 6 5.1 MnO 5.5 4.5 3.9
CaO n.d. n.d. n.d. 10.7 3.8 4.6 3.8

Ti-bearing magnetite
FeO + Fe2O3 95.8 93.1 94.5
TiO2 4.2 6.9 5.5

* n.d.: not detected ** FeO: Total iron was ferrous in all except for magnetite (ferrous and ferric).

6. Discussion
6.1. Significance of Whole-Fraction Chemistry

Data given in Tables 1–3 summarize the characteristics, XRF composition of the heavy
concentrates (whole-fraction: magnetic and non-magnetic) and the EDS-EDX microanalyses
of heavy minerals. We constructed six binary diagrams (Figure 3) based on data from Table 2
in order to show the behaviour of the most abundant major and minor oxides in the bulk
concentrate or the whole-fraction. From these binary plots, it is evident that the behaviour
of oxides in the black sand and wadi alluvium follows the same trends, and therefore they
are plotted together. These plots suggest that the most abundant oxides are the major ones,
namely SiO2, CaO, Al2O3, Fe2O3

t, TiO2 and P2O5. Among minor oxides, SrO2 only can
correlate. Low content of V2O5 in the black sand (up to 0.36 wt% only) indicates a very
minor substitution of V5+ in the magnetite structure for Fe2+ and Fe3+, which is common in
natural magnetites, especially in those derived from mafic igneous rocks [33–37]. In Saudi
Arabia, a source of V-bearing magnetite is the layered mafic-ultramafic intrusions. They are
layered intrusions formed in either arc or post-collisional settings [38–40], which are similar
to intrusions hosting V-Fe-Ti ores in other parts in the Arabian-Nubian-Shield (e.g., [41,42]).
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Figure 3a shows that the best proportional relationship exists between CaO and SrO
(R2 = 0.8973). In the investigated heavy concentrates, both elements are encountered in
the structure of non-opaques, mostly Ca-bearing amphibole. In nature, as well as experi-
mentally, Ca2+ can be replaced totally in the M2- and M4-sites by Sr2+ [43]. On the other
hand, a good regression trend (R2 = 0.8856) is obtained from a reverse relationship between
SiO2 and TiO2 (Figure 3b). Normally, TiO2 decreases when Ti-bearing opaque minerals
are minimal while primary silicate minerals dominate. Some secondary silicate, e.g., ti-
tanite replacing Ti-magnetite and ilmenite, can bear some Ti4+ as well. The relationship
between Fe2O3

t and TiO2 is proportional (R2 = 0.5743) (Figure 3c). In fact, this is common
in stream sediments that are characterized by magnetite- and ilmenite-rich concentrates,
which is the case of the investigated black sand. In northwestern Saudi Arabia, iron and
titanium are positively correlated either in Fe-Ti-P ore or its host gabbros [44]. Contents
of Al2O3 vs. CaO, CaO vs. P2O5 and CaO vs. TiO2 are poorly correlated (Figure 3d–f)
with low regressions (0.1807, 0.1442 and 0.0658, respectively). The relationship between
CaO and P2O5 suggests a minimal influence of accessory apatite, which is neither seen
microscopically nor by EDX microanalysis. Although the relationship between CaO and
TiO2 is weak, it is an indicator of the alteration degree of Ti-bearing opaque minerals into
titanite [45,46].

6.2. Mineral Chemistry as an Indicator of Source Rocks

The microanalytical data presented in Table 3 include spot analyses of non-opaque
minerals (monazite and zircon) and opaque minerals (Fe-Ti oxides) from the investigated
samples from NW Saudi Arabia. The chemistries of heavy minerals in stream sediments
and economic placer deposits such as black sand are very helpful for identifying the source
rocks in the hinterlands, i.e., the provenance. In the Arabian-Nubian Shield of Egypt and
Saudi Arabia, some studies connected mineral chemistry with the source rock of stream
sediments (e.g., [2–5,9–11,13,14,31,37,47–50]). In the present study, we pay special attention
to accessory or “strategic” non-opaque minerals, mostly zircon and monazite. BSE images
and spectral analyses of these minerals are given in Figures 4 and 5 representing black sand
and wadi alluvium, respectively).

