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Abstract: Industrial control systems (ICSs) play a crucial role in managing and monitoring critical
processes across various industries, such as manufacturing, energy, and water treatment. The
connection of equipment from various manufacturers, complex communication methods, and the
need for the continuity of operations in a limited environment make it difficult to detect system
anomalies. Traditional approaches that rely on supervised machine learning require time and
expertise due to the need for labeled datasets. This study suggests an alternative approach to
identifying anomalous behavior within ICSs by means of unsupervised machine learning. The
approach employs unsupervised machine learning to identify anomalous behavior within ICSs. This
study shows that unsupervised learning algorithms can effectively detect and classify anomalous
behavior without the need for pre-labeled data using a composite autoencoder model. Based on
a dataset that utilizes HIL-augmented ICSs (HAIs), this study shows that the model is capable of
accurately identifying important data characteristics and detecting anomalous patterns related to
both value and time. Intentional error data injection experiments could potentially be used to validate
the model’s robustness in real-time monitoring and industrial process performance optimization. As
a result, this approach can improve system reliability and operational efficiency, which can establish
a foundation for safe and sustainable ICS operations.

Keywords: industrial control system (ICS); unsupervised learning; SCADA; cyber-physical system;
OT (operational technology)

1. Introduction

The ICS plays an important role in industrial processes across various sectors, includ-
ing manufacturing, energy, water treatment, and transportation. It is a critical component
of Operational Technology (OT) and works in conjunction with supervisory control and
data acquisition (SCADA) systems to manage complex control operations [1–3]. These
systems are designed to meet the unique needs of each industry and are highly adaptable.
They come equipped with diverse Human–Machine Interfaces (HMIs) that enable opera-
tors to efficiently monitor and manage processes. In ICSs, network connectivity plays a
critical role in enabling remote monitoring and control [4,5]. It is imperative to prioritize
the enhancement in system security and reliability in ICS applications, given the growing
number of cybersecurity threats [6].

Nevertheless, it is worth noting that incidents like the 2010 Stuxnet attack on Siemens
PLCs at an Iranian nuclear facility have highlighted the potential vulnerabilities of ICSs to
cyber threats [7,8]. The attack has brought attention to the need for improved ICS network
security to prevent potential cyberattacks on critical infrastructure that could compromise
physical systems. The 2015 cyberattack on Ukraine’s power grid had a significant socioe-
conomic impact and severely disrupted the nation’s power infrastructure. This incident
highlights the importance of implementing robust ICS security measures [9,10]. These
events highlight the importance of ICS security not only for IT, but also for national security
and societal stability.
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As recent cyberattacks have shown, securing ICSs is imperative. However, detecting
anomalies in these systems poses several challenges. The ICS is characterized by the
use of diverse equipment from multiple vendors, proprietary protocols, and complex
communication methods that add to the complexity of securing these systems [11]. The
continuous operation of these vital infrastructure management systems further limits
access to real-world environments for security research. In addition, the application of
security patches or updates to ICSs operating in environments such as production lines and
energy infrastructures can be delayed, limiting their practical implementation [12]. Past
cyberattacks, such as the Stuxnet event and the Ukrainian power grid attack, underscore the
challenge of detecting system anomalies before they cause damage [13]. Anomaly detection
in industrial control systems is a significant challenge due to the variety of devices from
different vendors, each operating with proprietary protocols and complex communication
methods [14]. It is critical to provide timely information to operators to prevent actual
damage before it occurs. Our research focused on OPC servers to address these challenges.

Figure 1 shows the conceptual diagram between OT, ICSs, and SCADA. It also shows
the OT portion of the Purdue model. The function of an OPC server is to process signals
and data from field devices in a standardized manner and convert them into a format that
clients can understand. This is accomplished by assigning a unique identifier, or tag, to each
piece of data. Tags allow users to identify and retrieve data collected by the OPC server
from field devices. These tags typically contain information about the device’s location,
data type, and value, and are organized in a way that is easy for humans to understand.
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However, in the domain of the ICS, the absence of descriptive annotations for tag
values can significantly impede user interaction with the system, making configuration
and management tasks more complex. This research aims to solve the problem of detecting
anomalies within a complex system composed of different devices, each characterized
by its own protocols and communication methods. This research focuses on the use of
unsupervised learning techniques as a solution to this problem. Unsupervised learning can
identify patterns and structures in data, allowing it to develop predictive models without
pre-labeled datasets or extensive prior knowledge of the system’s operating paradigm.
These features are especially valuable in ICS environments, as they effectively detect emerg-
ing security threats that traditional data analytics frameworks may miss. The strategies
include an analytical review of data attributes and patterns, the implementation of cluster-
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ing techniques to aggregate tags with similar variations, and the incorporation of outlier
detection mechanisms.

