
Citation: Enríquez, F.J.; Mejía-Muñoz,

J.-M.; Bravo, G.; Cruz-Mejía, O. Smart

Parking: Enhancing Urban Mobility

with Fog Computing and Machine

Learning-Based Parking Occupancy

Prediction. Appl. Syst. Innov. 2024, 7,

52. https://doi.org/10.3390/

asi7030052

Academic Editor: Friedhelm

Schwenker

Received: 26 April 2024

Revised: 7 June 2024

Accepted: 13 June 2024

Published: 17 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Smart Parking: Enhancing Urban Mobility with Fog Computing
and Machine Learning-Based Parking Occupancy Prediction
Francisco J. Enríquez 1,† , Jose-Manuel Mejía-Muñoz 1,*,† , Gabriel Bravo 1,† and Oliverio Cruz-Mejía 2,*,†

1 Departamento de Ingeniería Eléctrica, Instituto de Ingenieria y Tecnologia, Universidad Autónoma de Ciudad
Juárez, Ciudad Juarez 32310, Mexico; fenrique@uacj.mx (F.J.E.); gbravo@uacj.mx (G.B.)

2 Departamento de Ingeniería Industrial, FES Aragón, Universidad Nacional Autónoma de México,
Mexico 57171, Mexico

* Correspondence: manuel@cognitivemfg.net (J.-M.M.-M.); oliverio.cruz.mejia@comunidad.unam.mx (O.C.-M.)
† These authors contributed equally to this work.

Abstract: Parking occupancy is difficult in most modern cities because of increases in the accessibility
and use of motor vehicles, and users generally take several minutes or even hours to find a place
to park. In this work, we propose a smart parking prediction model in order to help users locate
in advance the availability of parking near the places they plan to visit. For this it is proposed
a fog computing architecture that integrates a machine learning algorithm based on AdaBoost to
predict parking places hours or days in advance. Additionally, a user interface was developed, which
involves the collection of user inputs through a mobile application where the user is prompted to enter
the destination location and the prediction time interval. Through extensive experimentation using
real-world parking flow data, our proposed algorithm demonstrated an improved level of accuracy
compared with alternative prediction methods. Moreover, a simulation was conducted to evaluate
the system’s latency when using cloud computing versus our hybrid approach combining both fog
and cloud computing. The results showed that employing the fog module in conjunction with cloud
computing significantly reduced response delay in comparison with using cloud computing alone.

Keywords: prediction; parking occupancy; fog computing

1. Introduction

The urban landscape presents a complex and intricate challenge when it comes to
finding parking spaces for the growing vehicle population, especially in downtown areas
during rush hour. The phenomenon of parking shortages is a multifaceted issue intertwined
with urban planning, transportation engineering, and human behavior. The growing
density of vehicles in urban areas has caused a spatial mismatch between the demand for
parking and the available supply, which makes the search for parking spaces a difficult task
when resorting to certain areas of the population. This mismatch has given rise to a large
number of scientific studies aimed at understanding the spatial, temporal, and behavioral
dynamics of the use of parking spaces, as well as the search for a solution to quickly find
available parking locations in real time.

Because of the widespread availability of cars, traffic congestion caused by the in-
creasing volume of traffic is a global issue [1,2]. Moreover, finding parking spaces for an
ever-growing number of vehicles exacerbates this issue. Drivers seek to find available
spots close to their destinations to minimize walking distances, but this search for parking
can cause traffic congestion and decrease vehicle speed; some studies have shown that
almost 30% of urban traffic is due to drivers searching for parking spots [3]. The issue of
traffic congestion and limited parking spaces is becoming a worldwide problem. Despite
the restrictions on CO2 emissions, the number of vehicles on the roads is predicted to rise
rather than fall, with conventional cars being replaced by electric cars [4], implying that
unless steps are taken to address these issues they will only worsen with time. Therefore,

