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Abstract: Bioenergy production from waste is one of the emerging and viable routes from renewable
resources (in addition to wind and solar energy). Many developing countries can benefit from this as
they are trying to solve the large amounts of unattended garbage in landfills. This waste comes in
either liquid (wastewater and oil) or solid (food and agricultural residues) form. Waste has negative
impacts on the environment and, consequently, any form of life that exists therein. One way of
solving this waste issue is through its usage as a resource for producing valuable products, such as
biofuels, thus, creating a circular economy, which is in line with the United Nations (UN) Sustainable
Development Goals (SDGs) 5, 7, 8, 9, and 13. Biofuel in the form of biogas can be produced from
feedstocks, such as industrial wastewater and municipal effluent, as well as organic solid waste
in a process called anaerobic digestion. The feedstock can be used as an individual substrate for
anaerobic digestion or co-digested with two other substrates. Research advancements have shown
that the anaerobic digestion of two or more substrates produces higher biogas yields as compared
to their single substrates’ counterparts. The objective of this review was to look at the anaerobic
digestion process and to provide information on the potential of biogas production through the
co-digestion of sugarcane processing wastewater and municipal solid waste. The study deduced that
sugar wastewater and municipal solid waste can be considered good substrates for biogas production
in SA due to their enormous availability and the potential to turn their negative impacts into value
addition. Biogas production is a feasible alternative, among others, to boost the country from the
current energy issues.

Keywords: energy; biogas; anaerobic co-digestion; substrate type; sugarcane processing wastewater;
municipal solid waste

1. Introduction

Energy accessibility and waste management are some of the most significant challenges
developing countries face, including South Africa [1]. Energy demands exceed the existing
energy supply due to the continual increase in population globally. Regularly used energy
resources, such as oil, coal, and natural gas, are diminishing and they emit greenhouse gases
that contribute to climate change [2]. Accordingly, the research focus in many countries has
shifted to finding and implementing efficient and green alternatives, such as renewable
resources, as solutions to these conventional energy sources, which are detrimental and
waning [3]. Examples of renewable energy resources are those that can be replenished
naturally, such as solar photovoltaic and wind power. However, the energy demands of a
constantly growing population using coal-powered stations cannot be supplemented with
only solar and wind energy as these are predominantly weather-dependent [4].
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Waste generation and management have been dealt with in many ways, one of which
is using it as a resource for producing valuable products, such as biogas, which contributes
to the circular economy [5]. Further, this is in line with the UN’s Sustainable Development
Goals 5, 7, 8, 9, and 13. Biogas can be produced from many substrates, including organic
solid waste, wastewater/effluent, etc., as substrates/feedstock in biodigestion. Feedstock is
any substrate that can be converted to biogas/methane through anaerobic bacteria. These
range from solid wastes to readily degradable wastewater and sludge. This waste must
contain a substantial amount of organic matter, which is then converted into biogas [6].
Conventionally, anaerobic digestion is a practical way to treat animal and agricultural
waste, macroalgae, and sewage sludge from aerobic wastewater treatment plants [7–9].
However, a change happened after 1970, as soon as environmental consciousness grew in
connection with the demand for renewable energy reforms and new waste-management
strategies [10]. Industrial and municipal waste has also been identified as eligible for
anaerobic digestion, as shown in Figure 1. This resource is one of the sustainable and
viable routes to help many developing countries manage massive amounts of the waste
left unattended in landfills and discharged into water streams and oceans [11]. This waste
negatively impacts the environment and, consequently, life in such an environment, i.e.,
human and animal lives [12,13].
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Figure 1. Sources of suitable substrates for anaerobic digestion [14].

Clean, renewable energy in the form of biogas can be achieved through anaerobic
digestion (AD) of waste matter [15]. AD comprises a series of biochemical reactions that
result in the production of biogas, a mixture of methane, carbon dioxide, and negligible
traces of other elements. Different waste matter, including the organic part of municipal
solid waste, industrial waste, wastewater from manufacturing processing, and agricultural
waste produced from livestock and crop production, is used in the AD process. Notably,
the biogas formation process produces some by-products, such as slurry (digestate), which
provides an added benefit, since the spent waste (slurry) can be used as organic compost
by farmers due to its nutrient composition [16]. However, it is crucial to check the safety
of this digestate for its use as a fertilizer since there can be potential incidences of heavy
metals and pathogenic bacteria [17]. In addition to the environmental benefits of waste
management, there are also socio-economic rewards. It is envisaged that countries would
raise their annual turnover for different sectors, generate thousands of jobs, and save
billions of dollars a year after fully implementing waste-management solutions [18].