This study contributes to the field of ICS anomaly detection in the following ways:

• Heterogeneous system anomaly detection: First, we have developed a methodol-
ogy that can identify anomalies with unique protocols or complex communication
methods in systems composed of devices from different vendors. It is highly adapt-
able to different ICS environments because it does not rely on pre-labeled data or
predefined descriptions.

• Leverage restricted network data: We leverage internal data from restricted networks,
recognizing the sensitivity and security concerns within ICS networks. Our research
focuses on developing techniques that utilize only the internal data accessible within
restricted networks. This capability is essential for detecting system changes and
anomalies using data that would otherwise be inaccessible for security analysis.

• Proactive anomaly response: Our research aims to facilitate the early detection of
anomalous changes within the ICS, providing operators with timely information.
This allows for quick and informed responses to potential problems before they can
escalate into actual damage, strengthening the proactive defense mechanisms within
industrial environments.

This paper is organized as follows. Section 2 reviews existing research on anomaly
detection in industrial control systems. Section 3 describes the research methodology used
in this study. Section 4 describes the experimental design and results. Section 5 concludes
this study with a discussion.

2. Related Work

Anomaly detection has become an important area of research in many fields, including
finance, healthcare, manufacturing, and cybersecurity [15]. The main objective of anomaly
detection on multivariate time series is to quickly and accurately identify abnormal behavior
of a system or process that may indicate a potential threat, failure, or error [16]. This plays
an important role in maintaining the stability of the system and avoiding potential risks.

2.1. Anomaly Detection in Industrial Control Systems

Anomaly detection is an important research topic, especially in cybersecurity in the
ICS. The ICS is intimately involved in our daily lives and cyberattacks on these systems can
cause significant damage [17]. Therefore, technologies that can quickly detect anomalies
in the ICS, and thereby prevent potential cyber-attacks, are crucial. AI technologies are
becoming an important tool for this, with machine learning and deep learning techniques,
in particular, showing promise in detecting anomalies. They can learn complex patterns in
data and detect anomalies based on them. They are also effective at detecting anomalies in
time series data, considering changes over time [18]. Inoue et al. [19] applied unsupervised
machine learning techniques to detect anomalies in a water treatment system. Putchala
et al. [20] proposed to apply a deep learning method using gated recurrent units (GRUs) to
an intrusion detection system for IoT networks. The method showed a higher detection
accuracy than traditional methods. They also proposed a lightweight and multi-layered
design to enhance the security of IoT networks. Du et al. [21] proposed an unsupervised
machine learning-based detection model based on LSTM-AE and GANs, which can learn
complex patterns in time series data to detect anomalies more accurately. In addition, Goh
et al. [22] introduced an unsupervised learning approach using RNNs to learn the changes in
data patterns over time and use them to detect anomalies. In addition, Mokhtari et al. [23]
used random forests to detect anomalous activity in industrial control systems. They
showed that this method outperformed other classifier algorithms, which can significantly
improve the detection of cyberattacks. Inoue, Putchala, Du, Goh et al. applied various
algorithms for anomaly detection in water treatment, IoT networks, and time series data,
and Mokhtari et al. utilized random forests to effectively detect anomalous activity in



Appl. Syst. Innov. 2024, 7, 18 4 of 16

industrial control systems. These techniques are proving to be highly effective in anomaly
detection by learning complex data patterns and considering changes over time.

2.2. Recent Approaches to the Study of Anomaly Detection in Industrial Control System

Anomaly detection is emerging as a very important research topic, especially in
industrial control systems. Industrial control systems play a pivotal role in many areas
of production, energy management, traffic control, and more, and anomaly detection in
these systems can significantly improve safety and efficiency. Recent studies, mentioned
in Table 1, focus on improving intrusion detection and anomaly detection, specifically to
address security and reliability issues in complex and diverse industrial environments such
as ICS.

