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Abstract

:

Several statistical techniques for analyzing data matrices use lower rank approximations to these matrices, for which, in general, the appropriate rank must first be estimated depending on the objective of the study. The estimation can be conducted by cross-validation (CV), but most methods are not designed to cope with the presence of outliers, a very common problem in data matrices. The literature suggests one option to circumvent the problem, namely, the elimination of the outliers, but such information removal should only be performed when it is possible to verify that an outlier effectively corresponds to a collection or typing error. This paper proposes a methodology that combines the robust singular value decomposition (rSVD) with a CV scheme, and this allows outliers to be taken into account without eliminating them. For this, three possible rSVD’s are considered and six resistant criteria are proposed for the choice of the rank, based on three classic statistics used in multivariate statistics. To test the performance of the various methods, a simulation study and an analysis of real data are described, using an exclusively numerical evaluation through Procrustes statistics and critical angles between subspaces of principal components. We conclude that, when data matrices are contaminated with outliers, the best estimation of rank is the one that uses a CV scheme over a robust lower rank approximation (RLRA) containing as many components as possible. In our experiments, the best results were obtained when this RLRA was calculated using an rSVD that minimizes the L2 norm.
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1. Introduction


The singular value decomposition (SVD) is a mathematical result that allows the calculation of a low-rank approximation of any matrix and serves as the basis of many statistical methods used in data analysis [1]. The application areas are diverse, for example, SVD can be used in principal component analysis [2], the imputation of missing data [3], the graphical representation of multivariate data [4], the formulation of models to explain the interaction in two-way tables [5,6] and non-parametric analysis of time series [7], to mention just a few.



A problem inherent in the use of SVD is the determination of the appropriate rank of the approximation, i.e., the appropriate number of components to be retained, and a very convenient way to solve this problem uses the resampling technique known as cross-validation. Standard cross-validation consists of subdividing the study matrix into a certain number of groups, deleting each group in turn, evaluating the parameters of a chosen predictor from the remaining data and using the result to predict the deleted values [8].



A numerical measure of agreement between predicted and actual values can then be computed for each possible rank, and the best rank to choose is the one providing the best calculated measure. Readers interested in classic references, alternative procedures, method comparisons and new developments of the subject can refer to the works of Bro et al. [9], Owen and Perry [10], Josse and Husson [11], Camacho and Ferrer [12] and Saccenti and Camacho [13].



Among the wide variety of methods for conducting the cross-validation, one considered as classic and influential is the Eastment and Krzanowski [14] (EK) scheme proposed in 1982, and which currently (April 2022) has 452 citations in Google Scholar. The method depends on the SVD, so does not rest on any distributional or structural assumptions. Moreover, it provides exact calculations, so does not have the convergence problems that can occur with expectation maximization (EM) approximations [15].



A frequent problem in data analysis is the presence of outliers [16] and the performance of the EK method can be affected by them because of its use of SVD, which is a least squares technique. To circumvent the problem, an option used by Krzanowski [17] was to compare the results obtained for the complete data with those for the reduced data, after eliminating the outliers. To the best of our knowledge, no specific study has been conducted to evaluate the effect of outliers on the EK method when applied to lower rank matrices; therefore, the aim of the current paper is to propose a methodology that combines robust singular value decomposition (rSVD) with the EK method and that does not require the elimination of outliers. This proposed methodology would therefore be applicable for any dataset that has some suspicion of contamination and the outliers do not correspond to errors in the collection or typing, as in that case the elimination of information is perfectly sensible.



This article is organized as follows: the EK method is presented first, followed by the various proposed methods along with associated statistics that robustify the criterion for choosing the rank of a matrix. Subsequently, three rSVD’s are presented that can be used as a way to reduce the effect of outliers, but without eliminating them. Then, a simulation study is described for evaluating possible cross-validation strategies for different levels of contamination using different resistant statistics. A study of a real dataset is also described to compare the proposed alternatives, and finally the results are presented together with a relevant discussion.




2. EK Method


Consider a standardized data matrix  Y     (  n × p  )    with elements    y  i j        (  i = 1 , … n ;   j = 1 , … p  )    and   n ≥ p   (if   n < p   the matrix should be first transposed), for which we wished to determine the best lower rank approximation. For this, Eastment and Krzanowski’s [14] cross-validation scheme can be used, which quantifies the idea of “acceptable accuracy” in terms of predicting the elements of  Y . The scheme is based on the fact that element    y  i j     in the i-th row and in the j-th column of  Y  can be written as a multiplicative model using SVD, that is:


   y  i j   =   ∑   t = 1  p   u  i t      s t     v  t j    



(1)







Krzanowski [8] used this representation as a basis for determining the dimensionality of a multivariate dataset: if the data structure is essentially m-dimensional, then the variation in the remaining (p-m) dimensions can be treated as random noise. For this reason, it can be assumed that the main characteristics of the data are found in the space of the first m components. This means that the data can be written according to an m-component model, such as:


   y  i j   =   ∑   t = 1  m   u  i t      s t     v  t j   +  ε  i j    



(2)




where    ε  i j     is a residual term and setting    ε  i j     equal to zero, the expression results in a predictor of    y  i j    


    y ^   i j    ( m )    =   ∑   t = 1  m   u  i t      s t     v  t j    



(3)







