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Abstract: When analyzing high-dimensional data with many elements, a data visualization that
maps the data onto a low-dimensional space is often performed. By visualizing the data, humans can
intuitively understand the structure of the data in the high-dimensional space. The self-organizing
map (SOM) is one such data visualization method. We propose a spherical tree-structured SOM
(S-TS-SOM), which speeds up the search for winner nodes and eliminates the unevenness of learning
due to the position of the winner nodes by placing the nodes on a sphere and applying the tree
search method. In this paper, we confirm that the S-TS-SOM can achieve the same results as a normal
spherical SOM while reducing the learning time. In addition, we confirm the granularity of clustering
on the tree structure of the S-TS-SOM.

Keywords: machine learning; data visualization; self-organizing map

1. Introduction

Because of the recent developments in data science, various types of data are now
analyzed in many fields. When analyzing data, if the structure of the data is unknown in
advance, it is necessary to first understand the structure of the data and then select the
analysis methods according to the task. If the data to be analyzed consist of few elements,
it is easy to understand the structure of the data. However, in the case of high-dimensional
data with many elements, it is difficult for humans to grasp the structure of the data.
Therefore, data visualization that maps high-dimensional data onto low-dimensional space
with two or three dimensions is often performed. By visualizing these data, humans can
intuitively understand the structure of the data in the high-dimensional space. Various
methods have been proposed for data visualization, and a self-organizing map (SOM) is
one such data visualization method [1,2].

The SOM maps high-dimensional data onto a low-dimensional map and expresses
the similarity between data points using distance on the map. Similar data are placed
close to each other on the map, and dissimilar data are placed far from each other on the
map. A brief description of the SOM algorithm is as follows. First, the SOM arranges
nodes that have reference vectors initialized with random values in a two-dimensional
grid. In the learning phase, a SOM determines the winner node, which is the reference
vector closest to the input vector, and updates the winner node’s reference vector and its
neighbors’ reference vectors so that they are closer to the input vector. Learning in the
SOM is performed by repeatedly determining the winner node and updating the reference
vectors of the winner node and its neighbors.

In recent years, large amounts of data have accumulated because of the development of
various web services, and hence the number of data to be analyzed has increased. Generally,
when visualizing a large number of data using a SOM, the number of nodes in the map is
set to a large number. However, as the number of nodes increases, the SOM needs more
time to search for the winner nodes. In addition, because the SOM usually arranges nodes
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in a two-dimensional grid, there are edges to the map. Therefore, according to the position
of winner nodes, e.g., the center or edge of the map, the update area sizes are different. This
means that learning is not uniform but depends on the positions of the winner nodes. To
solve both these problems, we propose a spherical tree-structured SOM (S-TS-SOM). The
S-TS-SOM arranges nodes on a spherical surface and applies a tree search method to speed
up the search for the winner nodes while eliminating the edges of the map. We compare
the effectiveness of the S-TS-SOM with a conventional spherical SOM (S-SOM) using the
benchmark data MNIST [3].

The S-TS-SOM builds a tree structure and determines the winner nodes using a tree
search method. In addition to speeding up the search, the advantage of the tree structure is
that we can obtain different granularities of clustering in the tree structure. In this paper,
we examine whether the granularity of clustering can be found in the tree structure of the
S-TS-SOM. The main contributions of this paper can be summarized as follows.

(1) We propose the S-TS-SOM, which applies a tree search method to the S-SOM, to speed
up the search for winner nodes and eliminate the edges of the map.

(2) We examine the effectiveness of the S-TS-SOM by comparing it with the S-SOM using
a benchmark dataset.

(3) We examine whether the granularity of clustering can be determined using the tree
structure of the S-TS-SOM.

The remainder of this paper is organized as follows. Section 2.1 introduces work re-
lated to this study. Section 2.2 presents the proposed method, the S-TS-SOM. In
Sections 3.1 and 3.2, we evaluate the effectiveness of the S-TS-SOM by comparing it with the
S-SOM using the benchmark dataset MNIST. Section 3.3 examines whether the granularity
of clustering can be found using the tree structure of the S-TS-SOM. Section 4 presents the
discussion and future work.

