An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Work
2.2. Methods and Tools
2.2.1. Protégé Ontology Editing Tool
2.2.2. Database Presentation
3. Architecture for COVID-19 Suspected Detection in the Context of Monitoring COPD Patients
3.1. System Architecture
3.1.1. Data Acquisition and Representation Layers
3.1.2. Reasoning and Application Layers
3.2. Design Ontology for Symptoms COVID-19 Detection in COPD Patients
Ontology Overview and Methodology for Building Ontologies
- ○
- Ontology Overview
- ○
- Methodology for Building Ontologies
- ○
- Evaluation Vital Sign Ontology
- ○
- Questionnaire Ontology
- ○
- Symptom COVID-19 Ontology
- ○
- Alert Ontology
- ○
- Service Ontology
3.3. Ubiquitous System and Adaptation Mechanisms during Detection of Suspected COPD Patient Activity
3.3.1. Ubiquitous/Pervasive System
3.3.2. Adaptation Mechanism to Deliver Vital Sign Alerts and the Alert Symptom Investigation
3.3.3. Adaptation Mechanism That Delivers Alert Recommendations for the Screening Test
- Context information (patients’ information, sensors);
- Representation (ontology);
- Reasoning (adaptation and inference engine);
- Services (services offered by application of context-aware tools);
- Rule based (rule to detect suspect COPD patient).
3.4. Implementations and Applicability
3.4.1. Implementations
3.4.2. Applicability of the Project
- ○
- Experimental Approach
- ○
- Implementation Approach of the SuspectedCOPDcoviDOlogy
- (i)
- Description of the class hierarchy of system detection
- (ii)
- Description list of object properties
- (iii)
- Description of data property hierarchy
- (iv) Description of Interface Connection
- (v) Presentation of adaptative dashboard of suspected cases
4. Results
4.1. Applicability to Other Domains
- (1)
- Define the patient context by specifying the vital sign and symptom parameters of the disease.
- (2)
- Define the detection rules for the disease and link these rules to the information in the context.
- (3)
- Define the relevant alert services for this disease.
- (4)
- Modify the questionnaire.
- (5)
- Modify the program of the adaptation and inference engine.
- (6)
- Modify the mechanism adaptation.
4.2. Comparison of the Prototype to Other Tools (Prototype vs. Others Projects)
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Overview-Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.nhs.uk/conditions/chronic-obstructive-pulmonary-disease-copd/ (accessed on 3 December 2020).
- Stiell, I.G.; Perry, J.J.; Clement, C.M.; Brison, R.J.; Rowe, B.H.; Aaron, S.D.; McRae, A.D.; Borgundvaag, B.; Calder, L.A.; Forster, A.J.; et al. Clinical validation of a risk scale for serious outcomes among patients with chronic obstructive pulmonary disease managed in the emergency department. Can. Med Assoc. J. 2018, 190, E1406–E1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiser, M. Ubiquitous computing. Computer 1993, 10, 71–72. [Google Scholar] [CrossRef]
- Ajami, H.; Mcheick, H. Ontology-Based Model to Support Ubiquitous Healthcare Systems for COPD Patients. Electronics 2018, 7, 371. [Google Scholar] [CrossRef] [Green Version]
- Protégé: A Free, Open-Source Ontology Editor and Framework for Building Intelligent Systems. Available online: https://protege.stanford.edu/ (accessed on 3 February 2021).