Appl. Syst. Innov. 2024, 7, 52. https://doi.org/10.3390/asi7030052 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi7030052
https://doi.org/10.3390/asi7030052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0003-4716-1138
https://orcid.org/0000-0002-1599-6993
https://orcid.org/0000-0002-8779-9526
https://orcid.org/0000-0001-7362-6408
https://doi.org/10.3390/asi7030052
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi7030052?type=check_update&version=1

Appl. Syst. Innov. 2024, 7, 52 2 of 17

allocating parking spaces is a critical concern for large- and medium-sized cities where
high traffic and a growing demand for parking availability are necessary for daily life.
Finding parking spaces is not only time-consuming but also stressful for drivers, especially
in busy urban areas [5]. The issue of parking allocation has been a topic of active research,
with several proposals emerging in various areas such as optimizing parking allocation,
intelligent parking, and automatic detection of vacant spaces. However, one area of op-
portunity that has gained significant attention is the prediction of parking spaces, which
is an essential aspect of an all-encompassing solution to the parking allocation problem.
Accurately predicting the availability of parking spaces can significantly improve the ef-
ficiency of parking space utilization, reduce traffic congestion, and save time for drivers.
This approach requires the use of advanced technologies such as machine learning and
artificial intelligence to analyze real-time data on parking lot occupancy and traffic patterns.
Several innovative solutions have been proposed to predict parking space availability, such
as using sensors, cameras, and mobile applications. These technologies provide real-time
information to drivers on parking availability and guide them to the nearest available
parking spot. Moreover, the data gathered from these systems can be analyzed to generate
insights into parking usage patterns, which can be used to optimize parking lot allocation
and enhance parking space utilization.

For instance, in ref. [6], the authors used a graph-convolutional neural network
followed by a long short-term memory layer to extract features of traffic flow data and
predict parking occupancy. Their work demonstrates better predictions for business areas
than recreational locations. Another study [7] predicts the intent and trajectory of vehicles
using a transformer model combined with convolutional neural networks trained with
video data of persons driving in parking lots and traffic scenarios. In ref. [8] is proposed a
deep learning architecture based on combining GRU with a graph convolutional network
to extract both temporal and spatial correlation information. The GRU detects temporal
information, while the graph convolutional network is incorporated into the GRU cell
to extract spatial correlations. The research by ref. [3] involves a comparison of various
prediction methods for parking spaces, including deep learning, standard machine learning,
and classical methods. The methods they examined include long short-term memory from
deep learning, seasonal autoregressive integrated moving average as a classical method,
and the ensemble-based decision trees as a general method of deep learning. The study
found that the ensemble method and the long short-term memory generally performed
better in producing predictions with lower errors compared with the classic autoregressive-
based method. The study conducted by ref. [9] compared the predictive performance of
various models including linear regression, support vector machine, neural networks, and
autoregressive integrated moving average. It was found that the support vector machine
model offered the most stable and accurate predictions among the models reviewed.

Predicting parking space availability is a vital area of research that can significantly
improve the efficiency of parking space utilization and reduce traffic congestion. As tech-
nology advances, more innovative solutions are likely to emerge that will transform the
way we manage parking allocation and enhance the overall driving experience.

The studies reviewed above demonstrate that deep learning techniques, particularly
the transformer, are commonly employed. However, these techniques require substantial
computational power, and therefore cloud computing may be necessary. Nonetheless, the
high computational cost and the increasing number of prediction requests may result in
latency problems, even with the use of cloud computing.

In this work, we propose a fog computing-based system that predicts parking time
for each vehicle and parking lot availability based on parking history records. The system
incorporates a machine learning algorithm integrated into the cloud module, which reduces
response time and provides data analytics on parking statistics. By utilizing this system,
cities can optimize their parking spaces, reduce traffic congestion, and enhance the efficiency
of daily life.