2. Materials and Methods
2.1. Related Work

First, we describe a SOM and other methods used for data visualization. A SOM is
a type of artificial neural network proposed by Kohonen. It maps high-dimensional data
onto a low-dimensional map and expresses the similarity of the data using distance. On
the map, similar data are placed close to each other, and dissimilar data are placed far
from each other. This characteristic enables the SOM to be used for data visualization. By
visualizing the data, humans can intuitively grasp the relationships among the data in a
high-dimensional space. WEBSOM is an example of an application that is used as a tool for
data visualization. WEBSOM makes it easy to search for documents that are similar to a
query document by arranging many documents onto a two-dimensional map according
to similarity [4].

We describe the SOM algorithm as follows: Figure 1 shows the structure of the SOM. It
has nodes mi(i = 1, . . . I) with reference vector mi. First, each reference vector is initialized
with a random value. In the SOM, the node with the reference vector that is closest to the
input vector xj(j = 1, . . . J) that was selected from the input set is determined to be the
winner node mc. After the winner node is determined, the reference vectors of the winner
node and its neighborhood nodes are updated so that they are closer to the value of the
input vector using the following formula:

mi(t + 1) = mi(t) + hci
[
xj(t)− mi(t)

]
(1)

hci(t) = α(t) exp
(
− dci

2

2σ2(t)

)
, (2)

where hci is a neighborhood function determined by the positions of winner node mc and
node mi, dci is the distance between the nodes mc and mi on the map, α(t) is the learning
rate, and σ(t) is a function that determines the size of the update area; α(t) and σ(t) are
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set to decrease as the number of updates increases. By repeatedly determining the winner
node and updating the reference vectors, the SOM is trained. The algorithm described
above is a common technique called online learning. By contrast, batch learning that does
not depend on the order of input has also been proposed [5]. In batch learning, after the
winner node of all inputs is determined, the map is updated using the following formula:

mi(t + 1) =
∑J

j=1 hcj,i xj

∑J
j=1 hcj,i

(3)

hcj,i (t) = exp

(
−

dcj,i
2

2σ2(t)

)
. (4)

Figure 1. The structure of the SOM.

In addition to the SOM, principal component analysis (PCA) and t-distributed stochas-
tic neighbor embedding (t-SNE) are common dimensional reduction or compression meth-
ods [6,7]. PCA searches for the axes with the large variances in the data and removes axes
with small variances to reduce the dimensions. Note that PCA is based on the assump-
tion that the magnitude of the variance represents the characteristics of the data. t-SNE
regards the distance between data points as a probability and compresses the dimensions
so that the distances between data points in the high- and low-dimensional spaces are the
same. Here, we introduced PCA and t-SNE as typical methods. However, many other
methods continue to be proposed [8,9]. Similar to the SOM, PCA and t-SNE are mainly
used for data visualization. The major difference between the SOM and other dimensional
reduction or compression methods such as PCA and t-SNE is that the SOM uses nodes for
learning. Therefore, using a SOM, we obtain not only the coordinates of the input data in
the low-dimensional space but also the codebook vectors from the nodes.

As mentioned in the Introduction, if the number of nodes in a SOM increases, the
number of search nodes needed to determine the winner nodes increase, and the calculation
time increases. Therefore, a tree-structured SOM (TS-SOM), which uses the tree search
method in the SOM, was proposed [10]. The structure of a TS-SOM is shown on the
left-hand side of Figure 2. A TS-SOM is a SOM composed of multiple layers and has
a structure in which the number of nodes increases from the upper layers to the lower
layers. The nodes of the upper layer have links to the nodes of lower layer, and the winner
nodes determined in the upper layer assist the search for the lower layer’s winner nodes
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to speed up the search for the winner nodes. The right-hand side of Figure 2 shows how
to determine the winner node in a TS-SOM. The lower winner node is determined from
the child node group that has a link from the winner node determined in the upper layer.
As in a SOM, the nodes of each layer in a TS-SOM are arranged in a two-dimensional grid
pattern. Therefore, a TS-SOM also has map edges.

