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Abstract: The development of compact passive and active wearable circular patch metamaterials
antennas for communication, Internet of Things (IoT) and biomedical systems is presented in this paper.
Development of compact efficient low-cost wearable antennas are one of the most significant challenges
in development of wearable communication, IoT and medical systems. Moreover, the advantage of an
integrated compact low-cost feed network is attained by integrating the antenna feed network with
the antennas on the same printed board. The efficiency of communication systems may be increased
by using efficient passive and active antennas. The system dynamic range may be improved by
connecting amplifiers to the printed antenna feed line. Design, design considerations, computed and
measured results of wearable circular patch meta-materials antennas with high efficiency for 5G,
IoT and biomedical applications are presented in this paper. The circular patch antennas electrical
parameters on the human body were analyzed by using commercial full-wave software. The circular
patch metamaterial wearable antennas are compact and flexible. The directivity and gain of the
antennas with Circular Split-Ring Resonators (CSRR) is higher by 2.5 dB to 3 dB than the antennas
without CSRR. The resonant frequency of the antennas without CSRR is higher by 6% to 9% than the
antennas with CSRR. The computed and measured bandwidth of the stacked circular patch wearable
antenna with CSRR for IoT and medical applications is around 12%, for S11 lover than −6 dB. The gain
of the circular patch wearable antenna with CSRR is around 8 dBi.

Keywords: circular patch antennas; 5G; IoT; medical systems; metamaterial antennas; active antennas

1. Introduction

Small wearable sensors and antennas have been analyzed and presented in several papers and
books in the last twenty years, see [1–5]. Patch, printed Slot, PIFA, Loop and other printed antennas
are used in 5G communication, Internet of Things (IoT) and biomedical systems [2–6]. Meta material
structures may be used to design small antennas with high efficiency for wearable medical and IoT
systems, [6–16]. Meta material is a periodic artificial material that gain its electrical properties from the
material structure rather than from its components. Periodic split ring resonators (SRRs) and metallic
posts structures may be used to design materials with specific dielectric constant and permeability
as presented in [7–16]. For example, artificial materials with negative dielectric permittivity were
investigated in [7]. A quasi-analytical and self-consistent model to compute the polarizabilities of
split ring resonators (SRR) is given in [8]. An experimental setup is also proposed for measuring the
magnetic polarizability of SRR structures. Experimental data are compared with theoretical results by
using the proposed model. The design of a compact microstrip patch antenna with a reduced size
by using metamaterials technologies was presented in [11]. However, in [11] the antenna gain and
bandwidth are the same as a standard patch antenna. A wideband transmission-line metamaterial
antenna is developed in [12]. The antenna has two transmission line arms that resonate at two different
frequencies. Each arm is a microstrip line loaded with five spiral inductors. The antenna radiation
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efficiency is 65.8% at 3.3 GHz. The antenna has 3% bandwidth. The antenna directivity is around
2.6dBi. The measured peak gain is around 0.79dBi. Small printed antennas such as printed dipole,
PIFA and loop antennas have low efficiency [16–28].

Wearable systems were presented in [2–4] and in [29–31]. For example, a remote monitoring of
patient in hospitals is presented in [29]. An adaptive thermal-aware routing protocol for wireless body
area network is presented in [30]. A secure thermal-energy aware routing protocol in wireless body
area network is presented in [31]. Active antennas and circular stacked patch antennas were presented
in [32–40]. One of the main goals of wearable medical systems is to increase disease prevention.
By using more wearable medical devices a person can handle and be aware of his private health.
Sophistical analysis of continuously measured medical data of large number of medical centers patients
may result in a better low-cost medical treatment.

Main Applications of Wearable Medical Systems

• Wearable Medical devices may help to monitor hospital activities;
• Wearable devices may help to operate and monitor home accessories to help diabetes patients,

asthma patients, epilepsy patients and assist in solve cardiovascular diseases;
• Wearable devices may help to operate and monitor IoT devices.

Moreover, wearable antennas may be used in IoT devices. The internet of things (IoT) is a system
of interrelated computing devices, mechanical and digital machines, personal devices, objects, animals,
peoples, healthcare devices and wireless communication devices that are provided with unique
identifiers (UIDs) and the ability to transfer data over a network without requiring human to human
or human to computer interaction. The internet of things helps people everyday life, work smarter
and get complete control over daily services and procedures. IoT provides smart devices to automate
homes, companies and health care centers. IoT is essential to business. IoT provides businesses with a
real time observation and inspection how their companies’ systems really work. IoT enables companies
to automate processes and reduce labor costs. An IoT ecosystem consists of web-enabled smart devices
that use embedded processors, sensors and communication hardware to collect, send and act on data
they acquire from their environments. IoT devices share the sensor data they collect by connecting to
an IoT gateway or other edge device where data is analyzed locally or sent to the cloud to be analyzed.