Appl. Syst. Innov. 2024, 7, 52 3 of 17

This paper presents several contributions, including the development of a fog comput-
ing platform to minimize response delays in the system. Additionally, infrastructure based
on the AdaBoost algorithm, which is of low computational cost, is proposed for integration
to a fog node. This model is considered as a generalization of the autoregressive model.
Another contribution is the creation of a mobile application that acts as the user interface
for the system. Finally, various machine learning techniques are compared to determine
the most suitable method for parking space prediction. Through these contributions, the
paper provides a comprehensive framework that enhances the efficiency and accuracy of
parking space prediction.

The remainder of this paper is structured in the following manner. Section 1 provides
an introduction to the theory of fog computing and the AdaBoost algorithm. Section 2
presents the proposed fog computing system, which includes the fog node and the user
interface, implemented as a mobile application. Section 3 describes the methodology used
for experimentation, while Section 4 presents the results obtained from the prediction and
latency calculations. Finally, Section 5 summarizes the conclusions drawn from the research.

2. Theory

In this section, we will provide definitions for key concepts related to fog computing,
as well as an overview of the machine learning (ML) algorithm known as AdaBoost.

2.1. Fog Computing

Fog computing was proposed by Cisco to solve latency problems in cloud-based
computing systems. A cloud computing setup involves transferring large amounts of
data from the client application to where the cloud server is located, which can lead to
overheads in terms of performance, time, cost, and power consumption [10]. This can be
critical for applications that need to run in real time and that require a minimal of latency
and maximum throughput, such as surveillance, medical, and industrial systems, among
others. In addition, most of the current Internet of Things (IoT) infrastructures do not have
a homogeneous platform, which causes problems in the integration between the different
heterogeneous hardware and software services for their communication with the cloud.
The purpose of fog computing is to alleviate the problems that arise in applications where
the processing of large amounts of constantly generated data that have to be processed
with a minimum of latency is required. Fog computing addresses the above challenges
through placing the fog nodes at the edge of the network, and this proximity to the device
layer is in turn helpful in the following points [11]:

• A reduction in latency, since the data generated by devices such as sensors and
actuators can be served by the fog nodes in the local area network, which significantly
reduces the movement of data over the Internet and provides fast and high-quality
localized services.

• Increased interoperability, which helps integrate vertically fragmented IoT platforms.
Fog nodes achieve this by supporting communication across a diverse range of proto-
cols [12].

• Optimized bandwidth allocation. The data transfer rate or capacity of the network is
augmented by the help of the fog layer, because part of the processing is carried out in
the fog nodes and only more specific information is transferred to the cloud.

2.2. Parking Prediction and AI

With the continuous acceleration of urbanization, the parking problem is becoming
increasingly serious. Effective management of parking resources has become an urgent
issue, and one solution is to enhance management and planning through parking pre-
diction. Recent studies on parking space availability leverage deep learning techniques.
For example, the work in ref. [13] employs a short-term demand prediction algorithm
based on a convolutional neural network (CNN) and long short-term memory (LSTM)
neural network. Similarly, ref. [14] uses LSTM alone for the prediction task. In contrast,

Appl. Syst. Innov. 2024, 7, 52 4 of 17

ref. [15] incorporates a multi-head attention mechanism into an LSTM network, finding
an increase in accuracy compared with using LSTM alone. The study in ref. [16] utilizes a
transformer-based scheme for spatial–temporal prediction. While these methods harness
the power of deep learning to make predictions, they typically require large amounts of
data to achieve good generalization. This requirement can hinder their performance when
adapting to specific parking lots with limited data availability. In this work, we evaluate
machine learning techniques that are lightweight and generally adapt better than deep
learning techniques when there are few data. Additionally, they are easier to implement
in embedded systems, as they do not require extra processing power, such as GPUs, to
achieve good performance.