Since research has shown that the digestion of a single substrate produces less bio-
gas than a co-digestion of two or more substrates, municipal solid waste and sugarcane
processing wastewater are deemed to be good co-substrates for biogas production. Fur-
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ther, sugarcane wastewater has low carbon-to-nitrogen ratio, which enables the use of a
complementary substrate [19]. Both these substrates contain significant amounts of organic
content, digested by the anaerobic bacteria [20,21]. This review looks at the anaerobic
digestion process and seeks to provide information on the potential of biogas production
through the co-digestion of sugarcane processing wastewater and municipal solid waste.
South Africa is experiencing “load shedding” because energy demand is higher than the
currently generated energy; therefore, urgent solutions are required to solve this issue.
Biogas production is a viable alternative among others to boost the country from the current
energy issues.

2. Possibility of Generating Renewable Energy from Biogas Using Sugarcane
Processing Wastewater

Sugarcane is used for sugar production at the business scale and contributes about 80%
of the world’s sugar revenue [22,23]. In South Africa, the provinces of KwaZulu-Natal and
Mpumalanga are the major sugarcane producers contributing to the prosperity of the sugar
industry’s economy [24]. The same sugarcane that contributes to countries’ economies is
characterized by the generation of large quantities of organic wastewater, with excessive
chemical oxygen demand that pollutes the environment [25,26]. Therefore, the sustainable
advancement of the sugarcane industry requires reducing and treating sugarcane process-
ing wastewater. One way of treating this sugarcane processing wastewater is by discharging
it into wastewater-treatment systems where there would be physical or chemical nutrient
removal. Nevertheless, such methods present disadvantages of secondary pollution, high
operation costs, and limitation of nutrient reusability [27,28]. Sugarcane processing wastew-
ater is an attractive substrate for bacterial cultivation to produce beneficial products, such
as biogas, biomass, enzymes, and organic acids, due to its high carbohydrates, minerals,
and sugars [26,29]. Many researchers [30–32] have studied the conversion of biogas to
electricity. Wang, et al. [33] analyzed the efficiency and sustainability of biogas to electricity
production from a large-scale biogas project in China using pig manure. Even though they
obtained lower yield results compared to traditional coal and natural gas power plants,
electricity generated from biogas still brings more advantages and reduced antithetical
environmental effects, as opposed to fossil fuels [33].

3. Municipal Solid Waste

A continual increase in the worldwide populace has led to rapid urbanization in many
countries. It is estimated that about two-thirds of the world’s population will live in cities by
2025 because more than 150,000 people move to urban areas each day [34]. This rise in urban-
ization has resulted in cities that generate thousands of tons of municipal solid waste daily
and this is projected to increase significantly in the near future [35]. Municipal solid waste is
an amalgamation of waste from households, markets, backyards, street cleaning, institutional
establishments, such as hospitals, and industrial and commercial wastes. Management of this
type of waste in urban areas pertains to its disposal, collection, resource recovery, recycling,
and treatment to promote the quality of both the environment and health while supporting
the economy’s efficiency and productivity through generating employment and income [36].
The most preferred waste-management method is the one tuned to take the circular economy
direction since it leads to sustainable development. The circular economy focuses on the
upper ranks of the waste hierarchy, as shown in Figure 2, including prevention, reuse, and
recycling, because these promote cleaner production and minimal waste [37]. Particularly, a
circular economy has been adopted globally since it offsets issues of resource depletion and the
detrimental environmental effects that lead to climate change. Traditionally, the production
and consumer approach, which translates to the linear economy, has been used through a
typical “take, use, and dispose of” model [38]. Some of the drawbacks of a linear economy
are apparent when the consumer generates waste and disposes of it, causing pollution to the
environment and depleting resources [39]. On the other hand, a circular economy follows
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waste generation minimization and pollution reduction, hence, protecting the environment
through a “resource-product-waste-resource” model [40].