- Hamid, S.; Mir, M.Y.; Rohela, G.K. Noval coronavirus disease (COVID-19): A pandemic (Epidemiology, Pathogenesis and potential therapeutics). New Microbes New Infect. 2000, 35, 100679. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Mohapatra, S.K.; Wu, S.-L. SLA based healthcare big data analysis and computing in cloud network. J. Parallel Distrib. Comput. 2018, 119, 121–135. [Google Scholar] [CrossRef]
- Smith, H.S.; Criner, A.J.; Fehrle, D.; Grabianowski, C.L.; Jacobs, M.R.; Criner, G.J. Use of a smartphone/tablet-based bidirectional telemedicine disease management program facilitates early detection and treatment of COPD exacerbation symptoms. Telemed. e-Health 2016, 22, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Paganelli, F.; Giuli, D. An Ontology-Based Context Model for Home Health Monitoring and Alerting in Chronic Patient Care Networks. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; Volume 2, pp. 838–845. [Google Scholar]
- Lasierra, N.; Alesanco, A.; Guillén, S.; García, J. A three stage ontology-driven solution to provide personalized care to chronic patients at home. J. Biomed. Inform. 2013, 46, 516–529. [Google Scholar] [CrossRef]
- Benlamri, R.; Docksteader, L. MORF: A Mobile Health-Monitoring Platform. IT Prof. 2010, 12, 18–25. [Google Scholar] [CrossRef]
- Andres, E.; Talha, S.; Hajjam, M.; Hajjam, J.; Ervé, S.; Hajjam, A. Telemedicine to monitor elderly patients with chronic diseases, with a special focus on patients with chronic heart failure. J. Gerontol. Geriatr. Res. 2016, 5, 2. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Ong, E.; Wang, Y.; Liu, Y.; Huffman, A.; Huang, H.-H.; Beverley, J.; Hur, J.; Yang, X.; et al. CIDO, A community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Sci. Data 2020, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chan, W.K.; Wang, Z.; Hur, J.; Xie, J.; Yu, H.; He, Y. Ontological and Bioinformatic Analysis of Anti-Coronavirus Drugs and their Implication for Drug Repurposing Against COVID-19. Preprints 2020, 2020030413. Available online: https://www.preprints.org/manuscript/202003.0413/v1 (accessed on 3 February 2021).
- WHO. Coronavirus Disease (COVID-19) Dashboard. Available online: https://COVID-19.who.int/?gclid=CjwKCAiAnIT9BRAmEiwANaoE1ZAxeC6J-g5txlT3WVt1LanfilGIfdbQhL7ooyi_LjY9nr50_y07lRoCHLsQAvD_BwE (accessed on 3 November 2020).
- Safety Technology, Covid-19 Safety. Available online: https://www.proxxi.co/ (accessed on 1 November 2020).
- Rombit. Available online: https://rombit.be/covid-solutions/ (accessed on 10 November 2020).
- Mila. Available online: https://mila.quebec/en/ (accessed on 3 November 2020).
- COVIDSafe app. Available online: https://www.covidsafe.gov.au// (accessed on 2 November 2020).
- Reel Active, COVID-19 Solution. Available online: https://www.reelyactive.com/covid-19/ (accessed on 25 October 2020).
- Studer, R.; Benjamins, V.; Fensel, D. Knowledge engineering: Principles and methods. Data Knowl. Eng. 1998, 25, 161–197. [Google Scholar] [CrossRef] [Green Version]
- Trajkova, J.; Gauch, S. Improving Ontology-Based User Profiles. RIAO 2004, 2004, 380–390. [Google Scholar]
- Wang, N.; Xu, X. A method to build ontology. In Proceedings of the Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, Beijing, China, 14–17 May 2000; IEEE: New York, NY, USA; Volume 2, pp. 672–673. [Google Scholar]
- Gyrard, A.; Bonnet, C.; Boudaoud, K.; Serrano, M. LOV4IoT: A second life for ontology-based domain knowledge to build Semantic Web of Things applications. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria, 22–24 August 2016; IEEE: New York, NY, USA; pp. 254–261. [Google Scholar]
- Hazman, M.; El-Beltagy, S.R.; Rafea, A. A survey of ontology learning approaches. Int. J. Comput. Appl. 2011, 22, 36–43. [Google Scholar] [CrossRef]
