State of Industry 5.0—Analysis and Identification of Current Research Trends
Abstract
:1. Introduction
2. Data Gathering and Preprocessing
3. Data Analysis and Discussion
3.1. Frequently Used Terms Extraction from the Data
3.2. Term Frequency Analysis
3.3. Topic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Vinitha, K.; Prabhu, R.A.; Bhaskar, R.; Hariharan, R. Review on industrial mathematics and materials at Industry 1.0 to Industry 4.0. Mater. Today Proc. 2020, 33, 3956–3960. [Google Scholar] [CrossRef]
- Madsen, E.S.; Bilberg, A.; Hansen, D.G. Industry 4.0 and digitalization call for vocational skills, applied industrial engineering, and less for pure academics. In Proceedings of the 5th P&OM World Conference, Production and Operations Management, P&OM, Havana, Cuba, 6–10 September 2016. [Google Scholar]
- Rada, M. Industry 5.0-from Virtual to Physical. LinkedIn. 7 March 2018. Available online: https://www.linkedin.com/pulse/industry-50-from-virtual-physical-michael-rada (accessed on 3 February 2022).
- Skobelev, P.O.; Borovik, S.Y. On the way from Industry 4.0 to Industry 5.0: From digital manufacturing to digital society. Industry 4.0 2017, 2, 307–311. [Google Scholar]
- Müller, J. Enabling Technologies for Industry 5.0: Results of a Workshop with Europe’s Technology Leaders; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Østergaard, E.H. Welcome to Industry 5.0. Available online: https://info.universal-robots.com/hubfs/Enablers/White%20papers/Welcome%20to%20Industry%205.0_Esben%20%C3%98stergaard.pdf?submissionGuid=00c4d11f-80f2-4683-a12a-e821221793e3 (accessed on 3 February 2022).
- Saurabh, S.; Ambad, P.; Bhosle, S. Industry 4.0–A glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar]
- Madsen Øivind, D.; Berg, T. An Exploratory Bibliometric Analysis of the Birth and Emergence of Industry 5. Appl. Syst. Innov. 2021, 4, 87. [Google Scholar] [CrossRef]
- Welbers, K.; Van Atteveldt, W.; Benoit, K. Text Analysis in R. Commun. Methods Meas. 2017, 11, 245–265. [Google Scholar] [CrossRef]
- Hearst, M. What is text mining. SpringerPlus 2016, 5, 1608. [Google Scholar]
- Feng, L.; Chiam, Y.K.; Lo, S.K. Text-Mining Techniques and Tools for Systematic Literature Reviews: A Systematic Literature Review. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, China, 4–8 December 2017; pp. 41–50. [Google Scholar]
- Bach, M.P.; Krstić, Ž.; Seljan, S.; Turulja, L. Text Mining for Big Data Analysis in Financial Sector: A Literature Review. Sustainability 2019, 11, 1277. [Google Scholar] [CrossRef] [Green Version]
- Aureli, S. A comparison of content analysis usage and text mining in CSR corporate disclosure. Int. J. Digit. Account. Res. 2017, 17, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Namugera, F.; Wesonga, R.; Jehopio, P. Text mining and determinants of sentiments: Twitter social media usage by tradi-tional media houses in Uganda. Comput. Soc. Netw. 2019, 6, 3. [Google Scholar] [CrossRef]
- Akundi, A.; Mondragon, O. Model based systems engineering—A text mining based structured comprehensive overview. Syst. Eng. 2021, 25, 51–67. [Google Scholar] [CrossRef]
- Wiedemann, G.; Niekler, A. Hands-On: A Five Day Text Mining Course for Humanists and Social Scientists in R. Available online: http://ceur-ws.org/Vol-1918/wiedemann.pdf (accessed on 10 November 2021).
- Christian, H.; Pramodana, A.M.; Suhartono, D. Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF). ComTech Comput. Math. Eng. Appl. 2016, 7, 285–294. [Google Scholar] [CrossRef]
- Neto, J.L.; Santos, A.D.; Kaestner, C.A.A.; Alexandre, N.; Santos, D.; Celso, A.A.; Alex, K.; Freitas, A.A.; Parana, C. Document Clustering and Text Summarization. 2000. Available online: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4634 (accessed on 10 November 2021).