South Africa has also embarked on an integrated waste-management structure that
considers waste prevention, recycling, recovery, and controlled and supervised disposal. This
idea will help to efficiently manage and safeguard human health and the environment, with a
significant focus on sustainable development economically, socially, and environmentally. It
was suggested that this integrated waste management should incorporate hierarchical waste
techniques, which focus more on the avoidance of and reductions in waste than on collection,
storage, and disposal [41]. On a local scale, a study of the optimization and financial viability
of landfill gas to electricity was conducted in Durban. The study demonstrated that the
conversion of landfill gas to electricity provides viable projects with options for optimizing
and improving the financial feasibility of the developments [42]. The study also suggests that
researchers should look at the possibility of sugarcane waste to produce renewable energy.
Favourable results from this research may add more value to sugarcane, as a plant boosts the
economy and creates jobs. Consequently, this review looks at the process of biogas production,
with a particular focus on two different substrates, i.e., sugar wastewater and the organic part
of municipal solid waste. These substrates are simple biodegradable materials that can be
broken down by microorganisms in an AD process, which includes a series of biochemical
reactions, as explained in the following section.
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Figure 2. Waste hierarchy adapted from [43].

Anaerobic digestion and composting are biological treatments used to treat biodegrad-
able waste. Studies show that waste management leads to lower environmental impacts,
lower economic costs, and lower energy consumption. It is suggested that energy-rich
waste should be prevented because of the low recovery of resources and harmful environ-
mental effects of landfilling [44]. The advantages attached to waste management include
reducing solid waste (about 70–80% mass and 80–90% volume), leading to a preserved land-
fill space [45], removal of organic contaminants (halogenated hydrocarbons) [46], reduction
in greenhouse gases [47], and naturally compatible exploitation of renewable energy from
waste, predominantly when the plant used is designed to generate heat and power [48].

4. Anaerobic Digestion Process

This is a four-step anaerobic biological decomposition of organic substrates, namely,
hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The brilliance of this process
is that all the phases are connected since a by-product of one step becomes the substrate of
the next step, all in one system [49]. These biochemical decomposition phases have a series
of chemical reactions, as illustrated in Figure 3 and detailed in the subsequent subsections.
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4.1. Hydrolysis

The hydrolysis phase of anaerobic digestion is where complex biopolymeric com-
pounds (lipids, carbohydrates, and proteins) are converted to water-soluble compounds
by degradation through Bacteroides, Clostridia, and Bifidobacteria and sometimes Strep-
tococci and Enterobacteriaceae [52]. This step is relatively slow and can limit the rate
of the overall digestion, mainly when solid material is used as a substrate. As seen in
Equation (1), cellulose (C6H10O5) is hydrolyzed to generate glucose (C6H12O6) and hydro-
gen (H2). This reaction is catalyzed by homogeneous/heterogeneous acids yielding the
fermentable monosaccharide (C6H12O6). The products (C6H12O6 and H2) are used by the
fermentative microorganisms in the next phase to form higher-chain organic compounds,
such as volatile fatty acids [53,54].

(C6H10O5)n + nH2O → n(C6H12) + nH2 (1)

4.2. Acidogenesis

This is the second phase, known as the fermentation stage, where the acidogenic bac-
teria Streptococcus, Escherichia, Staphylococcus, Pseudomonas, Bacillus, Sarcina, Desulfovibrio,
Lactobacillus, and others are active [55]. These bacteria degrade amino acids, lipids, and
glucose into volatile fatty acids, organic acids, carbon dioxide, and hydrogen gas (as illus-
trated in Equations (2)–(7) below [53]). Acetic acid (CH3COOH) is the most important organic
acid produced in this stage, which serves as the substrate for methanogenic microorgan-
isms [16]. It is worth noting that volatile fatty acid production is favored when pH is above
5, while ethanol production (CH3CH2OH) is favored by pH lower than 5, with reactions
stopping at a pH level that is less than 4 [50].