Since the calculations of    u  i t    ,    s t    and    v  t j     involve all values of  Y , the predictor of    y  i j     uses the value of    y  i j     itself. This is an undesirable feature in cross-validation because it can be a source of bias. To avoid this bias, Eastment and Krzanowski [14] suggested the following scheme: suppose we are looking for the prediction of    y  i j     in  Y , then, the i-th row from  Y  is deleted and the SVD for the    (   (  n − 1  )  × p  )    resulting matrix    Y   (  − i  )      is calculated as    Y   (  − i  )    =  U ¯   D ¯    V ¯  T   ,    U ¯  =  (    u ¯   s h    )   ,    V ¯  =  (    v ¯   s h    )   ,    D ¯  =  (    d ¯  1  , … ,   d ¯  p   )   . The next step is to delete the j-th column from  Y  and obtain the SVD for the    (  n ×  (  p − 1  )   )    matrix    Y   (  − j  )      as    Y   (  − j  )    =  U ˜   D ˜    V ˜  T   ,    U ˜  =  (    u ˜   s h    )   ,    V ˜  =  (    v ˜   s h    )   ,    D ˜  =  (    d ˜  1  , … ,   d ˜   p − 1    )   . The matrices   U ¯  ,   V ¯  ,   U ˜  , and   V ˜   are orthonormal, while   D ˜   and   D ¯   are diagonal. By combining the two SVDs,    Y   (  − i  )      and    Y   (  − j  )     , a predictor of    Y  i j     based on the m component model is given by


    y ^   i j    ( m )    =   ∑   h = 1  m    u ˜   i h      (    d ˜  h    p /  (  p − 1  )     )     1 2      v ¯   j h      (    d ¯  h    n /  (  n − 1  )     )     1 2     



(4)







This predictor is slightly modified relative to the one proposed by Eastment and Krzanowski [14] following the work of Bro et al. [9] and Arciniegas-Alarcón et al. [3] because the inclusion of the constants     p /  (  p − 1  )      and     n /  (  n − 1  )      improves the quality of the predictions. On the other hand, in order to avoid computational problems, a parity check should be done in each prediction by matching the sign of    (    u ˜   i h      (    d ˜  h    p /  (  p − 1  )     )     1 2     )   (    v ¯   j h      (    d ¯  h    n /  (  n − 1  )     )     1 2     )    in (4) to the sign of    u  i h    d h   v  j h     obtained from the SVD of the  Y  matrix for each m.



After establishing the predictor of the observations, an overall measure of predictive accuracy of the m-component model is given by


  P R E S S  ( m )  =  1  n p     ∑   i = 1  n    ∑   j = 1  p     (    y ^   i j    ( m )    −  y  i j    )   2   



(5)







This function can be computed for each value of m, where   m = 1 , … , p − 1   and an optimal choice of m (the rank of  Y ) can then be based on some appropriate function of these values. The suggestion made by Krzanowski [17] and Krzanowski and Kline [18] was to calculate the statistic


   W m  =   P R E S S  (  m − 1  )    n + p − 2 m   ÷   P R E S S  ( m )     D R     



(6)




for each m, where    D R  =  (  n − m − 1  )   (  p − m  )   . To calculate    W 1   , it is necessary to define PRESS(0); in this case, you can use     y ^   i j    ( m )      = 0, Forkman and Piepho [19], or     y ^   i j    ( m )      can be the mean of j-th column without the element (i,j) (Carlos Tadeu dos Santos Dias, personal communication, 3 August 2021). Finally, the m-th component of the SVD can be considered “important” if    W m  > 0.9   and the total number of important components constitutes an estimation of the optimal rank of the matrix  Y  taking into account predictive criteria. In those cases where    W m  < 0.9   for all components, the rank estimation can be determined by the component with the highest value of    W m   . The acronym EK82 can be used to identify the method described above.




3. Proposed Methodology


The choice of the optimal rank for a lower rank approximation using the EK method basically depends on two aspects: the predictions of the elements of  Y  and the criterion to determine if a component is important or not. It is known that the quality of predictions using the standard SVD decreases in the presence of outliers in the data matrix [20]. For that reason, our first attempt at circumventing this problem was to create a robust version of the EK schema. For this, the usual standardization of  Y  was replaced by a robust standardization and, in the calculation of the elements of the predictor described in (4), the SVDs of    Y   (  − i  )      and    Y   (  − j  )      were replaced by an rSVD (details for calculating it are described in the next section).



Although this approach produced good-quality predictions in small test matrices (for instance, 20 × 5), the main disadvantage was computational because the implementation for larger matrices became too heavy due to the inclusion of rSVDs. In this way, the problem of outliers was circumvented, but the computational speed of the EK method was lost. This could later be a problem in the future for large arrays. Thus, we now have a more complex problem: how do we improve the predictions of the EK scheme in the presence of outliers, without eliminating them while at the same time trying to preserve the computational speed of the method as much as possible?



To resolve this issue, we decided to use the work of Arciniegas-Alarcón et al. [21] and our proposal was to conduct the cross-validation in two stages: (i) calculate an rSVD on the original matrix  Y  and obtain a robust lower rank approximation    Y  R L R A     with the maximum possible number of components, that is, with the smallest number between n and p. With this    Y  R L R A    , we can obtain a good approximation of the original values, and in the case of outliers we can obtain a robust approximation without eliminating any information and following the maximum-data precept. (ii) The EK method is then applied to    Y  R L R A    , and the optimal rank is determined. Such a combination of methodologies (rSVD + EK) was not found in our literature review so becomes a possible way to perform a robust cross-validation on contaminated lower rank matrices that is is computationally efficient as the size of the study matrix increases.



Determining the rank depends on the chosen criterion; therefore, in addition to    W m   , we could use several criteria based on trimmed PRESS [22]. The following is a list of the possible criteria we considered:



	
PRESS: According to Equation (5), the optimal rank is the one that minimizes the statistic. Bro et al. [9] found that, in some cases, this criterion may be more effective than    W m   .