- Melnyk, L.; Kubatko, O.; Dehtyarova, I.; Matsenko, O.; Rozhko, O. The effect of industrial revolutions on the transformation of social and economic systems. Probl. Perspect. Manag. 2019, 17, 381–391. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. Industry 5.0 and its applications in orthopedics. J. Clin. Orthop. Trauma 2019, 10, 807. [Google Scholar] [CrossRef]
- Frederico, G.F. From supply chain 4.0 to supply chain 5.0: Findings from a systematic literature review and research direc-tions. Logistics 2021, 5, 49. [Google Scholar] [CrossRef]
- Aslam, F.; Aimin, W.; Li, M.; Rehman, K.U. Innovation in the Era of IoT and Industry 5.0: Absolute Innovation Management (AIM) Framework. Information 2020, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Gorodetsky, V.; Larukchin, V.; Skobelev, P. Conceptual Model of Digital Platform for Enterprises of Industry 5.0. In Proceedings of the Foundations of Computational Intelligence; Springer Science and Business Media: Saint-Petersburg, Russia, 2020; Volume 3, pp. 35–40. [Google Scholar]
- Liu, L.; Tang, L.; Dong, W.; Yao, S.; Zhou, W. An overview of topic modeling and its current applications in bioinformatics. SpringerPlus 2016, 5, 1608. [Google Scholar] [CrossRef] [Green Version]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef] [Green Version]
- Sazvar, Z.; Tafakkori, K.; Oladzad, N.; Nayeri, S. A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain. Comput. Ind. Eng. 2021, 159, 107406. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, H.; Dan, Z.; Li, S. Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example. Sustainability 2021, 13, 12503. [Google Scholar] [CrossRef]
- Mizrahi, D.; Zuckerman, I.; Laufer, I. Using a Stochastic Agent Model to Optimize Performance in Divergent Interest Tacit Coordination Games. Sensors 2020, 20, 7026. [Google Scholar] [CrossRef] [PubMed]
- Barata, J. The fourth industrial revolution of supply chains: A tertiary study. J. Eng. Technol. Manag. 2021, 60, 101624. [Google Scholar] [CrossRef]
- Ghosh, S.; Hughes, M.; Hodgkinson, I.; Hughes, P. Digital transformation of industrial businesses: A dynamic capability approach. Technovation 2021, 102414. [Google Scholar] [CrossRef]
- Anguelov, K. Indicators for the Effectiveness and Efficiency of the Implementation of an Enterprise Resource Planning System. In Proceedings of the 2021 12th National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 27–28 May 2021; pp. 1–4. [Google Scholar]
- Khurana, S.; Haleem, A.; Luthra, S.; Huisingh, D.; Mannan, B. Now is the time to press the reset button: Helping India’s companies to become more resilient and effective in overcoming the impacts of COVID-19, climate changes and other crises. J. Clean. Prod. 2021, 280, 124466. [Google Scholar] [CrossRef] [PubMed]
- Maddikunta, P.K.R.; Pham, Q.-V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2021, 100257. [Google Scholar] [CrossRef]
- Deepu, T.S.; Ravi, V. A conceptual framework for supply chain digitalization using integrated systems model approach and DIKW hierarchy. Intell. Syst. Appl. 2021, 10–11, 200048. [Google Scholar] [CrossRef]
- Vrchota, J.; Řehoř, P.; Maříková, M.; Pech, M. Critical Success Factors of the Project Management in Relation to Industry 4.0 for Sustainability of Projects. Sustainability 2020, 13, 281. [Google Scholar] [CrossRef]
- Rehman, K.; Aslam, F.; Mata, M.; Martins, J.; Abreu, A.; Lourenço, A.M.; Mariam, S. Impact of Entrepreneurial Leadership on Product Innovation Performance: Intervening Effect of Absorptive Capacity, Intra-Firm Networks, and Design Thinking. Sustainability 2021, 13, 7054. [Google Scholar] [CrossRef]
- Petersen, J.A.; Paulich, J.B.; Khodakarami, F.; Spyropoulou, S.; Kumar, V. Customer-based Execution Strategy in a Global Digital Economy. Int. J. Res. Mark. 2021, in press. [CrossRef]
- Schütte, G. What kind of innovation policy does the bioeconomy need? New Biotechnol. 2018, 40, 82–86. [Google Scholar] [CrossRef]
- Cricelli, L.; Strazzullo, S. The Economic Aspect of Digital Sustainability: A Systematic Review. Sustainability 2021, 13, 8241. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M.; Iranmanesh, M.; Maroufkhani, P.; Morales, M.E. Industry 4.0 ten years on: A bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. J. Clean. Prod. 2021, 302, 127052. [Google Scholar] [CrossRef]