C6H12O6 ↔ 2CH3CH2OH + 2CO2 (2)

C6H12O6 + 2H2 ↔ 2CH3CH2COOH + 2H2O (3)
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C6H12O6 → 3CH3COOH (4)

C3H7O2N + 2H2O → C2H4O2 + NH3 + CO2 + 2H2 + ATP (5)

C4H9O3 + NH3 + CO2 + H2 + ATP (6)

4CH3COCOO− + 4H2O → 5CH3COO− + 2HCO3
− + 3H+ (7)

4.3. Acetogenesis

At this stage, the reactions are reversible with a release of hydrogen. Volatile fatty acids,
specifically acetic acid and butyric acid, are converted into carbon dioxide gas, hydrogen,
and acetate, as shown in Equations (8)–(10). The active bacteria in this stage are Clostridium,
Syntrophomonas wolfeii, and Syntrophomonas wolinii [55]. This conversion of volatile fatty
acids is enabled by the presence of water molecules (acting as electron sources) from the
previous stages of anaerobic digestion. Equation (9) converts the phase product to acetate
and hydrogen, used in the next stage [56]. This stage is equally important since it reflects
the biogas production efficiency, given that the reduction of the acetate ion forms about
70% of methane. Acetate is a primary intermediary product of this phase and it accounts
for 25% of the products formed together, with approximately 11% of hydrogen [57].

CH3CH2COO− + 3H2O ↔ CH3COO− + H+ + HCO3
− + 3H2 (8)

C6H12O6 + 2H2O ↔ 2CH3COOH + 2CO2 + 4H2 (9)

2CH3CH2OH + 2H2O ↔ CH3COO− + 2H2 + H− (10)

4.4. Methanogenesis

In the final phase of the methanogenesis stage, acetic acid is converted into methane
and carbon dioxide using bacteria called methanogens, which are anaerobes with a high
vulnerability to limited amounts of oxygen. In addition, carbon dioxide is a product that
reacts with hydrogen gas to produce more methane. On the other hand, ethanol undergoes
decarboxylation to form methane. Two types of bacteria—the acetophilic methanogenic (with
Methanosarcina and Methanosaeta active specie) and the hydrogenophilic methanogenic (with
Methanospirilum, Methanobacterium formicicum, Methanoplanus, and Methanobrevibacterium as the
dominant specie)—exist in this stage [55]. The former is responsible for the decarboxylation of
acetate to methane and the latter for methane formation through a reaction of carbon dioxide
and hydrogen [53]. The final product of the anaerobic digestion process is biogas, which is
composed of methane and carbon dioxide.

CH3COOH → CH4 + CO2 (11)

CO2 + 4H2 → CH4 + 2H2O (12)

2CH3CH2OH + CO2 → CH4 + 2CH3COOH (13)

5. Factors Affecting the Anaerobic Digestion Process and Biogas Production

Biogas production is influenced by different factors, such as substrate type, tempera-
ture, pH, organic loading rate, hydraulic retention time, etc. [58].

5.1. Substrate Type

Numerous biomass feedstocks can be used for biogas production, depending on
their nutritional composition. Accordingly, these compositions influence biogas yield,
methane content, degradation kinetics, and biomass biodegradability [59]. The critical
nutritional compositions of biomass substrates suitable for biogas production are carbo-
hydrates, protein, and fats. Theoretical estimations of biogas percentage and methane
yield from these nutrients have been reported in the literature and are calculated using
the Buswell formula [60]. Protein-rich substrates have a high potential for methane yield,
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but their degradation gives off ammonium ions, leading to an alkalinity increase in the
AD process. The increase in alkalinity improves the digest value as fertilizer while pre-
venting the activities of methanogens. This inhibition occurs during the equilibrium shift
from ammonium to ammonia, typically in changing concentrations. In addition, literature
remarks suggest that microorganisms can acclimatize to environments with high ammonia
concentrations while efficiently producing biogas [61,62].

Lipid-rich substrates, such as fats, possess great methane yield potential, such as
animal and plant tissue waste, biodegradable kitchen and canteen waste, grease and oil
mixture, etc. [63]. These substrates release long-chain fatty acids during their degradation,
which are typically toxic to the microbial environment and cause a drop in pH [64–66]. There
are several other types of biomass that are used for biogas production apart from the protein
and lipid-rich substrates, for example, substrates with a high degree of lignocellulose (wheat
straw, sorghum, rice straw, etc.) [67]. This type of biomass is hard to degrade due to these
three reasons: (i) recalcitrant nature, (ii) heterogeneous structure, and (iii) low accessibility
by enzymes, such as carbohydrate polymers [68–70]. However, pre-treatment mechanisms
can help break down the heterogeneous matrix, thus, increasing the porous and surface
area of the lignocellulose biomass and enhancing biogas production.

