Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling
Abstract
:1. Introduction
2. Antenna Structure
3. Simulated Results and Analysis
3.1. Effects of the Single Patch and the Patch Array
3.2. Effects of the Installing Position and the Square Patches Length
3.3. Effects of the Lengths and Widths of the Rectangular Slot
3.4. Effects of the Dominant Mode (TE101) of the Rectangular Cavity Dimensions
3.5. Effects of the Exciting Probe and the Gap between Parasitic Patches
3.6. Simulated Radiation Patterns
4. Experimental Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonasang, S.; Angkawisittpan, N. Design of microstrip parallel-coupled lines with high directivity using symmetric-centered inductors. Appl. Comput. Electromagn. Soc. J. 2021, 36, 657–663. [Google Scholar] [CrossRef]
- Jamsai, M.; Angkawisittpan, N.; Nuan-On, A. Design of a compact ultra-wideband bandpass filter using inductively compensated parallel-coupled lines. Electronics 2021, 10, 2575. [Google Scholar] [CrossRef]
- Angkawisittpan, N.; Siritaratiwat, A. A dual frequency monopole antenna with double spurlines for PCS and bluetooth applications. Appl. Comput. Electromagn. Soc. J. 2016, 31, 976–981. [Google Scholar]
- Chakma, N.; Farhad, M.M.; Islam, A.J.; Chakraborty, S.; Nesar, M.S.B.; Muktadir, M.A. Performance Analysis of a Microstrip Patch Antenna for Satellite Communications at K Band. In Proceedings of the 21st International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018; pp. 1–4. [Google Scholar]
- Borel, T.T.S.; Yadav, A.R.; Shah, U. Design of Rectangular Patch Array Antenna for Satellite Communication. In Proceedings of the 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; pp. 759–764. [Google Scholar]
- Mahatmanto, B.P.A.; Apriono, C. High Gain 4 × 4 Microstrip Rectangular Patch Array Antenna for C-Band Satellite Applications. In Proceedings of the FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), Bandung, Indonesia, 23–24 September 2020; pp. 125–129. [Google Scholar]
- Harane, M.M.; Ammor, H. Design & Development of 2 × 4 Microstrip Patch Antenna Array with Circular Polarized Elements for Satellite Application. In Proceedings of the International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 21–23 November 2018; pp. 1–4. [Google Scholar]
- Hay, S.G.; Bateman, D.G.; Bird, T.S.; Cooray, F.R. Simple Ka-band earth coverage antenna for LEO satellite. IEEE Antennas Propag. Soc. Int. Symp. 1999, 1, 11–16. [Google Scholar]
- Trivino, I.V.; Skrivervik, A.K. Broad-beam microstrip patch antenna using higher order modes. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Dou, L.; Li, S.; Cao, W. Research of Wide Beam Antenna. In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019; pp. 1–3. [Google Scholar]
- Yu, C.A.; Chin, K.S.; Lu, R. 24-GHz Wide-Beam Patch Antenna Array Laterally Loaded With Parasitic Strips. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar]
- Marcano, N.J.; Bartle, H.H.; Jacobsen, R.H. Patch Antenna Arrays Beam Steering for Enhanced LEO Nano-satellite Communications. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Smulders, P.F.M.; Khusial, S.; Herben, H.A.J. A shaped reflector antenna for 60- GHz indoor wireless LAN access points. IEEE Trans. Vehicular Tech. 2001, 50, 584–591. [Google Scholar] [CrossRef]
- Gupta, R.C.; Sagi, S.K.; Mahajan, M.B. Rotationally Symmetric Shaping of Center-Fed Reflector Antenna For GEO Communication Collocated Small-sized Spacecraft. In Proceedings of the IEEE Indian Conference on Antennas and Propagation (InCAP), Hyderabad, India, 16–19 December 2018; pp. 1–4. [Google Scholar]
- Krachodnok, P.; Wongsan, R. Design of broad-beam microstrip reflectarray. WSEAS Trans. Commun. 2008, 7, 180–187. [Google Scholar]
- Anguix, S.; Araghi, A.; Khalily, M.; Tafazolli, R. Reflectarray Antenna Design for LEO Satellite Communications in Ka-band. In Proceedings of the 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Jassim, A.M.; Hristov, H.D. Cavity feed technique for slot coupled microstrip patch array antenna. IEE Proc. Micro. Antennas Prop. 1995, 142, 452–456. [Google Scholar] [CrossRef]