In this paper, meta-materials are employed to develop circular patch antennas with high efficiency
for medical, IoT and 5G communication systems. Detail design of several types of metamaterial
antennas with Circular Split-Ring Resonators (CSRRs) was presented by the author in [2–4]. Circular
patch meta-material antennas were not presented in journals. However, circular patch meta-material
antennas have several advantages over regular square and rectangular patches. Such as symmetry,
ease to generate circular polarization and propagation mode. The computed and measured bandwidth
of the stacked circular patch wearable antenna with SRR for IoT and medical applications is around
12%, for VSWR, Voltage Standing Wave Ratio, better than 3:1. The gain of the stacked circular patch
with CSRR is around 8.5 dB and with 95% efficiency.

The progress in development of small antennas is presented in Figure 1. Figure 1a presents the
gain of several small antennas. Figure 1b presents the bandwidth of several small antennas. The values
presented in Figure 1 are based on data and results presented in [1–40].
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Figure 1. Progress in development of small antennas. (a) Small Antennas Gain; (b) Small
Antennas bandwidth.

2. Compact Circular Microstrip Antenna with Split Ring Resonators

A circular microstrip antenna with CSRRs is presented in this section. The antenna is printed on
dielectric substrate with dielectric constant of 2.2, loss tangent of 0.002 and 1.6 mm thick. The radiating
element consist of a circular patch with eighteen CSRRs, the maximum number of CSRR that can be
inserted in the radiator area. The CSRRs improve the antenna effective area. The diameter of the
circular antenna with CSRR, shown in Figure 2a, is 36 mm. The antenna center frequency is 2.6 GHz.
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The resonant frequency of the dominant mode TM11 of the circular microstrip antenna is given by
Equation (1), see [1], where c is the light velocity in vacuum. Where ae is the radius of the circular
microstrip antenna and it can be calculated by using Equation (2), [1]. εe is the effective dielectric
constant. At 2.6 GHz the diameter of the circular microstrip antenna should be 46.6 mm. The CSRR
outer diameter ring is 5.2 mm, as shown in Figure 2b. The width of the CSRR strip is 0.15 mm. The CSRR
dimensions was optimized by using 3D full analysis end commercial electromagnetic software. All the
antennas presented in this paper were analyzed by using 3D full wave software, see [41].

f =
1.8412c

2πae
√
εe

(1)

ae =
1.8412c
2π f
√
εe

(2)

The diameter of the circular antenna with CSRR is smaller by 23% than the diameter of the circular
antenna without CSRR. The CSRRs design detail was presented in previous publications, see [2–5,16].
The CSRRs improve the effective area of the antenna. The maximum number of CSRRs is placed on
the circular patch antenna. The circular antenna bandwidth is around 5% for S11 lower than −9 dB.
The antenna bandwidth is around 8% for S11 lower than −6 dB as presented in Figure 3. The antenna
beam width is around 82◦. The antenna gain is around 7.6 dBi as presented in Figure 4. The antenna
efficiency is around 83%. The gain and directivity of the circular patch antenna with CSRR is higher
around to 2.5 dB to 3 dB than the circular patch antenna without CSRR. The antenna bandwidth may
be improved by adding a second radiating layer.
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Figure 3. S11 of the wearable circular microstrip antenna with CSRR.
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Figure 4. Radiation pattern of the 2.6 GHz circular microstrip antenna with CSRR.