In the heavy concentrates, compositions of zircon indicate it is U- and Th-free (Table 3).
According to [2], zircon in the stream sediments derived from granitic rocks of the Neo-
proterozoic shield rocks are either U-free or U-bearing. However, analyses of zircon from
the current Saudi examples are Hf-bearing with HfO2 in the range 3.6–5.75 wt% indicating
a mixed source from I-type and highly fractionated granites, i.e., calc-alkaline and alka-
line [51,52]. Owing to its minute size and its being hosted by magnetite, the analysed zircon
has some Fe impurities (2.77–5.35 wt% FeOt). Also, Table 3 provides two analyses of an
unidentified Zr-silicate phase, which is not a typical zircon and it contains large amounts
of UO2 (5.83–7.18 wt%) and ThO2 (16.8–17.46 wt%). A possible mixture of zircon and
uranothorite should therefore not be discarded. Analyses of monazite (Table 3) indicate
some impurities of Si, Al, Ca and Fe. Such impurities are attributed to the tiny size of the
monazite and therefore impurities are detected from the host minerals. P2O5 amounts to
23.04 wt% but sometimes SiO2 from the background silicates dilutes P2O5 to become as
low as 15.99 wt% when silica reaches its maximum content (11.65 wt%). A felsic source is
assigned to the source of the monazite, particularly highly fractionated granites, which is
also supported by the presence of an appreciable UO2 and ThO2 content (up to 3.12 wt%
and 10.48 wt%, respectively). In a previous study, monazite from Wadi Thalbah stream
sediments monazite was not uraniferous but contained 8.13 wt% ThO2 [31]. Other support
for a highly fractionated granite source is the rare-earth elements content (up to 67.88
wt% oxides of La, Ce, Nd, and Sm). This is also accepted by some authors such as [3,50].
Monazite in northern Saudi Arabia is multi-sourced from syenogranite, monzogranite,
alkali feldspar granite and alkali amphibole granite. Therefore, the chemistry of monazite
is variable and depends on the content of U and Th in the felsic melt, fractionation and
additional magmatic processes for granites developed in an almost 100 Ma time span
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(630–530 Ma ago) coinciding with the transition from the very late Neoproterozoic to the
Cambrian [29–32].
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Figure 4. BSE images and spectral analyses of non-opaque accessory minerals from black sand from
Wadi Thalbah. (a) Secondary titanite (Tnt) forms at the expense of Ti-bearing magnetite (Ti-Mag);
(b) Fractured euhedral zircon (Zrn); (c) Fractured anhedral zircon (Zrn); (d) Interlocked silicate (grey)
and magnetite (Mag) with minute inclusions of monazite (Mnz). A red Astrix is added to indicate
exact position of analysis.
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vium. (a) Extremely fine zircon (Zrn) at the peripheral zone of coarse hornblende (Hbl), fine fraction, 
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Figure 5. BSE images and spectral analyses of non-opaque accessory minerals from the wadi alluvium.
(a) Extremely fine zircon (Zrn) at the peripheral zone of coarse hornblende (Hbl), fine fraction, Wadi
Thalbah; (b) Subhedral U- and Th-bearing monazite (Mnz), fine fraction, Wadi Thalbah; (c) Anhedral
zoned zircon (Zrn), fine fraction Wadi Al Miyah; (d) Fractured anhedral zircon (Zrn), coarse fraction,
Wadi Al Miyah. A red Astrix is added to indicate exact position of analysis.

In a single drainage basin, the chemistry of detrital ilmenite is used as a helpful
tool for the assignment of different provenances [53]. The analysed opaque minerals are
classified as two ilmenite varieties (Mn-free and Mn-bearing), in addition to one magnetite
variety (Ti-bearing) (Table 3). The Mn-free ilmenite itself can be distinguished into two sub-
varieties; namely homogeneous (Si- and Ca-free) and exsolved lamellae with considerable
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amounts of SiO2 and CaO totalling 12.08 wt% and 10.74, respectively. Based on careful
ore microscopic investigation and the microanalysis of exsolved ilmenite, Si and Ca are
attributed to partial alteration to titanite [3,11,35,54–56]. Owing to a lack of Mg in the
analysed Mn-free ilmenite, it is believed to have originated from a felsic igneous rock rather
than a mafic rock [57,58]. On the other hand, Mn-bearing ilmenite contains 4.51–5.5 wt%
MnO and can be considered as manganoan ilmenite. Petrological studies confirm geikielite
(MgTiO3) or pyrophanite (MnTiO3) in solid solutions with ilmenite (FeTiO3) favourably
in a metamorphic condition [57,59,60]. Therefore, we can assign a metamorphic origin for
our Mn-bearing ilmenite and it is possibly derived from mafic metasediments. TiO2 in
Ti-bearing magnetite reaches up to 6.88 wt% (Table 3). In north-western Saudi Arabia, the
most probable source of Ti-bearing magnetite is the Phanerozoic Harrat Volcanic Fields,
and to a lesser extent the arc and post-collisional fresh gabbros [39,61].