Characterization of the waste substrates is performed to ascertain the composition of each
substrate. This is generally physical and chemical composition regarding volatile solids, total
solids, C/N ratio as well as elemental analysis for carbon, nitrogen, hydrogen, and sulfur [71,72].
During substrate characterization, the place (source) where the substrate was collected is
vital, as waste chemical content is affected by many factors, such as weather conditions and
the type of soil where the original substances were grown [73,74]. Physical and chemical
compositions depend on the type of substrate, for example, carbohydrates have carbon and
hydrogen while proteins and lipids have nitrogen as part of their composition [75,76]. These
substrate compositions can be analyzed using different analytical techniques.

5.2. Anaerobic Digestion pH

The operational pH directly affects both the digestive progress and products formed
in the AD process. Literature findings show that the ideal comprehensive pH range for
AD should be between 4.0 and 8.5, as per the requirement for the fermentative bacteria,
although the limiting range of 6.5–7.2 is favorable for the growth of methanogens [77,78]. The
microorganism growth rate is significantly affected by the change in pH and, as such, each
microbial group has a specific optimum pH. A comparative abundance of microbial species
increased from 6 to 14 at pH 4.0 and 7.0, respectively [79]. Bacterial population dominance
differs with changing pH, for example, at pH 6.0, Clostridium butyricum is dominant, while the
Propionibacterium spp. thrives during anaerobic acidogenesis at pH 8 [80].

When the pH level is controlled for the optimal growth of microorganisms, reductions
in toxicity, generally from increased concentration of free ammonia (FA), are also achieved.
Similarly, pH significantly affects volatile fatty acid (VFA) composition [79]. In an anaerobic
reactor, instability typically leads to the accumulation of VFAs, leading to a drop in pH
and, therefore, acidification. Nonetheless, this accumulation of VFAs does not always
exemplify a pH drop, owing to the buffer capacity of some waste forms. There is an excess
of alkalinity in manure, denoting that the VFA growth shall surpass a certain point before
it can be determined as a significant change in pH [81]. When the pH in the reactor drops,
the concentration of VFAs is possibly very high, and the process may previously have been
affected [82]. Hydrogen sulfide and phosphate are other compounds contributing to the
buffering capacity [83]. To counteract this pH imbalance, a buffer solution may be added to
the bioreactor [78].

5.3. Temperature

As this is one of the critical parameters influencing AD, temperature influences the activity
of enzymes and co-enzymes and the methane yield and digestate (effluent) quality [84,85].
Anaerobic bacteria generally grow at three temperature ranges, namely the psychrophilic
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(10–30 ◦C), mesophilic (30–40 ◦C) as well as thermophilic (50–60 ◦C) range [86,87]. Generally,
AD performance increases with an increasing temperature [88]. There has been an emphasis
on the advantages of the thermophilic operation, which has high metabolic rates, higher rates
of destroying pathogens, and higher specific growth rates, collectively leading to higher biogas
production [85–88]. Gallert, et al. [89] demonstrated that ammonia accumulation inhibition
affects thermophilic digestion less than mesophilic digestion.

Biogas production under thermophilic conditions (55 ◦C) has been reported to give
more than double the amount produced under psychrophilic conditions (15 ◦C) by
Wei, et al. [90]. Furthermore, other studies show that phosphorus assimilation and organic
nitrogen degradation increase with temperature too [85]. Thermodynamically higher tem-
peratures benefit endergonic reactions, such as the breakdown of propionate into acetate,
CO2, and H2, though that is not favorable to exergonic reactions, such as hydrogenotrophic
methanogenesis [84]. Further, the temperature may influence the passive separation of
solids with considerable improvement under thermophilic compared to psychrophilic con-
ditions [91]. There are, however, some shortfalls in thermophilic conditions, for instance,
being sensitive to environmental changes compared to the mesophilic process [92,93].