	
PRESS75: A resistant PRESS statistic is constructed by averaging the 75% of the smallest squared errors      (    y ^   i j    ( m )    −  y  i j    )   2   . The optimal rank is the one that minimizes PRESS75.



	
PRESS50: A resistant PRESS statistic is constructed by averaging the 50% of the smallest squared errors      (    y ^   i j    ( m )    −  y  i j    )   2   . The optimal rank is the one that minimizes PRESS50.



	
   W m   : According to Equation (6), the optimal rank is the total number of important components.



	
   W  m  (  M a x  )     : The optimal rank is the number of the largest important component using    W m   . Krzanowski [8] found that, in some data sets, the    W m    statistic does not always show a monotonically decreasing behaviour. For example, if    W 1  = 26.22  ,    W 2  = 5.95  ,    W 3  = 0.19   and    W 4  = 1.03  , the optimal rank is 4, even though component 3 is not important.



	
   W  m 75    : In Equation (6), PRESS is replaced by PRESS75 and the optimal rank is the total number of important components.



	
   W  m 75  (  M a x  )     : The optimal rank corresponds to the number of the largest important components using    W  m 75    .



	
   W  m 50    : In Equation (6), PRESS is replaced by PRESS50 and the optimal rank is the total number of important components.



	
   W  m 50  (  M a x  )     : The optimal rank corresponds to the number of the largest important component using    W  m 50    .







4. Robust Singular Value Decompositions (rSVDs)


The cross-validation proposed in this paper depends directly on the rSVDs used initially; therefore, to delimit the research, we considered the proposals of Gabriel and Odoroff [23], Hawkins et al. [24] and Zhang et al. [25] for the actual computational procedures. Below, we provide a brief outline of each proposal, but a complete algorithmic description is available from García-Peña et al. [20].



Gabriel and Odoroff’s [23] proposal cyclically used fits of rank-one approximations and obtained the residuals after each of these adjustments. They inserted medians and trimmed means into the technique of reciprocal averaging used to minimize the L2 norm. A computational implementation in the R statistical environment [26] is found in a study by Arciniegas-Alarcón et al. [21] The acronym EK84 will be used to describe the methodology that mixes this rSVD with the EK schema.



On the other hand, Hawkins et al. [24] found the eigenvalues and eigenvectors for each component of the rSVD through an iterative procedure minimizing the L1 norm. The drawbacks are that this rSVD can be affected in the case of the presence of leverage points, the eigenvectors can be non-orthogonal and the eigenvalues do not always have a decreasing order. A computational implementation is in the pcaMethods package of R [26]. The acronym EK01 is used to describe the methodology that mixes this rSVD with the EK schema.



The rSVD by Zhang et al. [25] computed a sequence of robust rank-one approximations. Robust estimates are obtained by minimizing the Huber function in an iterative re-weighted least squares algorithm. The procedure is implemented in the R RobRSVD package [26]. The acronym EK13 is used to describe the methodology that mixes this rSVD with the EK schema.




5. Simulation Study


To evaluate the performance of the cross-validation schemes (i.e., EK01, EK13, EK82, and EK84) on contaminated low-rank matrices, one hundred matrices of dimension (100  ×  8) were simulated using the following process: “Clean” observations were generated as   Y = T + E  , where   T = A  B T  =  [   t  i j    ]    is a rank four matrix with  A  (100  ×  4),  B  (8  ×  4), and  E  (100  ×  8) is “pure noise”. The elements of  A ,  B  and  E  were iid N(0, 1). Outliers were produced on each  Y  matrix in different percentages (0, 5, 10 and 20%), their positions were chosen randomly and were generated using the normal distribution with mean    µ j  + 100  σ j 2    and variance    σ j 2   . In this case,    µ j    and    σ j 2    represent the mean and variance of the j-th column. Contaminated matrices will be noted by    Y C   .



The four cross-validation schemes were applied to the    Y C    matrices to determine their rank m (each scheme with each statistic considered can provide different ranks). The quality of this choice was evaluated from the predictive point of view, calculating the corresponding (robust) lower rank approximation with m components (  Y ^  ) and comparing it with the original matrix  Y  without contamination. For this, the Procrustes    M 2    statistic was used [27]. In this case,    M 2  = t r a c e  (  Y  Y T  +  Y ^    Y ^  T  − 2 Y Q   Y ^  T   )    where Q = VUT is the rotation matrix calculated from elements of the SVD of the matrix     Y T   Y ^  = U ∑  V T    . The    M 2    statistic measures the difference between two configurations of points, so the (robust) lower rank approximation that minimizes this difference indicates the rank selection method that yields the closest match between clean data and calculated approximations in the presence of outliers.



Another criterion for comparing the proposed methods, following the work of Krzanowski [8,28], was the critical angle    ( θ )    between two subspaces of principal components. For this, both the SVD of   Y = U D  V T    and the (r)SVD of    Y C  = W J  K T    were calculated. If the cross-validation shows that the rank is m, the matrices V and  K  with m retained components are compared, that is,    V   ( m )      and    K   ( m )     . The calculation of the critical angle is defined by   θ = c o  s  − 1    ( d )   , where d is the smallest element of  G  in the SVD of the matrix    V   ( m )   T   K   ( m )    = M G  P T   . The greater the critical angle, the greater the influence of outliers on the principal coefficients components; therefore, the best cross-validation scheme is the one that provides the lowest value for  θ .