- Narula, S.; Puppala, H.; Kumar, A.; Frederico, G.F.; Dwivedy, M.; Prakash, S.; Talwar, V. Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean. Prod. 2021, 305, 127141. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ahmed, S.; Rafi-Ul-Shan, P.M.; Azmat, M.; Akhtar, P.; Pervez, Z.; Imran, M.A.; Ur-Rehman, M. Impact of IoT on Manufacturing Industry 4.0: A New Triangular Systematic Review. Sustainability 2021, 13, 12506. [Google Scholar] [CrossRef]
- Potocan, V. Technology and Corporate Social Responsibility. Sustainability 2021, 13, 8658. [Google Scholar] [CrossRef]
- Bellandi, M.; De Propris, L. Local Productive Systems’ Transitions to Industry 4.0+. Sustainability 2021, 13, 13052. [Google Scholar] [CrossRef]
- Abubakr, M.; Abbas, A.T.; Tomaz, I.; Soliman, M.S.; Luqman, M.; Hegab, H. Sustainable and smart manufacturing: An in-tegrated approach. Sustainability 2020, 12, 2280. [Google Scholar] [CrossRef] [Green Version]
- Massaro, A. Information Technology Infrastructures Supporting Industry 5.0 Facilities. In Electronics in Advanced Research Industries; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; pp. 51–101. [Google Scholar]
- Coito, T.; Firme, B.; Martins, M.; Vieira, S.; Figueiredo, J.; Sousa, J. Intelligent Sensors for Real-Time Decision-Making. Automation 2021, 2, 62–82. [Google Scholar] [CrossRef]
- Shariati, M.; Weber, W.E.; Bohlen, J.; Kurz, G.; Letzig, D.; Höche, D. Enabling intelligent Mg-sheet processing utilizing efficient machine-learning algorithm. Mater. Sci. Eng. A 2020, 794, 139846. [Google Scholar] [CrossRef]
- Yin, L.; Gao, Q.; Zhao, L.; Zhang, B.; Wang, T.; Li, S.; Liu, H. A review of machine learning for new generation smart dispatch in power systems. Eng. Appl. Artif. Intell. 2020, 88, 103372. [Google Scholar] [CrossRef]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Du Plessis, A.; Broeckhoven, C.; Yadroitsava, I.; Yadroitsev, I.; Hands, C.H.; Kunju, R.; Bhate, D. Beautiful and functional: A review of biomimetic design in additive manufacturing. Addit. Manuf. 2019, 27, 408–427. [Google Scholar] [CrossRef]
- Ammar, M.; Haleem, A.; Javaid, M.; Bahl, S.; Verma, A.S. Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing. Mater. Today Proc. 2021, 51. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5. 0 Use Case. Sensors 2021, 21, 5745. [Google Scholar] [CrossRef]
- Miglani, A.; Kumar, N. Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: A systematic review. Comput. Commun. 2021, 178, 37–63. [Google Scholar] [CrossRef]
- Mbunge, E.; Muchemwa, B.; Jiyane, S.; Batani, J. Sensors and healthcare 5.0: Transformative shift in virtual care through emerging digital health technologies. Glob. Health J. 2021, 5, 169–177. [Google Scholar] [CrossRef]
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy. IoT 2021, 2, 6. [Google Scholar] [CrossRef]
- Vithanage, N.N.N.; Thanthrige, S.S.H.; Kapuge, M.C.K.P.; Malwenna, T.H.; Liyanapathirana, C.; Wijekoon, J.L. A Secure Corroboration Protocol for Internet of Things (IoT) Devices Using MQTT Version 5 and LDAP. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea, 13–16 January 2021; pp. 837–841. [Google Scholar]
- Sujith, A.; Sajja, G.S.; Mahalakshmi, V.; Nuhmani, S.; Prasanalakshmi, B. Systematic review of smart health monitoring using deep learning and Artificial intelligence. Neurosci. Inform. 2021, 2, 100028. [Google Scholar] [CrossRef]
- Dineva, K.; Atanasova, T. Design of Scalable IoT Architecture Based on AWS for Smart Livestock. Animals 2021, 11, 2697. [Google Scholar] [CrossRef]
- Omolara, A.E.; Alabdulatif, A.; Abiodun, O.I.; Alawida, M.; Alabdulatif, A.; Alshoura, W.H.; Arshad, H. The internet of things security: A survey encompassing unexplored areas and new in-sights. Comput. Secur. 2022, 112, 102494. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. Internet of Nano-Things, Things and Everything: Future Growth Trends. Future Internet 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Anthopoulos, L.; Kazantzi, V. Urban energy efficiency assessment models from an AI and big data per-spective: Tools for policy makers. Sustain. Cities Soc. 2022, 76, 103492. [Google Scholar] [CrossRef]