Table 1. Recent ICS research focused on improving intrusion detection.

Reference Proposed Method Difference to Our Research

Catillo et al. [24] CPS-GUARD Based on a single semi-supervised
autoencoder and outlier detection techniques

Focus on detection models based on
Attack type

Liu et al. [25] ST-GNN Dynamic graph modeling approach based on
prior knowledge

Focus on anomaly detection after
filtering out data noise

Pang et al. [26] VQ-OCSVM Network intrusion detection based on
hybrid algorithms

Focus on improving network
intrusion detection rates

Wolsing et al. [27] SIMPLE-IID
Intrusion detection based on four simple IIDs

(min-max, gradient, steady-time,
and histogram)

Focus on improving industrial
intrusion detection rates

Park et al. [28] XGBOOST Based on alert aggregation intrusion
detection system

Focuses on attack detection for this
model of IDS by integrating

many alerts

Kim et al. [29] LSTM Correlation-coefficient-clustering-based
performance improvement techniques

Focus on improving detection rates in
simulated environments

Xue et al. [30] Deep SAD

A joint learning approach that integrates
regularity representation learning and
normalization from a small number of

abnormal samples

Focus on improving intrusion
detection performance

Gaggero et al. [31] Neural Network
AutoEncoder

Detects cyberattacks on battery electric
storage systems (BESSs) in microgrid using

neural network-based autoencoders.

Focus on outliers in
electrical measurements

They study how to accurately detect anomalous activities or attacks in high-dimensional
and complex industrial data using various techniques and methodologies such as graph
neural networks, semi-supervised learning, clustering, and mixed algorithms.

However, this research is unique in two important ways.

1. Data-driven tag analysis: The model in this study analyzes operational data from
industrial control systems to accurately identify tags of abnormal operation. To do
so, we introduce a novel methodology to identify the misbehavior of a particular
device by defining its rate of change. This technique enables us to successfully identify
complex anomalies that are difficult to detect using traditional methods.

2. Informatization of cluster changes: This research identifies tagged clusters and com-
municates their changes to control network operators, enabling a rapid response. This
process allows security professionals to identify relevant sensors and contribute to
the creation of a stable and secure industrial control system environment.

As such, AI-based anomaly detection techniques play an important role in enhancing
the security of industrial control systems. Each of these studies presents different method-
ologies and approaches, which provide a methodology for the more accurate detection of
anomalies in different environments. In the future, these studies will continue to evolve
and become more prominent as important research topics in cybersecurity.
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3. Proposed Method
3.1. Overview of the Proposed Approach

Figure 2 provides an overview of the process proposed in our study. The process for
anomaly detection using machine learning in industrial control systems is as follows: Data
are collected from multiple sensors and systems in an ICS environment, with a special
focus on the HAI (HIL-based augmented ICS) dataset [32] recorded for this purpose. The
collected data are analyzed in detail to extract important characteristics and information.
This includes dimensionality reduction using Principal Component Analysis (PCA) and
data segmentation using K-means clustering. Next, a model is designed and trained using
a neural network structure with input, hidden, and output layers. This allows the model to
learn patterns from the data. Finally, the model’s performance is evaluated on a separate
dataset to validate its ability to accurately detect anomalies. When anomalies are detected,
the tag name, detection time, and tag value of the anomalous behavior are displayed.
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3.2. The Dataset

Our study used an HAI dataset specifically designed for ICS security and augmented
with hardware-in-the-loop (HIL) simulations. Figure 3 shows a model that simulates
a real industrial environment. This dataset accurately reflects the operation of a real
ICS environment, including key components such as the boiler, turbine, water treatment
system, and HIL simulation. The boiler operation promotes heat exchange between water at
various pressures and temperatures, while the turbine mechanism uses a rotor kit testbed to
replicate the operation of a rotating machine. These components are seamlessly integrated
through the HIL simulator to ensure they match the speed of the steam generator. The
water treatment module emulates hydroelectric power generation by pumping water into
an upper reservoir and then discharging it into a lower reservoir.
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Data were collected from 59 sensors every second for four days, during which 28 ar-
tificial attacks were launched against the system, targeting various system points such
as control outputs and parameters. For our research, version 22.04 of the HAI dataset
consisted of six train\#.csv files, each containing 87 variables (devices). Table 2 is part of
the Train1.csv file. We merged these files into a single dataset for model development. We
then removed the “attack” column, which was deemed irrelevant to our study, resulting in
a dataset of 86 operational variables.