In each percentage of outliers considered, one hundred values of the Procrustes statistics and one hundred values of critical angles were obtained. From these values, the means of the 90% with the lowest values were calculated. This average is a robust criterion that leaves out some flaws that a method may have, but which, in general, presents a good behavior [20,29].




6. Real Data


In addition to the simulation study, cross-validation schemes were applied to the real dataset previously studied by Skov et al. [30] and Bro and Smilde [31], from whose work we attained the main description of the data: “Red wines, 44 samples, produced from the same grape (Cabernet sauvignon) were collected. A Foss WineScan instrument was used to measure 14 characteristic parameters of the wines such as the ethanol content, pH, etc. Hence a dataset consists of 44 samples and 14 variables. The actual measurements can be arranged in a table or a matrix of size (44  ×  14)”. The data are available at http://www.models.life.ku.dk/Wine_GCMS_FTIR (accesed on 1 April 2022) and, as it is a multivariate matrix with different measurement scales, we used the standardized matrix in all our analyses.



A difficulty in evaluating schemas on real data is the lack of a priori knowledge of what should be “good behaviour”. Because of this, and following the recommendation of Maronna and Yohai [29], we added outliers in the data set following the same procedure described in the simulation study and using the same comparison criteria, but the difference in the simulations occurred only once.




7. Results


Table 1 presents the trimmed means to evaluate the cross-validation schemes when the M2 statistic was used in the simulation study. It can be seen that, without contamination (i.e., outliers = 0%), the best method is the EK82 method because it minimizes the value of the criterion. This result is to be expected because the standard SVD provides very good results in the absence of outliers. It can also be seen that, of the resistant criteria considered to choose the rank of the matrices, the one that provided the best results was PRESS50. This indicates that using only 50% of the smallest residuals by cross-validation may be sufficient to select the rank.



On the other hand, when there is some degree of contamination in the simulations, according to Procrustes statistics, methods EK01, EK13 and EK84 always present better performances (lower values) than EK82 using any of the criteria considered (resistant or not). This indicates that the estimation of the rank in the presence of outliers should be performed with one of the robust procedures rather than the standard EK method.



Taking into account predictive criteria and making a comparison between the robust methodologies, it is very clear that the EK84 method always provides the best results, being the most consistent and stable in the simulations, regardless of the percentage of outliers. EK84 shows the highest efficiency (lower M2 values) using the PRESS50 as a rank selection criterion when the contamination level is low (5%), but when said level is intermediate (10%) or high (20%), the criterion with the best performance is Wm.



Table 2 presents the performance of the schemes in the simulations using critical angles as a criterion. It is observed that the smallest angles (very close to zero) are obtained with the EK82 method in the matrices without outliers, while in the face of contamination in any of the three percentages considered, EK84 is the best method. These results confirm what was found with the Procrustes statistics. As for the criterion for choosing the rank in matrices without outliers, we found that any of them can be used, but according to the critical angles, it is not recommended to use either    W m    or    W  m  (  M a x  )     , while in the presence of outliers the EK84 scheme in combination with    W m    or PRESS provides the best results.



The simulation study was complemented with the analysis based on the real matrix from the multivariate characterization of wines. Table 3 presents the M2 values and it is observed that without outliers again the EK82 method works very well with PRESS50 and, unlike the simulations, Wm50(Max) becomes an alternative criterion. With these criteria, the rank chosen was nine and, according to the analysis by Bro and Smilde [31], with nine components, the explained variation is above 90%, but some of these components can explain very little variation.



According to the cross-validation study by Bro and Smilde [31], in the original data matrix, a maximum of three or four components is sufficient. This same result was obtained with the EK82 method using Wm(Max) and Wm75; however, if Wm75 is used as a criterion, the EK13 method with five components would be preferable as it presents better predictions in the absence of contamination.



For the wine matrix contaminated at three levels, it can be verified that the EK84 methodology always presents the best results, minimizing the Procrustes statistics. In this case, with 5, 10 and 20% contaminations, the ranks chosen were four, five and three, respectively, but the selection criteria were different depending on the number of outliers. With a low level of outliers (5%), EK84 produced the same rank with all criteria (resistant or not), while with an intermediate level of outliers the only criterion that did not work very well was PRESS75 and with a high level of contamination the best performance criteria were Wm and Wm(Max).



Finally, Table 4 presents the results of the wine matrix taking into account only the critical angles. As expected without contamination, the EK82 method was the best with most criteria presenting angles close to zero, but there was a wide multiplicity of ranks with an approximately equal result. For this reason, in this specific situation, it is recommended to take the lowest rank (three) that corresponds to the Wm(Max) criterion.



With the change in criterion, at the maximum level of contamination (20%), EK84 (with Wm and Wm(Max)) again showed the best performance selecting rank three to obtain the lowest critical angle. Results that we did not expect occurred at the other contamination levels (5 and 10%), EK84 was surpassed by EK82 (with Wm50(Max)) and EK01 (with Wm75) with the smallest angles. These last results compared to those obtained from the simulations suggest that the methods can become unstable if the rank is selected taking into account these angles. Because of this situation, it is suggested in practice to repeat the procedure several times when the contamination level is between 5 and 10%. We repeated the procedure ten times for these two percentages of outliers (not shown) and found that, for the wine matrix, the lowest average of the critical angles was obtained with EK01 (using Wm75).



A short comment now follows regarding the distributional and computational aspects. The methods considered in this research depend on (r)SVDs; therefore, they are distribution-free and only require that the dataset under study can be written in a matrix form. On the other hand, the computational characteristics of the algorithms depend on several factors, such as implementation used, computer characteristics, matrix dimension, correlation structure and outliers’ quantity and location. This last aspect is important because, in some cases, the location and quantity of outliers may or may not favor the calculations and the rapid convergence of the iterative procedures that involve the calculation of an (r)SVD.