2.3. AdaBoost

A boosting algorithm enhances a weak learning algorithm in the sense of PAC (proba-
bly approximately correct) [17] to achieve high accuracy. AdaBoost is a boosting algorithm
that creates a new classifier by sequentially training multiple weak classifiers. The goal is
to have each subsequent classifier improve the classification accuracy of the previous one.
Finally, the algorithm combines the outputs of all the classifiers using a weighted majority
vote. In the case of binary classification, the training algorithm for AdaBoost is illustrated
in Algorithm 1 [18,19].

Algorithm 1 AdaBoost Algorithm

1: Given D = {(xi, yi) : i = 1, . . . , m}
2: Initialize weights wi =

1
m , i = 1, 2, . . . , m

3: for t = 1 to T do
4: Use weak hypothesis ht(x) providing it with the distribution w over D
5: Compute the weighted error ϵt = ∑m

i=1 w(t)
i 1{ht(xi) ̸=yi} of ht(x)

6: Compute αt =
1
2 ln 1−ϵt

ϵt

7: Update weights w(t+1)
i =

w(t)
i exp(−αtyiht(xi))

Zt
, where Zt = ∑i w(t)

i exp(−αtyiht(xi)) is
a normalization factor

8: end for
9: return H(x) = sign

(
∑T

t=1 αtht(x)
)

In Algorithm 1, D is the dataset, yi is the corresponding label vector with
yi ∈ {−1,+1}, and T is the number of weak classifiers or base learners to combine in
the ensemble. The weights, wi, are initialized as equal to 1

m , where m is the size of the
dataset. At each iteration, t, a weak classifier, ht(x), is selected that minimizes the weighted
error on the dataset. The weighted error, ϵt, is then used to compute the weight, αt, of
the weak classifier in the final ensemble. The weights of the data points, wi, are updated
according to the misclassification of the weak classifier.

3. Methods

This section outlines the architecture of a proposed fog system designed to manage
and predict parking space availability. The architecture consists of three layers, as shown in
Figure 1. The first layer is the IoT layer, which includes the parking lots themselves that
provide real-time updates on their space availability. Users in their vehicles or on their
mobile devices can receive predictions of the number of available parking spaces that will
be available at a specific time, helping them to plan their parking ahead of time. The second
layer is the fog layer, which receives information requests from the users and the parking
data. This layer incorporates a predictor of the number of parking spaces that will be
available in the future, which utilizes a ML algorithm based on AdaBoost. This algorithm
helps to accurately predict the number of available parking spaces, based on historical
data and real-time updates. Finally, the cloud layer receives data from the parking lots,
stores it, and generates statistics on their usage. Additionally, based on the performance of

Appl. Syst. Innov. 2024, 7, 52 5 of 17

the predictor, this layer is responsible for training or retraining the algorithm to improve
its accuracy over time. The main types of fog agents considered are fog gateways, fog
node/server, and fog storage [20]. With respect to the supported communication protocols
between the fog layer and the IoT layer, the main protocols are TCP/IP and 5G or 6G,
as the primary interaction with users will be through mobile applications. However, for
communication between the parking lot and the fog node, the protocols must be compatible
with the sensor network in the parking lot. Sensor networks can consist of individual space
sensors or cameras covering a large area. The communication protocols can be wireless,
such as TCP/IP, Zigbee, or Bluetooth, or they can be wired, using protocols like I2C
and MQTT, among others. Based on the investigation in ref. [21], which explores the
relationship between the optimal number of fog nodes and the path loss coefficient to
account for the impact of shadowing and fading, we can estimate the required number of
fog nodes. One of its experiments suggests that, on average, 1.52 fog nodes are needed
for 262 end devices, with certain conditions given in ref. [21]. Therefore, for example, for
parking lots with 1000 spaces, we recommend using approximately six fog nodes to ensure
adequate coverage and performance.

Figure 1. Architecture of the proposed system based on fog computing.