- Sánchez, D.; Batet, M. Semantic similarity estimation in the biomedical domain: An ontology-based information-theoretic perspective. J. Biomed. Inform. 2011, 44, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenat, D.B.; Guha, R.V. Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Obrst, L. Ontological architectures. In TAO—Theory and Applications of Ontology; Poli, R., Healy, M., Kameas, A., Eds.; Springer: New York, NY, USA, 2010; pp. 27–66. [Google Scholar]
- Bullinger, A. Innovation and Ontologies: Structuring the Early Stages of Innovation Management; Springer Science & Busi-ness Media: Berlin, Germany, 2008. [Google Scholar]
- Fernández-López, M. Overview of methodologies for building ontologies. In Proceedings of the Workshop Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends de la Conferencia International Joint Conference for Artifi-cial Intelligence (IJCAI’99), Stockholm, Sweden, 2 August 1999. [Google Scholar]
- Bautista-Zambrana, M.R. Methodologies to Build Ontologies for Terminological Purposes. Procedia Soc. Behav. Sci. 2015, 173, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, N.H.; Hassan, R.; Othman, R.M.; Asmuni, H. Maturity-Based Analysis of Lightweight Ontology from the Aspect of Extensibility, Reusability and Evolutionary. Int. J. Adv. Soft Comput. Appl. 2015, 7, 55–74. [Google Scholar]
- Gu, T.; Wang, X.H.; Pung, H.K.; Zhang, D.Q. An ontology-based context model in intelligent environments. arXiv preprint 2020, arXiv:2003.05055. [Google Scholar]
- HameurLaine, A.; Abdelaziz, K.; Roose, P.; Kholladi, M.K. Towards an observer/controller and ontolo-gy/rule-based approach for pervasive healthcare systems. Int. J. Ad Hoc Ubiquitous Comput. 2017, 26, 137–156. [Google Scholar] [CrossRef]
- Bastide, G. Scorpio: Une Approche d’Adaptation Structurelle de Composants Logiciels-Application aux Environnements Ubiquitaires. Ph.D. Thesis, Université de Nantes, Ecole Centrale de Nantes (ECN), Nantes, France, 2007. [Google Scholar]
- Hameurlaine, A.; Brahimi, S. Background on Context-Aware Computing Systems. In Advances in Medical Technologies and Clinical Practice; IGI Global: Hershey, PA, USA, 2017; pp. 1–31. [Google Scholar]
- Ontopy: Programmation Orientée Ontologie en Python. Available online: https://pypi.org/project/ontopy/ (accessed on 26 November 2020).
Application Alerts | Disadvantages/Limits |
---|---|
(1) ReelyActive | No personal data, no geolocation, no timestamps, no adaptation mechanisms, no vital sign assessment in real time No agreement to monitor QoS |
(2) Rombit | No vital sign assessment in real time, no adaptation mechanisms using the context-aware system |
(3) Covid-19 Safety solution | No vital sign assessment in real time, no adaptation mechanisms using the context-aware system |
(4) MILA | No vital sign assessment in real time, no adaptation mechanisms using the context-aware system |
(5) COVIDSAFE | No vital sign assessment in real time, no adaptation mechanisms using the context-aware system |
(6) CoronaMap | No personal data, no adaptation mechanisms |
Profile Parameters | Symptom Parameter | Vital Sign Parameters |
---|---|---|
1. Gender (male, female) | 5. Dyspnea (EVA) | 12. Pulse ox (Spo2) (% O2) |
2. Age (year) | 6. Shortness of breath | 13. HR or heart rate (pulses per minute) |
3. Body mass index (BMI) | 7. Cough | 14. Temperature (℃) |
4. Medical history (medical background) | 8. Sputum | 15. Fiev1 (%) |
9. Infection | ||
10. Respiratory symptom wake you up | ||
11. Wheezing |
Step | Description and Purpose |
---|---|
1 | Determine the domain and scope of the ontology, COPD domain, and alert management. |
2 | Ontology reuse and addressing poor ontological coverage of pulmonary diseases. |
3 | Development of a conceptual model. |