3. Active Receiving Compact Circular Patch Antennas

A general receiver block diagram with an active antenna is presented in Figure 5. A Mini-Circuits
TAV541 PHEMT LNA, Low noise amplifier, is an integral part of the antenna as presented in Figures 5
and 6. The circular patch is etched on a substrate with a dielectric constant of 2.2 and 1.6 mm thick.
The circular patch antenna diameter is 40 mm. The active antenna configuration is shown in Figure 6.
An integral input matching network, that is part of the antenna feed network, matches the circular
patch to the LNA as shown in Figure 6. An output matching network matches the amplifier output port
to the receiver. The dimensions of the input and output matching network are less than 20 × 30 mm
and are printed on the same substrate. An integral DC bias network supplies the required voltages to
the amplifiers. The amplifier specifications are given in Table 1. The amplifier complex S parameters
are listed in Table 2. The amplifier noise parameters are listed in Table 2. The circular patch matched
antenna S11 parameter on a human body is presented in Figure 7. The antenna S11 without the
matching network is around −4 dB in the frequencies from 2.4 GHz to 3.2 GHz. However, S11 of the
antenna with the matching network is better than −10 dB in the frequencies from 2.4 GHz to 3.2 GHz.
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The active antenna bandwidth is around 25% for VSWR better than 2:1. Smith chart diagram of S11
with and without the output matching network is shown in Figure 8a. The antenna matching network
was optimized, as shown in Figure 8b. The optimized matching network improved the antenna gain
by 1.5 dB. The antenna bandwidth was improved to 44% for VSWR better than 3:1. The active antenna
gain on human body is around 15dB at 3GHz and decreases to 11 dB at 3.6 GHz as presented in Figure 9.
The antenna noise figure is better than two for frequencies from 2 GHz to 3.6 GHz. Measurement
setups of similar antennas were presented in [2]. There is a good agreement between computed and
measured results.
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Table 1. Low noise amplifier (LNA) specification at S band.

Parameter Specification Remarks

Frequency range 0.4–3 GHz
Gain 18 dB @2 GHz Vds = 3 V; Ids = 60 mA
N.F 0.5 dB @2 GHz

P1dB 19.1 dBm @2 GHz
OIP3 33.6 dBm @2 GHz

Max Input power 17 dBm
Vgs 0.48 V
Vds 3 V
Ids 60 mA

Supply voltage ±5 V
Package Surface Mount

Operating Temperature −40 ◦C–80 ◦C
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Table 2. LNA S parameters and noise parameters at the S band.

F-GHz S11 S11◦ S21 S21◦ S12 S12◦ S22 S22◦

1.04 0.74 −126.2 12.74 100.13 0.05 33.69 0.29 −94.96
1.21 0.71 −137.6 11.25 92.91 0.051 30.05 0.26 −104
1.53 0.687 −154.2 9.30 82.06 0.055 26.08 0.22 −119
1.75 0.67 −164.1 8.24 75.31 0.06 23.14 0.20 −128.4
2.02 0.67 −174.6 7.30 67.82 0.06 20.88 0.18 −138.8

Noise Parameters

F-GHz N. FMIN N11X N11Y rn

1 0.16 0.3424 52.98 0.042
1.9 0.30 0.368 100.93 0.03
2 0.32 0.371 106.01 0.03

2.4 0.39 0.383 125.79 0.03
3 0.48 0.400 153.93 0.036

3.9 0.63 0.430 −167.3 0.06
5 0.81 0.465 −125.53 0.11

4. Active Transmitting Compact Circular Patch Antennas

A basic transmitter block diagram with an active antenna is presented in Figure 10. An active
circular patch transmitting antenna is presented in Figure 11. The antenna diameter is 40 mm.
In Figure 11, the high-power amplifier (HPA) is an integral part of the antenna. The HPA is an MMIC
GaAs MESFET, VNA25. The HPA is connected to the transmitting circular patch. The circular patch is
matched to the HPA by a matching output network. The HPA input matching network matches the
amplifier port to the transmitter.

The dimensions of the input and output matching network are less than 22 × 30 mm. The amplifier
specifications are listed in Table 3. In Table 4 the HPA complex S parameters are listed. The active
transmitting circular patch S11 parameters is better than 2:1 in the frequency range from 2 to 3 GHz as
presented in Figure 12. The antenna matching network, presented in Figure 13a, was optimized to
improve the active antenna bandwidth up to 50% for VSWR better than 3:1. A Smith chart diagram
of S11 with and without the output matching network is shown in Figure 13b. The optimized active
transmitting antenna S21 parameter, gain on human body, is presented in Figure 14. The active circular
patch antenna gain, computed and measured, is 11.0 ± 2 dB for frequencies ranging from 1.9 to 3.3 GHz.
The active transmitting circular patch antenna output power is around 18 dBm.
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Figure 14. S21 of an Active Transmitting Circular Receiving Patch antenna.

Table 3. High-power amplifier (HPA) specification at S band.