- Demir, K.A.; Döven, G.; Sezen, B. Industry 5.0 and Human-Robot Co-working. Procedia Comput. Sci. 2019, 158, 688–695. [Google Scholar] [CrossRef]
- Fast-Berglund, Åsa; Thorvald, P. Variations in cycle-time when using knowledge-based tasks for humans and robots. IFAC-PapersOnLine 2021, 54, 152–157. [Google Scholar] [CrossRef]
- Massaro, A. State of the Art and Technology Innovation. In Electronics in Advanced Research Industries; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; pp. 1–49. [Google Scholar]
- Margherita, E.G.; Braccini, A.M. Socio-technical perspectives in the Fourth Industrial Revolution-Analysing the three main visions: Industry 4.0, the socially sustainable factory of Operator 4.0 and Industry 5.0. In Proceedings of the 7th International Workshop on Socio-Technical Perspective in IS Development (STPIS 2021), Trento, Italy, 14–15 October 2021. [Google Scholar]
- Cebollada, S.; Payá, L.; Flores, M.; Peidró, A.; Reinoso, O. A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data. Expert Syst. Appl. 2021, 167, 114195. [Google Scholar] [CrossRef]
- Romero, D.; Stahre, J. Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems. Procedia CIRP 2021, 104, 1089–1094. [Google Scholar] [CrossRef]
- Wang, L. A futuristic perspective on human-centric assembly. J. Manuf. Syst. 2021, 62, 199–201. [Google Scholar] [CrossRef]
- Martin, L.; Gonzalez-Romo, M.; Sahnoun, M.; Bettayeb, B.; He, N.; Gao, J. Effect of Human-Robot Interaction on the Fleet Size of AIV Transporters in FMS. In Proceedings of the 2021 1st International Conference on Cyber Management and Engineering (CyMaEn), Hammamet, Tunisia, 26–28 May 2021; pp. 1–5. [Google Scholar]
Industry 4.0 | Industry 5.0 | |
Objective |
|
|
Systemic Approaches |
|
|
Human Factors |
|
|
Enabling Technologies and Concepts |
|
|
Environmental Implications |
|
|
Database | Abstracts | Timeline |
---|---|---|
IEEE Explore | 26 | 2019–2022 |
Science Direct | 94 | 2016–2021 |
MDPI | 76 | 2018–2021 |
Total | 196 |
Terms Usage Identified | Term Frequency |
---|---|
industrial revolution | 45 |
artificial intelligence | 43 |
supply chain | 32 |
big data | 28 |
digital transformation | 24 |
machine learn | 23 |
industry technology | 22 |
digital twin | 19 |
recent year | 18 |
cloud compute | 18 |
thing iot | 18 |
sustainable development | 17 |
future research | 17 |
intelligence ai | 16 |
smart manufacture | 16 |
digital technology | 16 |
fourth industrial | 16 |
manufacture industry | 16 |
production system | 15 |
manufacture system | 15 |
Topic Number | Topic Terms | Topic Label in Context of Industry 5.0 |
---|---|---|
Topic 1 | supply, approach, engineer, model, result, safety, analysis, method, performance, key | Supply Chain Evaluation and Optimization |
Topic 2 | digital, research, study, industry, innovation, company, review, business, organization, future | Enterprise Management, Innovation, and Digitization |
Topic 3 | manufacture, smart, industry, revolution, sustainable, technology, industrial, energy, technological, challenge | Smart and Sustainable Manufacturing |
Topic 4 | IoT, security, internet, datum, thing, compute, system, device, health, cloud | Transformation driven by IoT, Bigdata, and AI |
Topic 5 | human, robot, system, production, process, task, industry, intelligent, robotic, manufacture | Human Machine connectivity and co-existence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Appl. Syst. Innov. 2022, 5, 27. https://doi.org/10.3390/asi5010027
Akundi A, Euresti D, Luna S, Ankobiah W, Lopes A, Edinbarough I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Applied System Innovation. 2022; 5(1):27. https://doi.org/10.3390/asi5010027
Chicago/Turabian StyleAkundi, Aditya, Daniel Euresti, Sergio Luna, Wilma Ankobiah, Amit Lopes, and Immanuel Edinbarough. 2022. "State of Industry 5.0—Analysis and Identification of Current Research Trends" Applied System Innovation 5, no. 1: 27. https://doi.org/10.3390/asi5010027
APA StyleAkundi, A., Euresti, D., Luna, S., Ankobiah, W., Lopes, A., & Edinbarough, I. (2022). State of Industry 5.0—Analysis and Identification of Current Research Trends. Applied System Innovation, 5(1), 27. https://doi.org/10.3390/asi5010027