Overall, this proposed fog system for parking space management and prediction has
the potential to significantly improve parking space utilization, reduce traffic congestion,
and save time for drivers. By utilizing advanced technologies, such as IoT, fog computing,
and ML, this system can provide real-time updates and accurate predictions to users,
helping to streamline the parking experience and enhance overall driving efficiency.

3.1. Module for Occupancy Prediction

This study proposes a fog module that utilizes a machine learning regressor to predict
the availability of parking spaces over time. This fog module has the potential to signifi-
cantly enhance the efficiency of parking space management in cities, resulting in reduced
traffic congestion and improved accessibility for drivers. The fog module consists of two
subsystems: the user interface management subsystem and the prediction subsystem.
Additionally, it incorporates fog storage to save recent historical data on parking usage
for the last seven days. These subsystems are depicted in Figure 2. The user interface
management subsystem receives data from the user application. The prediction subsystem
receive requests for prediction from the user interface management subsystem and uses
recent historical data to return predictions. The prediction subsystem uses the AdaBoost

Appl. Syst. Innov. 2024, 7, 52 6 of 17

regressor to forecast parking space availability for a given date. Parking data are also
transferred to the cloud for storage and statistical management via the cloud analytics
module. This module determines the need to retrain the regressor based on the error rate.

Figure 2. The proposed system: featuring a fog module for processing user requests, highlighting the
iterative interactions between subsystems.

In the present investigation, we proposed utilizing past parking occupancy informa-
tion for prediction, which is represented as a sequence of data over time, S = {Sn}N

n=1,
where Sn is the parking occupation at time slot n. In addition, we incorporate fea-
tures, fn, linked to each component of the sequence, Sn, which expands the dataset as
Se = {(Sn, fn)}N

n=1. Moreover, we consider the traditional autoregressive model of order I
as a base model, which is given by

Sn+1 =
I

∑
i=0

βn−iSn−i + en, (1)

Sn+1 = βnSn + βn−1Sn−1 + ... + βn−ISn−I + en. (2)

From this, we also propose to use the AdaBoost algorithm as a generalization to the classic
model, similar to the neural autoregressive model of [22], and we express this as follows,

Sn+1 = AdaBoost(Sn, Sn−1, ..., Sn−I) + en (3)

where en is white noise with zero mean and variance σ2
e . In (3), the features are the

samples taken backwards according to the order of the model I, fn is the set with elements
Sn, Sn−1, ..., Sn−I , and AdaBoost(·) is a function that combines the output of R number of
regressors according to the AdaBoost regression algorithm. The formula for calculating the
output, Sn+1, is as in [18]

Adaboost(fn) = inf

y ∈ Y : ∑
t:ht(fn)≤y

log(1/βt) ≥
1
2 ∑

t
log(1/βt)

, (4)

where ht(·) are weak regressors, and each βt depends on the error, ϵt, of regressor t, which
are calculated in the training phase.

In this work, we also propose to calculate the output of the regressor using the Tukey’s
biweight location estimator [23]. The median, on which Equation (4) is based, is a resistant

Appl. Syst. Innov. 2024, 7, 52 7 of 17

estimate, but it has only moderate robustness of efficiency. However, the biweight location
estimator is resistant with robust efficiency. The formula for the biweight is given by

Adaboost(fn) = h∗ = ∑t wtht(fn)

∑t wt
, (5)

where

wt = max(1 − (
ht(fn)− h∗

cS
)2, 0)2 (6)

and S is the median of the set {|ht(fn)− h∗|}t, and c is a parameter of the algorithm. Note
that the value h∗ of the estimator is computed iteratively.

As far as we are aware, no previous research has proposed the biweight with the
AdaBoost regressor, particularly in the context of parking prediction. In Figure 3, it is
shown the scheme for training the AdaBoost algorithm, using windows of past samples as
input and comparing the output of the regressor with the one-step-ahead sample.

Figure 3. Adaboost training from a window of past samples.