To present the reader with an idea of the times of each algorithm, we analyzed one of the previously simulated matrices and the real data matrix of red wines on a personal computer with an Intel(R) Core(TM) i7-8550U, CPU 1.80 GHz 1.99 GHz and 8 GB of RAM installed. Table 5 shows the comparison of times of the different cross-validation methods. According to the information in the table, the best average times both in the simulated lower rank matrix and in the real multivariate data were provided by EK82, which can be considered as an expected result because, unlike the proposed methods, this method does not include any extra treatment in the presence of outliers. Clearly, the robust methods need a little more time, which by construction could also be expected. However, for the dimensions of the matrices studied, the robust algorithms present good average times of less than twenty seconds, which in practice makes them quite competitive, taking into account that they adequately treat all observations, including outliers.




8. Discussion and Conclusions


The simulation study and the analysis on the real dataset provide some very clear conclusions. In lower rank matrices without suspected contamination, classic EK82 can be used without problems with a simple statistic, such as PRESS50 that uses only 50% of the smallest residuals. Thus, being a resistant criterion, it presented good results in scenarios that did not present outliers. According to the results of our analysis, other competitive criteria were Wm50(Max) (which also depends on PRESS50) and Wm(Max).



However, when there is any suspicion of contamination, EK82 should be replaced by one of the proposed robust schemes. Thus, if the objective is to choose the rank that produces good predictions with robust lower rank approximations, the EK84 method presented the best performance together with the Wm criterion in most of the situations studied.



On the other hand, if the objective is to minimize the critical angle between two principal component subspaces, EK84 (with PRESS or Wm) can be used if the contamination level is high (20%). From our analysis on real data, we can conclude that at lower contamination levels (5 or 10%) EK84 (with PRESS or Wm) should be compared with EK01 (with Wm75), repeating the analysis several times (say, 10 or more) to gain consistent results. This can be achieved, for example, by adding a small number of outliers at random positions or by applying the methods on submatrices obtained from the original study matrix.



The methodologies proposed in this paper proved to be efficient in solving the contamination problem without having to use any method of detecting outliers in the original data and without eliminating information, but there are still some aspects that are worth discussing. One of these refers to the simulation study. Similar to any simulation study, more features can be added to make it more complex, but in our case it was enough to show the performance of robust procedures taking the EK82 as the standard method. Our idea of fixing the matrix rank and the level of “pure noise” was to detect the strengths and weaknesses of the schemes when the contamination levels were variable, following ideas similar to those used by Maronna and Yohai [29] and Rodrigues et al. [32]. Future research from the computational point of view can be conducted to determine the robustness of the procedures under other conditions.



A common problem in data analysis is performing cross-validation from incomplete matrices. In this case, two options are suggested, the first is to use EK84. This method is based on the rSVD of Gabriel and Odoroff [23], and the fit of rank-one approximations leaves out the missing positions and does not need to perform data imputation for this calculation, but if an imputation of the missing data is required, a robust lower rank approximation can be a very useful alternative if contamination is suspected. The second suggestion to get around the problem of missing data in cross-validation without suspected contamination is to apply iterative EK82, in which case there are already algorithms available [3,33] that can be easily adapted for optimal selection of the rank of a matrix. Arciniegas-Alarcon et al. [3] showed that an iterative algorithm using parity check provides better quality imputations than the expectation-maximization method proposed by Bro et al. [9].



In the dimensions of the matrices that the cross-validation schemes were tested in this study, computational time was not a problem, but if the matrix is of a much larger dimension, there are ways to circumvent this potential problem. For example, Krzanowski and Kline [18] used several random samples from the rows of a multivariate matrix to achieve consistency in the rank selection and reduce computational time. Another alternative is to delete some random positions from the matrix and perform the imputation following one of the previously mentioned schemes. In this case, between 10 and 30% of the original data can be considered as missing data and a comparison between the real data and the imputations can be made to choose the optimal rank. This approximation is used in the R imputation package (https://github.com/jeffwong/imputation) (accessed on 1 April 2022). In the literature, there is also the option to perform leave-group-out elimination in the EK82 method [34]; this alternative computationally reduces calculation times, but the computational gain is accompanied by a decrease in accuracy in determining the optimal rank of a matrix.



Finally, future research could be conducted to continue testing the methods proposed here. For example, more types of contamination could be considered. In the works of Maronna and Yohai [29] and González-Cebrián et al. [35], there are more alternatives to produce outliers. However, there is still no robust cross-validation procedure in the literature to choose the best additive main effects model with a robust multiplicative interaction or robust AMMI model [32], so the EK84 (or EK01) scheme could be tested for the choice of that model. The methodologies presented here can also be compared with those that detect outliers [36] and assume the outliers as missing values for later imputation by EM algorithms or with multiple imputations [37]. Finally, the EK84 and EK01 schemes are based on the EK method that could be replaced by Gabriel’s method [4] or by the Eigenvector method [9], which can be computationally faster for large matrices.
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Table 1. The 0.9-trimmed means of Procrustes values in the simulation study.






Table 1. The 0.9-trimmed means of Procrustes values in the simulation study.