5.4. Organic Loading Rate

This is another crucial operational parameter in the biogas production process. This
parameter is defined as a measure of the substrate’s amount being added to a constant
digester system per unit of volume per day. OLR is frequently presented as grams of total
solids, chemical oxygen demand, or volatile solids per litre digester volume per day [94].
This parameter can be calculated according to Equation (14)

OLR =
CODfeed ×Q

Vr
(14)

where CODfeed is the substrate strength in terms of COD concentration (mg/L), Q is the
flow rate of the substrate (L/day), and Vr (L) is the working volume of the reactor [95].

Literature studies have looked at how this factor affects the biogas production process,
for example, Jiang, et al. [96] explored its effects on the acidogenesis of food waste. This
study was focused on the OLR effects at individual AD steps and it illustrated that high OLR
favoured the acetate and valerate percentages while propionate and butyrate percentages
were low under the same OLR conditions. Similarly, Lim, et al. [97] conducted a comparable
study for three OLR 5, 9, and 13 g/L d and observed that the highest OLR led to a very
vicious fermentation broth and reactor became unstable with a lesser yield compared to the
lower OLR values in the same study. Both studies agree that higher OLR may lead to an
accumulation of unused solid food waste in the reactor and, therefore, lead to a reactor failure.

5.5. Hydraulic Retention Time (HRT)

This parameter measures the average retention time of a liquid or dissolved component
in a reactor in a biogas study. This parameter is calculated as the tank volume divided
by the influent flow rate. HRT is used to approximate the time a substrate is treated in
a process. The mixing controls HRT and the biogas yield greatly depends on how the
digester is mixed. Other factors that affect the HRT are substrate type used and different
processes, with effects observed from a few days to a couple of months [94]. There has
been contradicting data on the effects of HRT on anaerobic acidogenesis, for example, some
researchers found that acidification increased with the HRT [98]. Demirel and Yenigun [99]
studied the effects of variations in HRT with no control of pH and their findings revealed
that a high degree of acidification was obtained at low HRT. However, the effect of HRT in
the overall AD process has been observed to be similar, while longer HRT leads to higher
methane content [100].
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5.6. Effect of Inoculation on AD Process Parameters

The use of inocula positively reinforces sustainability through the recovery of material
and reduced energy consumption [101,102]. Research has been found that the use of inocula
is more significant than alkaline pre-treatment of raw material substrates since inocula have
sufficient bacterial content and increase active microorganisms [103]. Since inoculum is
highly cellulosic, it is unable to be digested by itself; accordingly, it is suitable to be reused
in AD with other substrates. Types of inocula used in biogas production include sludge
from wastewater treatment plants, digested silage, paper mill wastewater, digested sewage
sludge, etc. [104,105]. Depending on the composition of each inoculum, the influence
on biogas production will vary. For example, palm oil mill effluent has been used as an
inoculum with cow manure biogas production, resulting in higher biogas production [106].
Activated digestate from an anaerobic digestion plant that treats crop and agriculture waste
was used as an inoculum by Fabbri, et al. [107], where the best biogas production was
obtained with an inoculum/substrate ratio of 2:1. Some studies have investigated the
effects of different inocula types on specific substrates while others have looked at the
effects of mixed inoculation and data that show a positive influence of inoculation are
available in literature [108,109].

5.7. Co-Digestion of Two Substrates

In a biogas production process, anaerobic microorganisms have different requirements
of organic and micronutrients for their growth and degradation of substrates. These
nutritional requirements of microorganisms are usually not satisfied by the digestion
of single substrates. As a result, a combination of two or more substrates can be co-
digested. The suitability of substrates for biogas production is determined by their primary
nutritional composition, including carbohydrates, proteins, and lipids [61]. This nutritional
composition greatly influences biogas yield and methane content produced. Suppose a
substrate has an imbalance in carbon to nitrogen ratio, such as animal manure. It can be
co-digested with a carbon-rich substrate to reimburse for the imbalance, thus, obtaining
improved process stability and biogas production [49]. Thus, co-digestion of sugar industry
wastewater and Tunisian green macroalgae has been conducted to enhance biogas and
methane production [110]. Further, Matheri et al. optimized biogas production through
co-digestion of the organic part of municipal solid waste and chicken manure [111]. Other
examples of substrates used in co-digestion are listed in Table 1.

Table 1. Previously reported studies on biogas and methane production through a co-digestion of
different types of feedstocks at diverse operating parameters.