Table 2. Train1.csv, version 22.04 of the HAI dataset.

Timestamp P1_B2004 P1_B2016 P1_B3004 P1_B3005 . . . P4_ST_TT01 Attack

11 July 2021
10:00:00 0.08771 0.88504 476.76703 1014.79321 . . . 27170 0

11 July 2021
10:00:01 0.08771 0.88619 476.76703 1014.79321 . . . 27171 0

11 July 2021
10:00:02 0.08771 0.88836 476.76703 1014.79321 . . . 27170 0

11 July 2021
10:00:03 0.08771 0.89214 476.76703 1014.79321 . . . 27171 0

3.3. Data Preparation

In this study, we used the HAI dataset to normalize and standardize the data in the
initial stage. We also used PCA to select features and reduce dimensionality, and clustering
techniques to identify groups of similar objects and identify groups of similar objects, in
addition to basic preprocessing tasks. A clustering algorithm is a technique that groups
similar data within a dataset based on their characteristics to form clusters. In this study,
we removed the ‘timestamp’ information from the time series dataset before applying the
clustering algorithm. To scale the data, we adjusted it to the range [0, 1] using the minimum
and maximum values.

3.3.1. Implementing Cluster Segmentation

The K-means algorithm is an unsupervised learning algorithm that groups data into
K clusters. It works by minimizing the variance of the distance difference between the
given data and each cluster. The sum of squared errors (SSE) within each cluster, which is
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the sum of the squares of the Euclidean distances between each data point and its cluster
center, is expressed by the following formula.

SSE =
k

∑
i=1

∑
x∈Ci

∥ x − µi ∥2

where k is the number of clusters. Ci is the set of data points in the ith cluster. x is a
data point in cluster Ci. µi is the centroid or mean of all the data points in cluster Ci.
∥x − µi∥2 is the square of the Euclidean distance between the data point x and the centroid
µi. Figure 4 shows the number of tags between clusters. To cluster the data, we selected
tags that showed similar patterns of behavior. The optimal number of clusters was set at the
point where the SSE value of K-means dropped sharply, and our study set it at six groups
obtained by the optimal value.
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Table 3 shows the number of tags classified by clustering. Clustering is a technique for
grouping data with similar characteristics, which is useful for characterizing and analyzing
data. The number of all tags was 86 and was reduced to 3 dimensions using PCA. Data
scaling is a common preprocessing step in data analysis that involves adjusting the values
in your data to a particular range or scale. This can make variables with different units
comparable or prevent variables with larger values from becoming more important during
model training.

Table 3. Size of each cluster.

Cluster_Count Cluster_Size

0 41
1 26
2 9
3 6
4 3
5 1

Cluster 4 is shown in Figure 5. The data were visually grouped based on similar
characteristics, with each time series reflecting a distinct pattern or behavior. This allows
you to monitor the health and performance of the system.
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3.3.2. Preparation of the Input Data

To process the time series data for use in the composite autoencoder model, the follow-
ing steps were taken: Firstly, each data point was separated into one-second increments,
and a min–max normalization was performed on the data points to adjust all data values
to a range between 0 and 1. After completing the normalization process, we divided the
entire dataset into 3600 s window sizes and rolled the data based on these windows. We
calculated important statistical properties such as the standard deviation, mean, slope, and
intercept of the data points in each window. Figure 6 shows the statistical characteristics
for “P1_B2004”.
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Finally, to prepare the input data for the autoencoder model, we analyzed the peak
values for each tag, broken down into 60 s increments. The normalization process saved the
minimum and maximum values calculated for each tag by cluster, providing a reference
point for the future ranging and thresholding of each tag. Table 4 displays the values for
the statistical properties of collection tags.

Table 4. The values of the statistical property collection tag.

Value Mean Std Gradient Intercept Cluster

0 0.0299 0.0299 0.0000 0.0000 0.0000 1
1 0.0282 0.0291 0.0011 0.0000 0.0000 1
2 0.0293 0.0292 0.0008 0.0000 0.0000 1
3 0.0317 0.0307 0.0023 0.0000 0.0000 1

. . . . . . . . . . . . . . . . . . . . .