Figure 2. Structure of the TS-SOM and how to determine the winner node.

Next, we describe the shape of the SOM. Normally, the SOM arranges nodes on a
two-dimensional grid pattern for learning. Therefore, a SOM is a map with edges. The
presence of the edges of the map causes a difference in the size of the update area of a
winner node at the center of the map and a winner node at the edge of the map. Figure 3
shows the update area according to the position of the winner node. In addition, because
of the characteristics of the SOM, if the map has an edge, the SOM tends to collect data
at the edges of the map. Therefore, to eliminate differences in the size of the update area,
the torus SOM, which has a map without edges, and the spherical SOM (S-SOM), which
arranges nodes on a spherical surface, were proposed [11,12]. Figure 4 shows the map
shapes of the torus SOM and the S-SOM. In the torus SOM, by connecting the edges of the
map as shown in the Figure 4, the edges of the map are eliminated. The torus SOM can
learn uniformly regardless of the position of the winner nodes. However, when the map is
visualized, it is necessary to consider the connections between the edges of the map, which
make it difficult for humans to intuitively understand the result. In this study, we chose to
arrange nodes on a sphere for intuitive visibility. Intuitive visibility is achieved by drawing
the spherical map in three dimensions and rotating the spherical map for viewing.

Figure 3. Difference in the update area depending on the positions of the winner nodes.
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Figure 4. Map shapes the extended SOMs.

When clustering data, how finely the data should be clustered strongly depends on the
target task. For example, if the data are uniformly distributed, it is difficult to automatically
determine the optimal number of clusters. Furthermore, for data with small categories
within large categories, the hyperparameters need to be adjusted depending on the size
of the target category. Generally, for such data, a dendrogram is created by performing
hierarchical clustering, and the number of clusters is arbitrarily determined according to
the task. In addition to hierarchical clustering, a SOM with multiple layers can be used to
arbitrarily determine the number of clusters. The TS-SOM, which is the basis of the method
proposed in this paper, is composed of multiple layers, and has a structure in which the
number of nodes increases from the upper layers to the lower layers. Therefore, the data
are classified more finely toward the lower layers, and clustering results with different
granularities can be obtained in each layer. In addition to the TS-SOM, the hierarchal
feature map (HFM) has also been proposed [13,14]. Moreover, the GH-SOM, which enables
the HFM to learn adaptively, and a method that makes the TS-SOM learn adaptively, have
been proposed [15–17].

2.2. S-TS-SOM

In this section, we describe the S-TS-SOM. The basic structure is the same as that of a
TS-SOM. However, in an S-TS-SOM, nodes are evenly arranged on a spherical surface to
eliminate the edges of the map. In this paper, we use polyhedrons inscribed in a sphere
to arrange the nodes on the spherical surface. The nodes are arranged as follows. First,
we divide the icosahedron and stack it, as shown in Figure 5. Next, nodes are placed on
each surface of the polyhedrons, and links are added from the nodes of the inner layer to
the nodes of the outer layer. Using this process, the tree structure is constructed for each
face of the polyhedron, as shown in Figure 6. In the method proposed in this paper, except
for the outermost layer’s nodes, the tree structure is created such that each node has four
links to the outer layer’s nodes. The direction of layering is not important because it does
not change the underlying concept. However, for the sake of explanation, we create the
structure such that the outer layer has more nodes.

An S-TS-SOM has multiple layers, each layer has a node mil ( il = 1, . . . Il), and node
mil has a reference vector mil . Here, l indicates the level of the layer, and l = 0, 1, 2, . . . L
in order from the inner layer to the outer layer. In addition, il indicates the node number
of the lth layer. We used an icosahedron for the innermost polyhedron, and because we
divide the icosahedron to increase the number of layers, the number of nodes in each layer
is expressed by the following formula.

Il = 20 × 4l (5)
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Figure 5. Layers of the S-TS-SOM.

Figure 6. Structure of the S-TS-SOM.