- Puklibmoung, T.; Krachodnok, P.; Wongsan, R. Analysis Design of Broad-Beam MSA Array Using Cavity Back Slot-Coupling. In Proceedings of the International Symposium on Antenna and Propagation (ISAP 2010), Macao, China, 23–26 November 2010; pp. 695–698. [Google Scholar]
- Puklibmoung, T.; Krachodnok, P.; Wongsan, R. A Broad-Beam Antenna Using Nonuniform MSA Parasitic Array Excited by Cavity-Backed Slot. In Proceedings of the International Symposium on Antenna and Propagation (ISAP 2011), JeJu, Korea, 25–28 October 2011; pp. 1–4. [Google Scholar]
- Shin, J.; Yoon, K.; Chung, M.; Lee, S.; Kim, C. Design of a cavity-backed patch antenna for a phased array. In Proceedings of the International Symposium on Antennas and Propagation (ISAP 2018), Busan, Korea, 23–26 October 2018; pp. 727–728. [Google Scholar]
- Vaish, A.; Singh, M.; Kaur, S.; Kumar, P. Design and Analysis of Square microstrip patch Antenna with and without cavity backing. In Proceedings of the International Conference on Inventive Systems and Control (ICISC 2019), Coimbatore, India, 10–11 January 2019; pp. 650–655. [Google Scholar]
- Chadram, S.; Engineer, D. A 16 × 8 Cavity Backed Patch Antenna Array for a Phased Array Radar. In Proceedings of the IEEE Indian Conference on Antennas and Propagation (InCAP), Ahmedabad, India, 19–22 December 2019; pp. 1–5. [Google Scholar]
- Lertwiriyaprapa, T.; Phongcharoenpanich, C.; Kosulvit, S.; Krairiksh, M. Analysis of impedance characteristics of a probe fed rectangular cavity-backed slot antenna. IEEE Trans. Antennas Propagate 2001, 1, 576–579. [Google Scholar]
- Ngobese, B.; Kumar, P. A high gain microstrip patch array for 5 GHz WLAN applications. Adv. Electromagn. 2018, 7, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Al-Hiti, A. Design of rectangular microstrip patch antenna for WLAN and WiMAX applications. J. Eng. Appl. Sci. 2019, 14, 433–438. [Google Scholar]
- Sathishkumar, N.; Arthika, S.; Indhu, G.; Elakkiya, K. Design and Study of Rectangular Micro strip Patch Antenna for WLAN Applications. Int. J. Adv. Sci. Technol. 2020, 29, 3554–3558. [Google Scholar]
- Yerlikaya, M.; Gultekin, S.; Uzer, D. A novel design of a compact wideband patch antenna for sub-6 GHz fifth-generation mobile systems. Int. Adv. Res. Eng. J. 2020, 4, 129–133. [Google Scholar] [CrossRef]
- Khan, J.; Ullah, S.; Tahir, F.A.; Tubbal, F.; Raad, R. A Sub-6 GHz MIMO Antenna Array for 5G Wireless Terminals. Electronics 2021, 10, 3062. [Google Scholar] [CrossRef]
- Al-Gburi, A.; Ibrahim, I.; Zakaria, Z. Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications. Prz. Elektrotechniczny 2021, 11, 26–29. [Google Scholar] [CrossRef]
- CST Studio Suite. Electromagnetic Field Simulation Software, Version 2021; Dassault Systèmes SE: Waltham, MA, USA, 2021. [Google Scholar]
- Nuan-On, A.; Angkawisittpan, N.; Piladaeng, N.; Soemphol, C. Design and Fabrication of Modified SMA-Connector Sensor for Detecting Water Adulteration in Honey and Natural Latex. Appl. Syst. Innov. 2022, 5, 4. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design, 4th ed.; John Wiley and Sons: New York, NY, USA, 2016. [Google Scholar]
Parameters | dy | lp | ls | ws | cx | cy | cz | lf | a | b |
Values (mm) | 18 | 11.8 | 8.8 | 0.5 | 40.6 | 40.6 | 10 | 6 | 0.3λ | 0.3λ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puklibmoung, T.; Sa-Ngiamvibool, W. Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling. Appl. Syst. Innov. 2022, 5, 31. https://doi.org/10.3390/asi5020031
Puklibmoung T, Sa-Ngiamvibool W. Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling. Applied System Innovation. 2022; 5(2):31. https://doi.org/10.3390/asi5020031
Chicago/Turabian StylePuklibmoung, Thana, and Worawat Sa-Ngiamvibool. 2022. "Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling" Applied System Innovation 5, no. 2: 31. https://doi.org/10.3390/asi5020031
APA StylePuklibmoung, T., & Sa-Ngiamvibool, W. (2022). Design and Fabrication of Broad-Beam Microstrip Antenna Using Parasitic Patches and Cavity-Backed Slot Coupling. Applied System Innovation, 5(2), 31. https://doi.org/10.3390/asi5020031