Parameter Specification Remarks

Frequency range 0.4–2.5 GHz
Gain 17.8 dB @2 GHz Vds = 5 V; Ids = 85 mA
N.F 5.5 dB @2 GHz

P1dB 18.0 dBm @2 GHz
OIP3 29 dBm @2 GHz

Max. Input power 10 dBm
Vgs 0.48 V
Vds 5 V
Ids 85 mA

Supply voltage ±5 V
Package Surface Mount

Operating Temperature −40 ◦C–80 ◦C

Table 4. High-power amplifier S parameters at the S band.

F-GHz S11 dB S11◦ S21 dB S21◦ S12 dB S12◦ S22 dB S22◦

1.6 −12.8 134.3 18.3 123.3 −44.2 −93.4 −18.9 113.7
1.8 −14.3 101.2 17.9 83 −43 −86.3 −22 69.5
2 −16.5 61.8 17.3 43.5 −40.4 94.6 −27 6.42

2.16 −18.5 22.1 16.8 12.9 −38 −105.5 −27.8 −70.2
2.4 −19.4 −53.9 15.7 −31.8 −36 −128 −22.2 −147.2
2.56 −17.7 99.7 15 −60 −34.6 −145.6 −19.3 −179.4
2.7 −15.7 131 14.3 −84.3 −33.8 −160.3 −17.5 158.1
2.86 −13.7 159 13.5 −111.1 −33 −177.7 −16 134.7

3 −12.2 179.1 12.7 −134.1 −32.4 167.4 15.2 116.3

5. Active Receiving Compact Double Layer Circular Patch Antennas

A compact double layer active circular patch antenna is presented in Figure 15. The commercial
PHEMT LNA, the same LNA as presented in Section 3, is an integral part of the antenna as presented
in Figure 15. The circular patch and the antenna feed network are etched on a substrate with dielectric
constant of 2.2 and 1.6 mm thick. The circular resonator diameter is 40 mm. The circular radiator is
etched on a substrate with dielectric constant of 2.2 and 1.6 mm thick. The circular radiator diameter is
42 mm. The active antenna configuration is shown in Figure 15. An input matching network matches
the antenna to the LNA. An output matching network matches the amplifier output port to the receiver.
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An integral DC bias network supplies the required voltages to the amplifiers. The circular patch
antenna S11 parameter on a human body is presented in Figure 16. The active antenna bandwidth is
around 30% for VSWR, which is better than 2:1.

The active antenna gain is around 14 dB at 2.58 GHz and decreases to 10.5 dB at 3.2 GHz.
The active antenna S21 parameters, gain on human body, are shown in Figure 17. The active antenna
gain is 12 ± 2 dB for frequencies from 2.4 to 3.2 GHz. The active circular patch antenna noise figure
is 0.6 ± 0.2 dB for frequencies from 2.4 to 3.4 GHz, see Figure 18. The antenna matching network,
presented in Figure 19a, was optimized to improve the active antenna bandwidth up to 70% for VSWR
better than 3:1. Smith chart diagram of S11 with and without the output matching network is shown in
Figure 19b. The optimized active receiving antenna S21 parameter, gain on human body, is presented
in Figure 20. The active circular patch antenna gain is 13.0 ± 3 dB for frequencies ranging from 2 GHz
to 4 GHz. There is a good agreement between computed and measured results.
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Figure 20. S21 of an Active Stacked Circular Receiving Patch antenna.

6. Metamaterial Wearable Double Layer Circular Patch Antennas

A Metamaterial Wearable Double Layer Circular Patch Antenna is shown in Figure 21. The circular
patch and the antenna feed network are etched on a substrate with dielectric constant of 2.2 and
1.6 mm thick, see Figure 21a. The circular resonator diameter is 36.3 mm. The circular radiator is
etched on a substrate with a dielectric constant of 2.2 and 1.6 mm thick, see Figure 21b. The circular
radiator diameter is 39.3 mm. The radiating element consist of a circular patch with eighteen CSRRs,
the maximum number of CSRRs. The Double Layer Circular Patch Antenna is shown in Figure 21c.
The spacing between the resonator may be varied from 0 mm to 8 mm to get wider bandwidth from
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5% to 10%, The diameter of the circular antenna with CSRR is smaller by 25% than the diameter of the
circular antenna without CSRR. The CSRR outer diameter ring is 5.2 mm, see Figure 21d. The width of
the CSRR strip is 0.15 mm. The antenna S11 parameter is presented in Figure 22. The antenna beam
width is 82◦. The antenna gain is around 8.5 dBi as presented in Figure 23a. The antenna efficiency is
around 92%. The gain and directivity of the circular patch antenna with CSRR is higher by 2.5 dB than
the circular patch antenna without CSRR. The 3D radiation pattern of the Double Layer Circular patch
antenna with CSRR is shown in Figure 23b.
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Figure 23. (a) Radiation pattern of the Double Layer Circular microstrip antenna with CSRR at 2.7 GHz.
(b) 3D radiation pattern of the Double Layer Circular patch antenna with CSRR.