The learning algorithm of the S-TS-SOM is as follows. First, we initialize the reference
vectors of the 0th layer nodes with random values. The 0th layer is trained using the SOM
algorithm. In a SOM, the node with the reference vector that is closest to the input vector
that was selected from the input set is determined to be the winner node. After determining
the winner node, the reference vectors of the winner node and its neighborhood nodes are
updated so that they are closer to the value of the input vector. By repeatedly determining
the winner node and updating the reference vectors, the SOM is trained. In this paper,
Euclidean distance is used to measure the similarity between the input and reference
vectors. For layers other than the 0th layer, the winner node is determined using the winner
node of the inner layer. If the winner node in the lth layer of xj(j = 1, . . . J) selected from
the input vector set is mcl , j, the winner node in the l + 1th layer is determined from the
child node set cl , j, which has links from node mcl , j. The update method of each layer is the
same as that used in a SOM. Update methods include online learning and batch learning
methods. We adopt batch learning because it is not affected by the order of the input data.
After determining the winner nodes of all the input vectors in the lth layer, the reference
vectors of the lth layer are updated by the following formula.

mil (t + 1) =
∑J

j=1 hcl j,il xj

∑J
j=1 hcl j,il

(6)
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hcl j,il (t) = exp

(
−

θ2
cl j,il

2σ2(t)

)
, (7)

Here, hcl j,il is a neighborhood function obtained from the positions of winner node
mcl , j and node mil . In addition, θcl j,il is the angle between winner node mcl , j and node
mil , as seen from the center of the sphere; σ(t) is a function that determines the size of the
update area; σ(t) is set to decrease as the number of updates increases. When the learning
of the lth layer is completed, the nodes of the l + 1 th layer are initialized by the following
formula, and the l + 1 th layer is trained:

mil+1
=

∑Il
il=1 hil ,il+1

mil

∑Il
il=1 hil ,il+1

(8)

hil , il+1
= exp

(
−

θ2
il ,il+1

2σ2
l+1

)
(9)

Here, σl+1 is the parameter for initializing the reference vectors of the l + 1 th layer.
When the number of updates of each layer is defined as Tl , the number of nodes

searched during learning for one input vector is expressed by the following formula.

20(T0 + 1) +
L

∑
l=1

4(Tl + 1) (10)

We use this formula in Section 3 to compare the performance of the S-TS-SOM and
S-SOM.

The learning process of the S-TS-SOM is described below.

(1) Train the 0th layer using the SOM algorithm.
(2) Add a competitive layer.
(3) Search for the winner nodes in the added layer.
(4) Update the reference vectors of the added layer using the neighborhood function.
(5) Repeat steps 3 to 4 a certain number of times.
(6) If the number of layers is the same as a pre-determined number, the learning is

finished. Otherwise, the process returns to step 2.

3. Results
3.1. Visualization Experiment

First, we evaluate the S-TS-SOM as a visualization tool. Here, we use the MNIST bench-
mark dataset. MNIST is a dataset of images consisting of 10 categories, with 60,000 training
data, and 10,000 test data. Handwritten numbers from “0” to “9” are drawn on each image.
Each image in MNIST is 28 × 28 pixels. Similar to SOM, S-TS-SOM needs to convert the
data to a vector format. Therefore, 28 × 28 data are inputted by transforming them into a
vector of 784 elements.

For reasons of visualization, we used a total of 1000 images (100 extracted from
each category) as the training data. We set the number of layers of the S-TS-SOM to
L = 4. Parameter σl+1 was set to decrease as the inner layers become outer layers.
(σ1, σ2, σ3, σ4 = 90◦, 45◦, 22.5◦, 11.25◦). In addition, the σ(t) of each layer was set to de-
cay linearly with the number of updates, with σl+1 as the initial value. The σ(t) of the 0th
layer was set with 180◦ as the initial value. We set the number of updates for each layer
to 100. Figure 7 shows the result. For comparison, we show the result of the S-SOM in
Figure 8. We placed the nodes of the S-SOM on the faces of the polyhedron, set the number
of the S-SOM updates to 100, and updated the map by batch learning. The σ(t) of the
S-SOM was set with 180◦ as the initial value. For the sake of clarity, we added colors to
the MNIST images according to each category. The results show that similar images are
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gathered close to each other on the maps generated by both the S-TS-SOM and S-SOM.
These results indicate that the S-TS-SOM is working properly as a visualization tool.