	
0.9-Trimmed Means of Procrustes Values




	
Outliers = 0%

	
Methods

	
Outliers = 10%

	
Methods




	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84

	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84






	
PRESS

	
928

	
411

	
405

	
2326

	
PRESS

	
5,929,179

	
9,858,840

	
10,533,642

	
2726




	
PRESS75

	
845

	
367

	
357

	
2284

	
PRESS75

	
6,503,877

	
10,051,928

	
10,592,223

	
2764




	
PRESS50

	
802

	
357

	
315

	
2273

	
PRESS50

	
9,915,026

	
13,550,429

	
13,794,540

	
2771




	
Wm

	
1773

	
1547

	
1563

	
2364

	
Wm

	
16,969,901

	
23,472,838

	
23,671,632

	
2703




	
Wm(Max)

	
1431

	
1017

	
1000

	
2359

	
Wm(Max)

	
16,969,901

	
23,472,838

	
23,671,632

	
2706




	
Wm75

	
1222

	
841

	
826

	
2295

	
Wm75

	
6,890,112

	
10,644,089

	
11,219,853

	
2741




	
Wm75(Max)

	
1102

	
647

	
614

	
2292

	
Wm75(Max)

	
8,091,972

	
11,470,833

	
11,918,769

	
2748




	
Wm50

	
1177

	
822

	
806

	
2280

	
Wm50

	
10,431,960

	
15,358,453

	
15,708,124

	
2753




	
Wm50(Max)

	
1041

	
640

	
619

	
2279

	
Wm50(Max)

	
13,724,787

	
18,830,770

	
19,093,611

	
2760




	
Outliers = 5%

	
Methods

	
Outliers = 20%

	
Methods




	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84

	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84




	
PRESS

	
1,349,656

	
5,347,643

	
5,517,974

	
2503

	
PRESS

	
16,219,919

	
20,858,768

	
23,719,760

	
3794




	
PRESS75

	
1,593,606

	
5,978,138

	
6,160,294

	
2500

	
PRESS75

	
16,585,561

	
20,389,484

	
23,240,805

	
3875




	
PRESS50

	
2,085,285

	
7,208,180

	
7,361,273

	
2491

	
PRESS50

	
24,876,820

	
26,596,384

	
26,604,794

	
3896




	
Wm

	
6,121,399

	
12,296,349

	
12,339,272

	
2513

	
Wm

	
32,095,002

	
43,746,109

	
47,429,575

	
3491




	
Wm(Max)

	
6,145,795

	
12,296,349

	
12,339,272

	
2511

	
Wm(Max)

	
32,300,042

	
43,746,109

	
47,429,575

	
3529




	
Wm75

	
1,802,253

	
6,876,657

	
7,043,231

	
2498

	
Wm75

	
17,200,893

	
20,911,456

	
23,301,683

	
3710




	
Wm75(Max)

	
2,427,846

	
8,446,853

	
8,567,883

	
2500

	
Wm75(Max)

	
18,713,152

	
21,288,046

	
23,488,022

	
3736




	
Wm50

	
2,659,677

	
8,260,863

	
8,433,306

	
2494

	
Wm50

	
23,995,906

	
27,336,626

	
27,389,422

	
3769




	
Wm50(Max)

	
4,369,880

	
10,172,078

	
10,266,390

	
2493

	
Wm50(Max)

	
28,428,412

	
31,084,469

	
29,862,533

	
3799








In bold, the method with the lowest statistic value in each percentage of outliers.
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Table 2. The 0.9-trimmed means of critical angles in the simulation study.
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0.9-Trimmed Means of Critical Angles




	
Outliers = 0%

	
Methods

	
Outliers = 10%

	
Methods




	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84

	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84






	
PRESS

	
0.8547

	
0.1242

	
0.0000

	
0.9791

	
PRESS

	
1.5224

	
1.5708

	
1.5612

	
1.1699




	
PRESS75

	
0.9473

	
0.1574

	
0.0000

	
1.1286

	
PRESS75

	
1.5100

	
1.5568

	
1.5652

	
1.2546




	
PRESS50

	
1.0053

	
0.1935

	
0.0000

	
1.1629

	
PRESS50

	
1.3777

	
1.3662

	
1.4003

	
1.2339




	
Wm

	
0.8177

	
0.7221

	
0.7330

	
1.0202

	
Wm

	
1.2399

	
1.2184

	
1.2110

	
1.1507




	
Wm(Max)

	
0.6050

	
0.2747

	
0.2094

	
1.0174

	
Wm(Max)

	
1.2399

	
1.2184

	
1.2110

	
1.1608




	
Wm75

	
0.6846

	
0.0950

	
0.0000

	
1.1048

	
Wm75

	
1.4913

	
1.5103

	
1.5134

	
1.2072




	
Wm75(Max)

	
0.7120

	
0.0695

	
0.0000

	
1.0948

	
Wm75(Max)

	
1.4939

	
1.5216

	
1.5465

	
1.2083




	
Wm50

	
0.6963

	
0.0956

	
0.0000

	
1.1163

	
Wm50

	
1.3135

	
1.1962

	
1.2189

	
1.2315




	
Wm50(Max)

	
0.7274

	
0.0824

	
0.0000

	
1.1184

	
Wm50(Max)

	
1.3118

	
1.2863

	
1.2883

	
1.2278




	
Outliers = 5%

	
Methods

	
Outliers = 20%

	
Methods




	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84

	
Criterion

	
EK01

	
EK13

	
EK82

	
EK84




	
PRESS

	
1.5524

	
1.5680

	
1.5674

	
1.0965

	
PRESS

	
1.5331

	
1.5397

	
1.5462

	
1.2667




	
PRESS75

	
1.5361

	
1.5136

	
1.5256

	
1.1683

	
PRESS75

	
1.5506

	
1.5619

	
1.5650

	
1.2965




	
PRESS50

	
1.4639

	
1.4059

	
1.4189

	
1.2177

	
PRESS50

	
1.3658

	
1.3845

	
1.4704

	
1.3262




	
Wm

	
1.2733

	
1.2049

	
1.1807

	
1.1067

	
Wm

	
1.3682

	
1.1988

	
1.1768

	
1.1356




	
Wm(Max)