7. Wearable Metamaterial Antennas for 5G, IoT and Medical Applications

The antennas presented in this paper may be used in 5G, IoT and medical applications.
The metamaterial antennas S11 variation near the patient body were computed by using the structure
presented in Figure 24a. Several dielectric constant and conductivity of human body tissues are given
in Table 5 [16]. The antenna location on the human body is considered by computing S11 for different
dielectric constant and conductivity of the body tissues. The dielectric constant of the body tissues
varies from 5 at fat tissues to 63 at the colon area, and to 117 at the kidney tissues. The dielectric constant
of the body tissue shifts the wearable antenna resonant frequency by 2% to 5%. Wearable antennas
may be inserted inside a belt as shown in Figure 24b. The belt thickness and dielectric constant shift
the antenna resonant frequency. The belt thickness and dielectric constant was optimized to get the
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best electrical performance. The antennas impedance and radiation characteristics were computed and
measured for air spacing, between the antennas and patient body, of 0 to 10 mm.

A comparison between computed and measured results of antennas with and without CSRR is
given in Table 6. The measured results agree with the computed results. Results listed in Tables 6
and 7 show that the gain of printed antennas with CSRR is 2dB to 3 dB higher than the antennas
without CSRR. Wideband passive and active slot antennas, loop and parch antennas were presented
in [1]. Printed dipoles with and without CSRR were presented in [2]. A comparison of computed and
measured results of compact wearable antennas for medical, 5G and IoT systems is listed in Table 7.
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Table 5. Electrical properties of body tissues [16,17].

Tissue Property 430 MHz 600 MHz 1 GHz 1.2 GHz

Small intestine
σ 1.74 1.74 1.74 1.74
ε 128.1 128.1 128.1 128.1

Fat tissues
σ 0.045 0.05 0.054 0.058
ε 5.00 5 4.72 4.57

Stomach tissues
σ 0.67 0.75 0.96 0.97
ε 42.9 41.40 39.66 39.05

Blood
σ 1.72 1.78 1.91 1.98
ε 57.3 56.5 55.40 55.00

Colon
σ 1.00 1.05 1.30 1.44
ε 63.6 61.9 60.00 59.40

Skin
σ 0.57 0.6 0.63 0.76
ε 41.6 40.45 40.25 39.65

Lung tissues σ 0.27 0.27 0.27 0.27
ε 38.4 38.4 38.4 38.4

Kidney tissues σ 0.90 0.90 0.90 0.90
ε 117.45 117.45 117.45 117.45

Table 6. Comparison between printed antennas with and without CSRR.

Antenna Frequency
(MHz) BW % Computed

Gain dBi
Measured
Gain dBi

Length.
(cm)

Efficiency
%

Circular patch with CSRR 2630 8 7.5 7.8 3.6 85

Circular patch without CSRR 2630 1.5 4.5 4.3 4.8 85

Printed dipole with CSRR 350 10 5.5 5.7 19.8 95

Dipole without CSRR 400 10 2.5 2.5 21 90

Stacked circular patch with CSRR 2700 8 8.5 8.4 4 95

Stacked circular patch without
CSRR 2700 8 5.5 5.3 4.8 90

Table 7. Comparison of electrical characteristics of wearable antennas [1,2].

Antenna Frequency
(GHz) Bandwidth % VSWR Computed

Gain dBi
Measured
Gain dBi

Circular patch with CSRR 2.63 8 2:1 75 7.8

Active Circular Receiving Patch 2.5 25 2:1 13.5 14.0

Stacked circular patch with CSRR 2.7 8 2:1 8.5 8.4

Printed dipole [2] 0.43 5–10 2:1 2–3 2–3

Dipole with CSRR 0.4 8–12 2:1 5–7 5–7

Dipole (CSRR and strips) [2] 0.35 50 2.5:1 5–7.5 5–7.5

Loop [2] 0.43 5–10 4:1 0 0

Patch [2] 2.2 1–3 2:1 2–3 2–3

Stacked Patch [2] 2.2 10–15 2:1 4–5 4–5

Slot [2] 2.5 50 2:1 3 3

T shape slot [2] 2.5 60 2:1 3 3

Active slot 2.5 40 3:1 12–20 12–21

Active T slot 2.5 50 3:1 12–20 12–21

Active slot with CSRR [2] 2.5 50 2.5:1 10–16 11–16

Active Stacked Circular Patch 2.5 25 2:1 12–14 11–15
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A photo of a prototype of the Active Stacked Circular Patch is shown in Figure 25a. A block
diagram and layout of the antenna components are presented in Figure 25b. Global medical monitoring
health system with WBAN and BAN Systems is presented in Figure 26. This global medical monitoring
health system may be accessed online at any time from every place in the world.