6.3. Spectroscopic Characterization

Combined FTIR, Raman and UV-Vis-NIR spectral analyses of the investigated heavy
concentrates are given in Figures 6 and 7. It can be seen that the bands are sharp and
show strong intensities, which indicate a high a degree of crystallinity and a lack of
amorphous or non-crystalline phases. For decades, infrared spectroscopy proved its
usefulness for accurate identification and characterization of inorganic substances with
an ordered crystalline structure such as minerals [62]. Also, the era of spectroscopy in
mineralogical studies witnessed great achievements, especially in applied fields such as
gemological and archaeological research (e.g., [63,64]). In this respect, infrared spectroscopic
characterization of loose sediments with considerable contents of heavy minerals, and from
beaches as well as in streams and dry valleys/wadis [65], is a useful technique. Raman
spectroscopy is very helpful for discriminating Fe-Ti oxides either in terrestrial or lunar
samples using different excitation wavelengths (e.g., [27,66]).
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Figure 7. Raman and UV spectra of the whole-fraction heavy concentrates. (a) Raman spectra; (b) UV
spectra up to 400 nm; (c) UV spectra up to 2500 nm. (1) Fine black sand, Wadi Thalbah, (2) Coarse
black sand, Wadi Thalbah, (3) Fine wadi alluvium, Wadi Al Miyah, (4) Fine wadi alluvium, Wadi
Thalbah, (5) Coarse black sand, Wadi Thalbah, and (6) Coarse wadi alluvium, Wadi Haramil.
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Figure 6 provides two sets of FTIR spectra for the heavy mineral concentrates extracted
from black sand on the beach and the wadi alluvium in the stream course. It is obvious that
the spectra and position of bands are different in the bulk heavy concentrates (magnetic
and non-magnetic) and the magnetic fraction (Figure 7a,b, respectively). In the FTIR
spectra of the bulk concentrates, rich in Ca-Fe-Mg silicates as amphiboles, two bands
are very characteristic: namely 459 cm−1 (strong) and 960 cm−1 (very strong). The rest
(518, 647, 1470, 2850, 2918 and 3380 cm−1) are weak. The lattice symmetric strong mode
at the 459 cm−1 wavelength represents the Si-O- rocking mode or the lattice vibrational
mode [67,68] whereas the very strong one at 960 cm−1 represents the lattice mode of the
Si-O-Si vibration and the O-Si-O asymmetric stretching vibration [69]. The weak band
at the wavelength 1630 cm−1 in the bulk concentrates is equivalent to the strong one at
1636 cm−1, which indicates the dominance of magnetite in the magnetic fraction. This
wavelength represents O-H bending at the surface of the oxidised magnetite. This is also
confirmed by the very strong band at 3460 cm−1 in the magnetic fraction, which indicates a
stretching vibration of H2O due to some oxidation of magnetite by hydrolysis. However,
the band at 1049 cm−1 in the magnetic fraction indicates the presence of Fe-oxyhydroxide
or goethite as FeO(OH) [70,71]. The weak wavelength at 3380 cm−1 in the bulk concentrate
and 3460 cm−1 in the magnetic fraction is possibly attributed to the stretching of the
hydroxyl group of goethite and the so-called “loosely bound H2O” on the adsorbed mineral
surface [72,73].