Feedstock 1 Feedstock 2 Temperature (◦C) Optimal pH HRT (Days) Biogas/Methane
Yield (L) Reference

Fruit and
vegetable waste Sewage sludge 20–30 4.1 105 331 [112]

Leather flashing (LF) MSW - 6.5 30–35 6.518 [113]

Taihu algea Kitchen waste 35 - 1 0.388.6 [114]

Horse dung Cow dung 28–33 - 30 0.360 [115]

Dairy manure Food waste 35 - 20–30 0.311 [116]

Whole stillage Cattle manure 37 5.9–6.6 640 0.310 [117]

Coffee-pulp Cow dung 35 7.0 240 - [118]

Food waste Straw 35 7.0–7.5 - 0.580 [119]

Municipal wastewater Poultry waste 35 7.3 34 0.88 [120]

Fruit vegetable waste Sugarcane
bagasse - 3.9–7.0 30 2.600 [121]

Water hyacinth Sugar mill
effluent 30, 40 6.4–8.8 15 6.771 [122]
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The above table clearly shows that not only in SA but around the globe too there
has been a lack of co-digesting sugarcane process effluent and municipal solid waste for
biogas production. This shows that there is a gap in the research regarding the use of these
two substrates as co-substrates, both locally and all around the world.

6. Microorganism Selection, Culturing, and Inhibition

In many instances, microorganisms have proven far more cost effective than hydrolytic
enzymes. Microorganisms can convert the substrates’ high-molecular-weight compounds
into lower-mass compounds through fermentation. Microorganisms involve the synthesis
of enzymes and the multiplication of decomposing microorganisms [123]. In this process,
it is necessary to consider the conditions of survival and growth of valuable microorgan-
isms, for example, nutrients, inhibitors, pH, temperature, oxygen concentration, etc. [124].
Changes in the structure of the populations of microorganisms used in the substrate de-
composition are affected by adjusting these parameters. The changes can be made based on
the desire and requirements of the biogas process [123]. However, microorganisms usually
involve a longer retention time, the possibility of growth of unwanted microorganisms, and
stricter operating conditions [125]. Therefore, the value of the generation time for the given
conditions must be considered for each species. It is also acknowledged that the doubling
time for bacteria is a lot shorter than for fungi; thus, microorganisms ought to be used after
prior studies [123].

Lastly, as suggested by Sawyerr, Trois, Workneh, and Okudoh [54], it is essential
to have continued research on the evaluation of different types of biomass feedstock
and waste streams, as substrates are critical for developing processes that lead to kinetic
reactions and increasing methane yield. This is crucial because AD provides multiple
advantages over other waste-management methods, such as the technology can be used on
both small and large scales, low operating costs, low energy consumption, and reduced
environmental impacts through the excess digestate produced, since it can be used to
enhance soil fertility [54,126]. The digestate can work as a biofertilizer, as it is rich in
nitrogen, phosphorus, and potassium, with traces of some elements and heavy metals. The
fertiliser value differs according to the nutrients present in the feedstock [127].

7. Types of Digesters Used

A variety of digesters exist for the anaerobic digestion of organic waste material.
These digester types depend on operational factors and the nature of waste to be treated,
for instance, its solid content. These are classified as covered lagoon digesters (used for
treating liquid manure with less than 2% solids), complete-mix digesters (treating manure
with 2–10% solids), upflow and downflow fixed-bed biodigesters, batch biodigester, and
continuously stirred tank reactors (low solid digesters), as presented in Table 2 [128]. UASB
is the most commonly used digester for municipal and industrial wastewaters and it is
suitable for both small- and large-scale biogas production. This biodigester has proven to
be energetically efficient while it provides operational stability [129]. UASB can also be
used for the co-digestion of sugar process wastewater and municipal solid waste as some
studies have confirmed it suitable for digestion of more than one substrate [130].

Table 2. Advantages and disadvantages of various digester types used in AD process when one or
more feedstocks are used.

Biodigester Type Feedstocks Advantages Shortcomings Ref

Continuous Stirred-Tank
Reactor (CSTR) Ulva slurry + whey

Enhanced mass transfer,
improved temperature
control, facile reaction

optimization,
easy automation

usage or generation of
solids during the reaction,

plugging problems
[131,132]
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Table 2. Cont.