	
1.2754

	
1.2049

	
1.1807

	
1.1059

	
Wm(Max)

	
1.3618

	
1.1988

	
1.1768

	
1.1540




	
Wm75

	
1.4223

	
1.2850

	
1.2965

	
1.1224

	
Wm75

	
1.5051

	
1.5372

	
1.5628

	
1.2210




	
Wm75(Max)

	
1.4773

	
1.3853

	
1.3826

	
1.1292

	
Wm75(Max)

	
1.5164

	
1.5613

	
1.5680

	
1.2497




	
Wm50

	
1.1589

	
1.2008

	
1.2478

	
1.1582

	
Wm50

	
1.3567

	
1.3086

	
1.3888

	
1.2847




	
Wm50(Max)

	
1.3298

	
1.2757

	
1.2939

	
1.1666

	
Wm50(Max)

	
1.3588

	
1.3698

	
1.4449

	
1.2950








In bold, the method with the lowest statistic value in each percentage of outliers.
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Table 3. Procrustes statistics for the real dataset.
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Procrustes Statistics for the Real Dataset




	
Outliers = 0%

	
Methods

	
Outliers = 10%

	
Methods




	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R

	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R






	
PRESS

	
185

	
9

	
66

	
7

	
162

	
4

	
493

	
4

	
PRESS

	
598

	
1

	
79,846

	
1

	
124,788

	
1

	
500

	
5




	
PRESS75

	
185

	
9

	
66

	
7

	
53

	
7

	
493

	
4

	
PRESS75

	
598

	
1

	
79,846

	
1

	
124,788

	
1

	
514

	
6




	
PRESS50

	
280

	
5

	
66

	
7

	
24

	
9

	
492

	
7

	
PRESS50

	
598

	
1

	
79,846

	
1

	
124,788

	
1

	
500

	
5




	
Wm

	
300

	
4

	
469

	
1

	
455

	
1

	
491

	
3

	
Wm

	
188,330

	
5

	
250,402

	
4

	
343,767

	
4

	
500

	
5




	
Wm(Max)

	
280

	
5

	
231

	
3

	
222

	
3

	
491

	
3

	
Wm(Max)

	
188,330

	
5

	
250,402

	
4

	
343,767

	
4

	
500

	
5




	
Wm75

	
280

	
5

	
129

	
5

	
162

	
4

	
493

	
4

	
Wm75

	
611

	
2

	
79,846

	
1

	
124,788

	
1

	
499

	
5




	
Wm75(Max)

	
280

	
5

	
66

	
7

	
53

	
7

	
493

	
4

	
Wm75(Max)

	
317,830

	
8

	
79,846

	
1

	
124,788

	
1

	
499

	
5




	
Wm50

	
300

	
4

	
94

	
6

	
82

	
6

	
493

	
4

	
Wm50

	
147,451

	
4

	
79,846

	
1

	
124,788

	
1

	
499

	
5




	
Wm50(Max)

	
300

	
4

	
38

	
9

	
24

	
9

	
493

	
4

	
Wm50(Max)

	
317,830

	
8

	
79,846

	
1

	
124,788

	
1

	
499

	
5




	
Outliers = 5%

	
Methods

	

	
Outliers = 20%

	
Methods

	




	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R

	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R




	
PRESS

	
564

	
1

	
50,690

	
1

	
63,605

	
1

	
475

	
4

	
PRESS

	
190,811

	
1

	
218,985

	
1

	
354,334

	
1

	
1236

	
4




	
PRESS75

	
564

	
1

	
50,690

	
1

	
63,605

	
1

	
475

	
4

	
PRESS75

	
190,811

	
1

	
218,985

	
1

	
354,334

	
1

	
1662

	
5




	
PRESS50

	
564

	
1

	
50,690

	
1

	
63,605

	
1

	
475

	
4

	
PRESS50

	
190,811

	
1

	
218,985

	
1

	
354,334

	
1

	
1662

	
5




	
Wm

	
130,404

	
7

	
291,105

	
11

	
247,466

	
6

	
475

	
4

	
Wm

	
190,811

	
1

	
849,997

	
7

	
354,334

	
1

	
915

	
3




	
Wm(Max)

	
130,404

	
7

	
291,105

	
11

	
247,466

	
6

	
475

	
4

	
Wm(Max)

	
498,098

	
3

	
849,997

	
7

	
626,980

	
3

	
915

	
3




	
Wm75

	
564

	
1

	
99,950

	
2

	
63,605

	
1

	
475

	
4

	
Wm75

	
378,913

	
2

	
218,985

	
1

	
503,121

	
2

	
1662

	
5




	
Wm75(Max)

	
564

	
1

	
130,657

	
3

	
63,605

	
1

	
475

	
4

	
Wm75(Max)

	
498,098

	
3

	
218,985

	
1

	
626,980

	
3

	
1662

	
5




	
Wm50

	
30,753

	
2

	
130,657

	
3

	
123,006

	
2

	
475

	
4

	
Wm50

	
587,876

	
4

	
218,985

	
1

	
503,121

	
2

	
1662

	
5




	
Wm50(Max)

	
101,359

	
6

	
252,100

	
8

	
173,123

	
3

	
475

	
4

	
Wm50(Max)

	
778,336

	
7

	
218,985

	
1

	
626,980

	
3

	
1662

	
5








In bold, the method with the lowest statistic values and the rank used. R: Rank.
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Table 4. Critical angles for the real dataset.