Table 7. Comparison of electrical characteristics of wearable antennas [1,2]. 

Antenna 
Frequency 

(GHz) 

Bandwidth 

% 
VSWR 

Computed 

Gain dBi 

Measured 

Gain dBi  

Circular patch 

with CSRR 
2.63 8 2:1 75 7.8 

Active Circular 

Receiving Patch 
2.5 25 2:1 13.5 14.0 

Stacked circular 

patch with CSRR 
2.7 8 2:1 8.5 8.4 

Printed dipole [2] 0.43 5–10 2:1 2–3 2–3 

Dipole with CSRR  0.4 8–12 2:1 5–7 5–7 

Dipole (CSRR and 

strips) [2] 
0.35 50 2.5:1 5–7.5 5–7.5 

Loop [2] 0.43 5–10 4:1 0 0 

Patch [2] 2.2 1–3 2:1 2–3 2–3 

Stacked Patch [2] 2.2 10–15 2:1 4–5 4–5 

Slot [2] 2.5 50 2:1 3 3 

T shape slot [2] 2.5 60 2:1 3 3 

Active slot  2.5 40 3:1 12–20 12–21 

Active T slot 2.5 50 3:1 12–20 12–21 
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2.5 25 2:1 12–14 11–15 
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Figure 26: Global Medical monitoring health system with WBAN and BAN Systems 
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Figure 25. (a) A photo of a prototype of the Active Stacked Circular Patch; (b) Antenna layout.

Wearable medical systems and sensors can measure body temperature, heartbeat, blood pressure,
sweat rate, perform gait analysis and other physiological parameters of the person wearing the medical
device. Gait analysis is a useful tool both in clinical practice and biomechanical research. Gait analysis
using wearable sensors provides quantitative and repeatable results over extended time periods with
low cost and good portability, showing better prospects and making great progress in recent years.
In sport and commercial wearable sensors are used in several applications of gait analysis.
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8. Conclusions

Passive and active circular patch wearable antennas may be used in receiving or transmitting
WBAN, 5G, IoT and medical systems. In transmitters, an HPA power amplifier is connected to the
antenna. In receiving channels, a low noise amplifier (LNA) is connected to the antenna.

Wideband passive and active circular patch antennas may be employed in wideband wearable
5G communication systems for commercial and medical applications. Passive and active printed
antennas bandwidth, efficiency and gain and noise figure are presented and summarized in this paper.
The directivity and gain of the antennas with split-ring resonators is higher by 2.5 to 3 dB than the
antennas without CSRR. The resonant frequency of the antennas without CSRR is higher by 6% to 9%
than the antennas with CSRR.

The active and passive antennas presented in this paper are compact, low-cost, wideband
passive and active antennas for receiving and transmitting wearable IoT, medical and 5G
communication systems.

Wearable body area networks seem to be a significant option for healthcare organizations, hospitals
and patients. Wearable technology provides a convenient service that may improve the long-term
health and physiological response of patients. Wearable systems support the development of personal
health-care networks with online immediate response to treat and improve patients’ health.

The active transmitting circular patch output power is around 18dBm. A summary and comparison
of the electrical characteristics of the wearable antennas with and without CSRRs are presented in
this paper.
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This paper presents wideband active and passive circular patch antennas with high efficiency for
commercial and medical applications. The active circular patch antennas bandwidth is around 25%
for a reflection coefficient lower than −10 dB. The antenna bandwidth and gain were improved by
optimizing the active antenna matching network. The active receiving circular patch antenna gain is
around 13.5 dB. The wideband active and passive circular patch antennas may be designed as dual
polarized and circular polarized antennas.

In future work circular polarized circular patch metamaterial antennas with high efficiency for
medical, IoT and 5G communication systems will be presented. Moreover, in future work fractal
circular patch antennas, with and without CSRRs, with high efficiency for medical, IoT and 5G
communication systems will be presented.
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