Biodigester Type Feedstocks Advantages Shortcomings Ref

Batch Thickened sludge

simple and flexible in
configuration and

operation, low
installation and

operation cost, higher
biomass retention

long run times, and
difficulty in defining

initial conditions
[133,134]

Upflow Anaerobic Sludge
Blanket (UASB)

Recycled and synthetic
wastewater containing

methanol

no need for temperature
control as heat is released
during methanogenesis

delay in start-up and
granule formation, inability
to remove pathogens and

coloring agents from
the wastewater

[129,135,136]

Anaerobic Sequencing
Batch Reactor (ASBR) Synthetic wastewater

relatively cheap, their
stepwise nature allows
observation of dynamic,

repeatable behavior

heavy computational
requirements for multiple

cycles, difficulty in
establishing the correct

biomass concentration in
the reactor

[137]

Covered lagoon Palm Oil Mill Effluent easy to build, operate,
and maintain

needs hydraulic
maintenance from 20 to
90 days and wide areas,

easy to leak out

[138]

8. Discussion

Generally, South Africa faces challenges when it comes to biogas production. Around
200 biodigesters have been installed in the last decade, with about 90% of them being for
small-scale use. Nonetheless, lack of local research in this field leads to unresolvable failures
of the installed biodigesters. Mukumba, et al. [139] explained how research lacks in SA
regarding biogas generation and alluded to how there is an absence of data, even from the
currently installed biodigesters. The main reason for this is the lack of financial assistance
while data collection from the field biodigesters is hindered by some other measures.

From the available literature, it can be deduced that thorough characterization of
waste substrates must be performed to ascertain the composition of each substrate. This
generally gives information on physical and chemical composition regarding volatile
solids, total solids, C/N ratio, and elemental analysis for carbon, nitrogen, hydrogen, and
sulfur [71,72]. During substrate characterization, the place (source) where the substrate
was collected is vital, as waste chemical content is affected by factors, such as weather
conditions and the type of soil where the original substances were grown [73,74]. Further,
chemical compositions differ greatly depending on the type of substrate. For example,
carbohydrates have carbon and hydrogen, while proteins and lipids have nitrogen as part
of their composition [75,76].

9. Conclusions

This review can be summarised through the following statements. There is a lack of
literature regarding the usage of sugar wastewater as a substrate for biogas production
compared with municipal solid waste. It is, therefore, necessary to explore the potential
of this substrate and its co-digestion compatibility, particularly in South Africa, as the
country is a big sugar producer, making it a hub generating volumes of sugar wastewater
in the production process. Anaerobic digestion of single substrates does not lead to
maximum biogas generation; hence, two or more substrates need to be co-digested for
better biogas yield and high methane content. Efficient biogas production can be achieved
only if there is an excellent synergistic effect between the co-digested substrates. This
means an excellent overall balance of nutrients from each substrate, leading to the correct
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microbial community and aiding an enhanced AD process. Different parameters affect
biogas production differently; therefore, special attention must be paid to such parameters
for thorough parametric analysis. For example, when exploring the hydraulic retention
time on biogas generation, analysis must be conducted periodically in 3–5 day intervals
to investigate if the AD process is affected thoroughly. Regarding temperature studies,
it can be concluded that the thermophilic range leads to higher biogas yields than the
psychrophilic and mesophilic ranges. However, the mesophilic range is deemed the best
since the thermophilic microorganisms are sensitive to environmental changes. Biogas
production is favored by pH in a range of 6.0–8.5, meaning that there should be continuous
monitoring of this parameter throughout the process. This study also found that a good
balance of OLR may help avoid reactor failures. The type of reactor/digester employed
for biogas production depends mainly on the type of substrates treated. Finally, sugar
wastewater and the municipal solid waste can be considered as good substrates for biogas
production in SA due to their enormous availability and the potential to turn their negative
impacts into value addition. Biogas production is a viable alternative, among others, to
boost the country from its current energy issues.

The study was limited regarding available literature in the South African context,
which shows that there is a huge gap in the area of waste valorisation in South Africa, even
though the country is struggling with waste management. This opens up space for more
research to be conducted in this area using two of the country’s most abundant feedstocks,
sugarcane wastewater and municipal solid waste. The specific parameters to be considered
for this waste valorisation are highlighted in this review as a foundation.
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