Table 4. Critical angles for the real dataset.





	
Critical Angles for the Real Dataset




	
Outliers = 0%

	
Methods

	

	
Outliers = 10%

	
Methods




	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R

	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R






	
PRESS

	
0.9468

	
9

	
0.2145

	
7

	
0.0000

	
4

	
1.5706

	
4

	
PRESS

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
PRESS75

	
0.9468

	
9

	
0.2145

	
7

	
0.0000

	
7

	
1.5706

	
4

	
PRESS75

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.4672

	
6




	
PRESS50

	
1.1845

	
5

	
0.2145

	
7

	
0.0000

	
9

	
1.3454

	
7

	
PRESS50

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
Wm

	
0.9548

	
4

	
1.5708

	
1

	
1.5708

	
1

	
1.5160

	
3

	
Wm

	
1.5340

	
5

	
1.5212

	
4

	
1.4336

	
4

	
1.5419

	
5




	
Wm(Max)

	
1.1845

	
5

	
0.1481

	
3

	
0.0000

	
3

	
1.5160

	
3

	
Wm(Max)

	
1.5340

	
5

	
1.5212

	
4

	
1.4336

	
4

	
1.5419

	
5




	
Wm75

	
1.1845

	
5

	
0.2507

	
5

	
0.0000

	
4

	
1.5706

	
4

	
Wm75

	
0.8734

	
2

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
Wm75(Max)

	
1.1845

	
5

	
0.2145

	
7

	
0.0000

	
7

	
1.5706

	
4

	
Wm75(Max)

	
1.2729

	
8

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
Wm50

	
0.9548

	
4

	
0.2297

	
6

	
0.0000

	
6

	
1.5706

	
4

	
Wm50

	
1.4129

	
4

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
Wm50(Max)

	
0.9548

	
4

	
0.2196

	
9

	
0.0000

	
9

	
1.5706

	
4

	
Wm50(Max)

	
1.2729

	
8

	
1.5708

	
1

	
1.5708

	
1

	
1.5419

	
5




	
Outliers = 5%

	
Methods

	

	
Outliers = 20%

	
Methods




	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R

	
Criterion

	
EK01

	
R

	
EK13

	
R

	
EK82

	
R

	
EK84

	
R




	
PRESS

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.5674

	
4

	
PRESS

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.4772

	
4




	
PRESS75

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.5674

	
4

	
PRESS75

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.4279

	
5




	
PRESS50

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.5674

	
4

	
PRESS50

	
1.5708

	
1

	
1.5708

	
1

	
1.5708

	
1

	
1.4279

	
5




	
Wm

	
1.4977

	
7

	
1.4511

	
11

	
1.5510

	
6

	
1.5674

	
4

	
Wm

	
1.5708

	
1

	
1.3250

	
7

	
1.5708

	
1

	
1.2653

	
3




	
Wm(Max)

	
1.4977

	
7

	
1.4511

	
11

	
1.5510

	
6

	
1.5674

	
4

	
Wm(Max)

	
1.4304

	
3

	
1.3250

	
7

	
1.4549

	
3

	
1.2653

	
3




	
Wm75

	
1.5708

	
1

	
1.5394

	
2

	
1.5708

	
1

	
1.5674

	
4

	
Wm75

	
1.4678

	
2

	
1.5708

	
1

	
1.2746

	
2

	
1.4279

	
5




	
Wm75(Max)

	
1.5708

	
1

	
1.3051

	
3

	
1.5708

	
1

	
1.5674

	
4

	
Wm75(Max)

	
1.4304

	
3

	
1.5708

	
1

	
1.4549

	
3

	
1.4279

	
5




	
Wm50

	
1.2620

	
2

	
1.3051

	
3

	
1.3082

	
2

	
1.5674

	
4

	
Wm50

	
1.4821

	
4

	
1.5708

	
1

	
1.2746

	
2

	
1.4279

	
5




	
Wm50(Max)

	
1.5166

	
6

	
1.5696

	
8

	
1.2432

	
3

	
1.5674

	
4

	
Wm50(Max)

	
1.3989

	
7

	
1.5708

	
1

	
1.4549

	
3

	
1.4279

	
5








In bold, the method with the lowest statistic values and the rank used. R: Rank.
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Table 5. Time in seconds.






Table 5. Time in seconds.





	
Simulated Matrix with n = 100, p = 8, Rank = 4




	
Outliers

	
EK01

	
EK13

	
EK82

	
EK84






	
0%

	
15.05

	
10.36

	
9.94

	
17.43




	
5%

	
10.52

	
11.40

	
8.45

	
12.94




	
10%

	
11.36

	
10.47

	
8.69

	
13.98




	
20%

	
14.89

	
12.75

	
11.58

	
20.47




	
Mean

	
12.96

	
11.25

	
9.67

	
16.21




	
SD

	
2.35

	
1.11

	
1.43

	
3.43




	
Real matrix with n = 44 and p = 14




	
0%

	
23.93

	
13.84

	
16.37

	
17.55




	
5%

	
15.69

	
23.40

	
14.34

	
18.17




	
10%

	
16.98

	
21.34

	
19.11

	
19.48




	
20%

	
16.67

	
16.86

	
16.65

	
19.17




	
Mean

	
18.32

	
18.86

	
16.62

	
18.59




	
SD

	
3.78

	
4.32

	
1.95

	
0.89








SD: Standard deviation.
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