Figure 7. Result of the S-ST-SOM.

Figure 8. Result of the S-SOM.

3.2. Quantitative Evaluation of Clustering

Here, we quantitatively compare the clustering performance of the S-TS-SOM and
S-SOM. We used the purity and normalized mutual information (NMI) clustering indicators
to evaluate the performance [18]. These two indicators take a value from 0 to 1, and values
close to 1 indicate a high performance. Purity is calculated by counting the most dominant
labels in each cluster and dividing by the number of data. Purity is simple to calculate.
However, purity can easily be increased to 1 by increasing the number of clusters. By
contrast, the calculation of NMI is complicated. However, it is calculated considering the
number of clusters. NMI is close to 1 when the labels for each cluster are not mixed, and
the number of clusters is close to the number of original categories. To calculate the purity
and NMI clustering indicators, the true category labels are required. We used a total of
70,000 MNIST images as the experimental data. Therefore, in this experiment, the purity
and NMI will be high if the data are correctly classified.

We set the number of outermost nodes to 80, 320, 1280, and 5120 for both the S-TS-SOM
and S-SOM. We calculated the purity and NMI by treating the data placed on the same
winner node as belonging to one cluster. We set the number of S-TS-SOM updates to 100
for each layer and the number of S-SOM updates to 100. We set σl+1 and σ(t) in the same
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way as in Section 3.1. The 0th layer of the S-TS-SOM and S-SOM were initialized with
random values. Therefore, we present the average of the results of the five trials in Table 1.
This table reveals that the S-TS-SOM and S-SOM have almost the same performance with
respect to purity and NMI.

Table 1. Performance of the S-TS-SOM and S-SOM.

(1) S-T S-SOM (2) S-SOM (1)/(2)

Number of
Outermost

Nodes

Number
of Search

Nodes
Purity NMI Time (s)

Number of
Search
Nodes

Purity NMI Time (s) Purity NMI Time (s)

80 24 × 101 0.761 0.481 215.13 80 × 101 0.787 0.508 235.07 0.967 0.948 0.915
320 28 × 101 0.822 0.443 409.06 320 × 101 0.823 0.449 941.17 0.998 0.986 0.435

1280 32 × 101 0.864 0.409 789.74 1280 × 101 0.844 0.401 3678.23 1.024 1.020 0.215
5120 36 × 101 0.895 0.381 2011.44 5120 × 101 0.858 0.365 16,560.32 1.043 1.046 0.121

In addition to the calculation of purity and NMI, we compared the learning time of the
S-TS-SOM and S-SOM to examine whether the S-TS-SOM could be trained more quickly
than the S-SOM. We used Python for model creation and calculation and used a PC with
an Intel(R) Core (TM) i7-10870 2.20 GHz/5.0 GHz and 64 GB DDR4 memory. The “Time”
column in Table 1 lists the learning time of each model. Because the number of updates for
each layer of the S-TS-SOM was set to 100, the number of nodes searched during learning
for one input vector is (20 + 4L) × 101 from Formula (10). By contrast, in the S-SOM, the
number of nodes searched for one input vector is 20 × 4L × 101.

In addition to the difference in the number of searched nodes, the S-TS-SOM initializes
and updates the reference vectors in multiple layers. Moreover, because of the differences
in the algorithms, the number of searched nodes does not directly reflect the difference in
the learning times of the S-TS-SOM and S-SOM. However, the learning time of the S-TS-
SOM was shorter than the learning time of the S-SOM. Moreover, as the number of nodes
increased, the difference between the S-TS-SOM and S-SOM learning times increased.

From the experiments, we confirmed that an S-TS-SOM has almost the same clustering
performance as a S-SOM but a shorter learning time.