Type | Rules-Based on Ontology Web Language Description Logics (OWL/DL/SWRL) |
---|---|
1. Evaluation vital sign (Rule1) | Patient(?P)^SensorDataBucaTp(?BT)^hasSDBTp(?P, ?BT)^SensorDataFev1(?Fv) ^hasSDF(?P, ?Fv) ^SensorDataSpo2(?Sp) ^ hasSDSp(?P,?Sp)^hasCurrentValue(?Sp,?cv)^hasRangeMin(?Sp,?Min) ^ swrlb:lessThanOrEqual(?cv, SPmin) ^swrlb:greaterThanOrEqual(?BT,BTmax) -> has_TriggeredQ(?QE, Posif), SendMessage(?He) |
2. Identification suspected (Rule2) | Patient(?pt)^Fever(?fv)^hasSymptom_Fever(?pt, ? Fv)^Cough(?cg) ^ hasSymptom_Cough (? pt, ?cg)^headaches (? hd)^hasheadaches(?pt,?hd)^Extreme_tiredness(?et) ^hasSymptom_Extreme_tiredness (?pt, et) ^Pneumonia (? pm)^hasSymptom_Pneumonia(?pt, ?pm)^SensorDataBucaTemp(?bt) ^hasSDBTp(?pt,?bt)^SensorDataFev1(?fv)^hasSDF(?pt,?fv)^SensorDataSpo2(?Sp)^hasSDSp(?pt,?Sp)^hasCurrentValue(?Sp,?cv)^hasRangeMin(?Sp,?Min) ^ swrlb: lessThanOrEqual(?Cv,spmin) swrlb:greaterThanOrEqual(?bt,Btmax) –> SuspectedCOVID-19Alert (?pt, Suspected) |
Object Property | Domain | Range | Datatype Property | Domain | Range |
---|---|---|---|---|---|
hasSDBTp | Patient | SensorDataBucaTp | hasFname | Profile | String |
hasSDF | Patient | SensorDataFEV1 | hasLname | Profile | String |
hasSDSp | Patient | SensorDataSpo2 | hasGender | Profile | String |
hasAlertcovid | Patient | AlertVitalSign | Hasphone | Profile | String |
hasTriggeredQ | AlertVitalSign | Questionnaire | hasAdress | Profile | String |
Object Property | Domain | Range | Datatype Property | Domain | Range |
---|---|---|---|---|---|
isPartOf | Cough Symptoms | Symptom Covid-19 | Id | Symptom Covid-19 | Integer |
Answers | Patient | Questionnaire | Name | Patient | String |
isSuspected | Patient | Symptom Covid-19 | hasStatut | Symptom Covid-19 | String |
Has | MedicalProfile | Patient | hasBMI | MedicalProfile | String |
id | Buccal Temperature | Spo2 (%) | Fiev1 (%) |
---|---|---|---|
1 | 37.7 | 89 | 65 |
2 | 38.5 | 87 | 29 |
3 | 38.8 | 88 | 38 |
4 | 37 | 91 | 40 |
Id | Headache Symptom | Extreme_Tiredness Symptom | Pneumonia Symptom | Difficulty Breathing | Cough Symptom | Fever Sensation |
---|---|---|---|---|---|---|
1 | N | N | N | N | N | N |
2 | N | N | N | N | N | N |
3 | Y | Y | Y | Y | Y | Y |
4 | N | N | N | N | N | N |
Suspected for COVID-19 (Experimental) | Negative for COVID-19 | Suspected for COVID-19 (Prototype) | Negative for COVID-19 | |
---|---|---|---|---|
N | 3 | 27 | 5 | 25 |
% | 10% | 90% | 16.67% | 83.33% |
Advantages/Features | Prototype | Machine Learning | ReelyActive | COVIDSAFE |
---|---|---|---|---|
Adaptation mechanisms | x | x | ||
Dynamic medical assistance service | x | x | ||
Vital sign data acquisition | x | x | ||
Symptom data acquisition | x | |||
Physician dynamic dashboard | x | |||
Automatic engine reasoning | x | |||
Adapted to monitor COPD patient | x | x | x | x |
Algorithm prediction | x | |||
Respect social distancing | x | x | ||
Prevention of contamination risks COVID-19 | x | |||
Alert and detection of COVID-19 risks | x | x | x | |
Digital contact tracing | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouamé, K.-M.; Mcheick, H. An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients. Appl. Syst. Innov. 2021, 4, 21. https://doi.org/10.3390/asi4010021
Kouamé K-M, Mcheick H. An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients. Applied System Innovation. 2021; 4(1):21. https://doi.org/10.3390/asi4010021
Chicago/Turabian StyleKouamé, Konan-Marcelin, and Hamid Mcheick. 2021. "An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients" Applied System Innovation 4, no. 1: 21. https://doi.org/10.3390/asi4010021
APA StyleKouamé, K. -M., & Mcheick, H. (2021). An Ontological Approach for Early Detection of Suspected COVID-19 among COPD Patients. Applied System Innovation, 4(1), 21. https://doi.org/10.3390/asi4010021