3.3.3. Design the Model Framework

This study applied a composite autoencoder model to detect anomalies in indus-
trial control systems. The composite autoencoder evaluates anomalies by comparing the
anomaly score of the output with a pre-generated threshold of the input and classifying it
as an anomaly if it exceeds the threshold. The CNN layer filters the input data to activate
specific features and then progressively abstracts them to reduce data complexity. The
Rectified Linear Unit (ReLU) activation function introduces nonlinearity by setting negative
values to zero. This allows the model to learn more complex functions, mitigating the
problem of neuron deactivation and improving computational efficiency. Long Short-Term
Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), are particularly
useful for detecting anomalies in time series data because they can remember long-term
dependencies in sequential data. By combining CNNs and LSTM networks, composite
autoencoders can identify and highlight important features in the data while encoding
and decoding temporal variations. The encoder compresses the input data to extract sig-
nificant features, and the decoder reconstructs the original data based on these features.
Composite autoencoders can effectively detect anomalies, even if they are small or occur
consistently over time, by capturing these important features and identifying anomalous
patterns. Figure 7 shows the structure of the composite autoencoder used in our study.

• Input layer: In this study, each tag obtained by clustering was used as input data. It was
assumed that all tags had no explanation, but they can be processed simultaneously
because different data such as temperature, pressure, and flow were clustered.

• Output layer: The output layer of the model was designed to detect abnormal behavior.
The output layer reconstructed the input data, compared it to the original data, and
generated an abnormal behavior score. At this point, if the abnormal behavior score
exceeded a certain threshold, it was considered abnormal and would inform you of
the name, value, and time of occurrence of the tag.
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• Activation functions and singularities: ReLU was used in the model to increase the
nonlinearity of the model and to increase computational efficiency. Loss used the
Mean Squared Error and the learning speed of the Adam optimizer was generally set
to 0.001.
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3.3.4. Tag-Cluster Detection Classification Model

In this study, statistical attribute data were collected and analyzed on a cluster basis for
each tag. Any data point that exceeded the threshold was considered anomalous behavior
for that tag. Figure 8 shows a boxplot that visually shows the statistical properties of the
clusters. If any of the input data, represented by the red dots, exceeded the statistical upper
limit defined in the boxplot, anomalous behavior was detected and the corresponding tag
was classified as anomalous.
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As a result, outliers were identified by comparing the thresholds of the reconstructed
values from the clustered input values to the output values.
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3.4. Evaluation Metrics

One of the main objectives of this study was to systematically evaluate and validate
the performance of the model. For this purpose, we used several performance metrics and
validation methods.

• Performance metrics: Basically, we used the confusion matrix to calculate the num-
ber of true positives, true negatives, false positives, and false negatives. From this,
we derived statistical metrics such as accuracy, precision, and recall to evaluate the
performance of the model.

• Validation methodology: To increase the reliability of our performance metrics, we
modeled the case of a hacking threat by assuming abnormal situations and adding
intentional error data. We can evaluate how our anomaly detection model handles
these situations.

Performance evaluation and validation are important steps that determine the practi-
cality and reliability of a model. In this study, we performed these steps thoroughly, and
we expect the model to perform well in real industrial settings.

Accuracy shows how many samples are correctly classified as a percentage of the
total samples.

Accuracy =
TP + TN

TP + TN + FP + FN
Precision shows how many of the predicted positive results are positive as a percentage of
the total.

Precision =
TP

TP + FP
Recall shows how many of the true positives are predicted to be positive, as a percentage.

Recall =
TP

TP + FN

The F1 score is the harmonic mean of precision and recall. It is a good indicator of the balance
between the two.

F1Score = 2 · Precision · Recall
Precision + Recall

4. Experiment and Evaluation
4.1. Classification and Confusion Matrix

Figure 9 is the result of the performance of the classification model. First, it showed
high precision for all classes, with cluster 4 attaining a particularly good precision of 0.96.
The recall is also high across the board, with cluster 1 attaining the best recall of 0.96. The
F1 score, which is the harmonic mean of precision and recall, shows a balanced value for
each class, with values above 0.86. Finally, the overall accuracy is around 0.93, showing
that the model correctly classifies most of the total sample. These results indicate that the
classification model does a good job of distinguishing between each class, and that it has a
high overall performance.