3.3. Data Clustering Utilizing the Tree Structure of the S-TS-SOM

The S-TS-SOM proposed in this paper has a structure in which the number of nodes
increases from the inner to outer layers. Therefore, we believe that by checking the results
for each layer, we can obtain results with different data classification granularity. We
consider that the layers closer to the inner layer have a smaller number of nodes, so the
data are more roughly classified. Moreover, the layers closer to the outer layer have a larger
number of nodes, so the data are more finely classified. In this section, we check the results
of each layer of the S-TS-SOM to determine if the adjustment of the number of clusters
is successful.

We used the Zoo dataset of UCI as the experimental data [19]. The Zoo dataset is
composed of 101 species of animals, where each animal has 17 attributes. We used 16
attributes as the input and excluded the “type” attribute. Therefore, each animal was
treated as a vector with 16 elements. Because the “legs” attribute is not a Boolean value,
we used the value divided by the maximum value in the “legs” attribute as the input. The
“type” attribute classifies each animal into an animal type using a number from one to
seven. We set the number of layers of the S-TS-SOM to L = 2 and the number of updates
for each layer to 100. Figure 9 shows the results. In Section 3.1, we presented only the
outermost layer of the S-TS-SOM. However, the other layers are also shown in Figure 9,
and the labels are color-coded according to the “type” attribute. In Figure 9, the top row
shows the front of the map, and the bottom row shows the back of the map. We plotted
the data placed on the same winner node in the same direction as seen from the center of
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the sphere. If only one data point was placed at a node in a layer other than the outermost
layer, the branch growth was stopped for the sake of visibility.

Figure 9. Result of data clustering utilizing the S-TS-SOM.

In the results of Figure 9, in the 0th layer, the clusters are roughly formed according to
each “type” attribute. As the number of layers increases, we can see that the clusters branch
into smaller clusters. Note that some data have stopped branching because the input values
are the same. Table A1 shows the groups of data with the same input value. From this
experiment, we confirmed that the S-TS-SOM can extract the granularity of clustering on
the tree structure by checking each layer after the data were learned.

4. Conclusions

In this paper, we proposed the S-TS-SOM, which uses a tree search method on a
spherical surface to eliminate the edges of the map in the SOM and speed up the search for
winner nodes. In addition, we confirmed the effectiveness of the S-TS-SOM by comparing
the visualization performance and clustering performance with the S-SOM using the
MNIST dataset. As a result, the S-TS-SOM placed similar images close to each other on the
map equally as well as the S-SOM. Additionally, when we checked purity and NMI while
changing the number of nodes to measure clustering performance, the difference between
the values of the S-TS-SOM and S-SOM was within 0.1. When we measured the learning
time, the ratio of the learning time of the S-TS-SOM to that of the S-SOM became shorter
at 0.915, 0.435, 0.215, and 0.121 as the number of nodes in the map increased. The results
show that the S-TS-SOM obtained the same performance as the S-SOM while speeding up
the search for winner nodes.

We furthermore confirmed that the granularity of clustering could be found on each
layer of the S-TS-SOM that learned the Zoo dataset. Hence, the S-TS-SOM is able to organize
the map into a tree structure that reflects the granularity of the clustering.
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As a limitation, the S-TS-SOM has more hyperparameters than the S-SOM because the
former initializes and updates the map of each layer. In this paper, we did not investigate
the influence of the hyperparameters of the S-TS-SOM. In the future, we will investigate
the influence of the hyperparameters and compare the proposed method with other data
visualization and clustering methods. In addition, we will develop a data search system
that makes use of the tree structure of the S-TS-SOM.
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Appendix A

Table A1. Animals with the same input values.

aardvark, bear

antelope, buffalo, deer, elephant, giraffe, oryx

bass, catfish, chub, herring, piranha

boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf

calf, goat, pony, reindeer

chicken, dove, parakeet

crayfish, lobster

crow, hawk

dogfish, pike, tuna

dolphin, porpoise

flea, termite

fruitbat, vampire

gull, skimmer, skua

haddock, seahorse, sole

hare, vole

housefly, moth

lark, pheasant, sparrow, wren

mole, opossum

slug, worm
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