Figure 7a shows the results of Raman shifts for the bulk heavy concentrates in six
samples from the five sites. At 121 cm−1, the lattice mode vibration appears [74]. The
following Raman shift is localised at 198 cm−1, which represents Raman-active phonons
as a structural transition, particularly a Verwey transition [75]. Most likely, this indicates
the Verwey transition in magnetite [76]. Sometimes, Raman spectra of magnetite-rich
concentrate are characterised by this shift, which represents oxidation to ferrite during
the measurement and the vibrations involving Fe3+ and O2−, while Fe2+ is not directly
involved [77,78]. Our Raman spectra of samples from the Saudi stream sediments have
a very characteristic shift at 223 cm−1 representing symmetric vibration corresponding
to the octahedral O-Ti-O of the Ti-bearing magnetite. On the other hand, the 460 cm−1

shift denoting magnetite represents an asymmetric stretching vibration of the Fe-O bond
in FeO6 octahedra [79,80]. In the case of Ti-bearing magnetite, the intensity of the bands
in the Raman spectra is a sensitive indicator of Ti [81,82], and therefore they suggest the
presence of titanomagnetite as confirmed by our ore microscopic and SEM-EDX analyses.
Additionally, Figure 7a shows some diagnostic Raman shifts of hematite, for example
at 405 cm−1 [83,84]. The presence of hematite in the heavy concentrates results in the
hematite phonon overtone at 1332 cm−1 [85–87]. The Raman shift at 663 cm−1 indicates
oxidised magnetite, possibly wüstite. According to [88], the freshness of the magnetite
decreases during the measurements and magnetite experiences variable degrees of oxida-
tion. Therefore, the formation of an oxidised Fe-bearing phase (wüstite) is expected, and
consequently the Raman shift is located at 663 cm−1 and not at 372 cm−1, which is the
case for the fresh magnetite. Finally, the Raman shifts at 154 cm−1 and 179 cm−1 possibly
indicate ilmenite, titanite, TiO2 polymorphs and OH-bearing non-opaque minerals such as
amphiboles [89–92].

The UV-Vis-NIR spectra of the investigated bulk heavy concentrates are shown in
Figure 7b,c. A strong band at wavenumber 192 nm represents the Si4+ transition due to
the appreciable number of silicate heavy minerals. The 226 and 280 nm wavenumbers are
attributed to the intrinsic band gap absorption of the magnetite, and its oxidation products,
especially when it is fine- and ultrafine-sized [93]. In other words, they represent bands of
ferric iron (Fe3+). Ferrous (Fe2+) bands are minimal and the high wavenumber bands at
1376, 1872, 2122 and 2424 are not strong and assign divalent cations such as Ca2+, Fe2+ and
Mg2+ in fine-sized non-opaques, particularly amphiboles as the dominant silicate content
(Figure 7c). This is more distinct in the spectra of fine heavy fractions (63–125 µm) from
two stations at Wadi Al Miyah and Wadi Thalbah.
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7. Conclusions

(a) In addition to Fe-Ti oxides, promising concentrates of strategic minerals in north-
western Saudi Arabia are a potential source of radionuclide minerals such as zir-
con/uranothorite (up to 7.2 wt% UO2 and 17.5 wt% ThO2). Additional resources of rare-
earth elements are hosted in radioactive monazite with up to ΣREE oxides= 67.9 wt%.

(b) Whole-fraction contents of V2O5 (up to 0.36 wt%) and ZrO2 (0.6 wt%) in black sand
are correlated with magnetite and zircon from mafic and felsic provenances.

(c) FTIR spectra indicate lattice vibrational modes of non-opaque heavy minerals such as
Fe-Ca-Mg amphibole. O-H vibrational stretching in the magnetic fraction is attributed
to magnetite and Fe-oxyhydroxides such as goethite.

(d) Raman spectra indicates a Verwey transition in magnetite. The Raman shift at
223 cm−1 in the Ti-magnetite represents symmetric vibration of the octahedral O-
Ti-O, whereas the at 460 cm−1 shift indicates asymmetric stretching vibration of the
Fe-O bond in FeO6 octahedra.

(e) Owing to the dominance of, Fe3+, some wavenumbers (e.g., 226 and 280 nm) in the
Uv-Vis-NIR spectra are distinct due to the intrinsic gap between magnetite and its
oxidation products.

(f) Finally, the Si4+ transition at 192 nm is attributed to frequent non-opaque minerals in
the heavy concentrates such as hornblende and ferrohornblende. Future X-ray photo-
electron spectroscopy (XPS) analyses are recommended for the accurate evaluation of
Si4+ and Fe cations.
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