Figure 10 shows that each cluster is clearly distinct. In this study, we performed
clustering of the data using unsupervised learning methods. We also performed a validation
of the clustering using a test set and found that the results were good, with the data points
within each cluster clustered closely together with a clear distinction between the different
clusters. These results show that the chosen clustering algorithm has a good grasp of the
structure and patterns in the data.
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4.2. Abnormal Behavior Detection Experiment
4.2.1. Single-Variable Abnormal Behavior

As an experiment to mimic sensor failure that may occur in a real operating environ-
ment or the abnormal operation of the system, we artificially manipulated data values of 3 s
randomly selected from the total data points of 3,600 s to create a data anomaly. The main
purpose of the experiment was to see how effective the detection system is in identifying a
clear anomaly that occurred in a single variable. Figure 11 shows the detection result when
a number of anomalous behaviors were detected in a single variable.
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Figure 11. Single-variable detection results.

The abnormal behavior detection algorithm successfully detected a number of abnor-
mal behaviors in a single variable that exceeded the threshold. Table 5 shows that the value
of a single variable changes for 3 s, indicating that a single sensor or system can detect
abnormal behavior or events.

Table 5. Single-variable detection tag name, timestamp, value.

Tag Name Timestamp Value

P1_B3005 11 July 2021 10:19:58 7014.7932
P1_B3005 11 July 2021 10:19:59 10,014.7932
P1_B3005 11 July 2021 10:20:00 11,014.7932

4.2.2. Multivariate-Variable Abnormal Behavior

This experiment focused on evaluating the ability of detection algorithms to detect
anomalies occurring simultaneously in multiple variables. We selected two different tags
and artificially manipulated one data value in each tag to create an anomaly data state.
This experiment assumed a complex anomaly that may occur in different components or
centers. The purpose of the experiment was to evaluate how the detection system performs
in identifying these multivariate anomalies. Figure 12 shows the results of detecting
anomalous behavior in multiple variables.
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Values exceeding the threshold were successfully detected in two or more variables.
Table 6 shows the results of detecting these values. This demonstrates the ability to detect
abnormal behavior or events across multiple sensors.

Table 6. Multivariate-variable detection tag name, timestamp, value.

Tag Name Timestamp Value

P1_B2004 11 July 2021 10:01:38 5000.08771
P1_B3004 11 July 2021 10:16:38 5000.36264

4.2.3. One-Variable Abnormal Behavior

The final experiment in our study was designed to verify that the detection system
could accurately detect microscopic anomalies. We tested the anomalies by changing
only one data value of a single tag, which was assumed to indicate subtle changes in the
sensor or small system failures. The key to the experiment was to ensure that the detection
algorithm could accurately detect these microscopic changes and generate the appropriate
alerts. Figure 13 shows the detection of a single outlier in a variable.
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This result shows that the detection model accurately detects small changes in a
single variable. Table 7 shows a single value exceeding the threshold in only one variable,
demonstrating the ability of our model to proactively and accurately respond to problems
before they occur.

Table 7. One-Variable detection tag name, timestamp, value.

Tag Name Timestamp Value

P1_B2004 11 July 2021 10:01:38 5000.08771

5. Conclusions

The industrial control system (ICS) is an essential component in the management and
control of industrial processes where security and reliability are of utmost importance.
Anomaly detection is an essential mechanism for detecting deviations from normal system
behavior and identifying potential attacks or system failures. However, generating labeled
datasets for supervised machine learning models is a challenging task in ICSs because it
requires significant effort and expertise. To address these challenges, this paper presents an
unsupervised learning mechanism for anomaly detection in ICSs using instrumentation
data. The approach is to use unlabeled datasets to train a machine learning model to detect
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anomalous behavior in the system. This approach is preferred because it does not require
labeled datasets, making the process more feasible and cost-effective [33]. We have found
that a composite autoencoder model that captures the ability to detect anomalous behavior
in the ICS and identifies unusual patterns in the data is most effective.

In future work, we plan to investigate identifying attack types based on real-world
measurement data. We believe that identifying attack types that occur in real systems and
quickly detecting threats is best suited for anomaly detection in ICSs. It is also important to
quickly identify and mitigate potential threats to prevent potential outages. To this end, we
would like to explore different techniques and models that can effectively identify different
types of attacks in ICSs.
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manuscript as the first author. J.K. led the project and research and advised on the whole process of
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