To evaluate the effectiveness of the method, we conducted experiments using a park-
ing space database and predicted availability for the next day. In this case, we chose a
seventh-order model because the parking data varied weekly. The Adaboost estimator was
configured with R = 550 decision tree regressors, a learning rate of 1.1, and a quadratic
loss function for each boosting iteration; these settings achieve the most precise forecast of
parking space availability over time.

3.2. User Interface

The user interface (Figure 4) consists of receiving data from the user through a mobile
application. In this application, user are asked for the location of the destination where
they want to go and the time frame of the prediction; for now, only three locations are
implemented as Parking one, Parking two, and Parking three (Figure 5a). The application
shows the available parking lots of the selected destination and offers, in real time, the
amount of space available in each parking lot.

To this end, an Android mobile application was designed to establish communication
with the fog node for parking space availability prediction (Figure 4). In addition, the
application can save the location of the parked vehicle to facilitate its retrieval. To obtain
predictions of parking space availability, users need to select a “Choose place/time” button
in the app, to access a list of parking lot options. After selecting the desired parking lot, a
second list appears for selecting the time period for which the prediction is requested. Once
the user has made these selections, the information is sent to the fog node using Google’s
Firebase service [24,25], which generates and sends the prediction back to the application
for display.

Appl. Syst. Innov. 2024, 7, 52 8 of 17

Figure 4. Fog node app user interface.

(a) (b)

Figure 5. Drop-down lists for parking lot and time frame selection. (a) Parking lot list. (b) Frame
time list.

Figure 4 provides an example of the user interface of the application, where the current
location of the mobile device is represented by a blue globe on the map. To access the

Appl. Syst. Innov. 2024, 7, 52 9 of 17

parking space availability prediction server, the user needs to tap on a “Choose Place/time”
button located at the bottom of the application. This action will display two consecutive
selection lists. The first list allows the user to choose one of the three available parking lots
in the predictor, as shown in Figure 5a. Once the user selects the parking lot of interest, a
second list will appear, showing the available time frames, as depicted in Figure 5. After
selecting both the parking lot and the desired time frame, the options are sent to the
fog node, and the button that was initially labeled as “Choose place/time” displays the
predicted parking lot availability percentage on the right side of the button, as illustrated
in the example shown in Figure 6. Algorithm 2 shows the procedure executed by the
app, while Figure 7 illustrates the sequence diagram depicting a user’s prediction request
initiated by clicking the “Choose place/time” button. The diagram shows the flow of
information, including parking lot preferences and time inputs sent to Google’s Firebase for
generating a prediction, which is then presented on the app’s graphical user interface (GUI).

Algorithm 2 Parking space availability prediction procedure

Input: “Choose place/time” button clicked
Output: Predicted parking space availability is displayed

1: Initialization Choose parking lot from the displayed menu.
2: Choose time from the displayed menu.
3: Selected location and time are sent to fog Node via Google “Firebase”
4: Fog Node send calculated parking space availability prediction to App via Google’s

“Firebase”
5: Parking space availability prediction is displayed in App

Figure 6. Percentage availability of parking spaces prediction.

An additional feature of the application is to save a location through the “Save location”
button (Figure 8a), which can be used to save the location of the parking space where the
vehicle has been left; this location will appear with a red balloon on the application map
(Figure 8) and can continue to be seen while the mobile device is moving (Figure 9a,b), until
the location is deleted by pressing the “Clear location” button (Figure 8c). If the location is

Appl. Syst. Innov. 2024, 7, 52 10 of 17

not deleted, it can be shown centered on the map by pressing the “Show location” button
(Figure 8b); the map centered on the saved location is shown in Figure 9c. Another very
useful functionality of the application is to show the route to reach the saved location; when
pressing the “Trace route” button (Figure 8d), on the map, a convenient walking path is
displayed from the mobile device’s current location to the saved parking space location
where the vehicle was left (Figure 10).

user Drop down list

Click

Parking lot

Time

“Choose/place/time” button

Parking lot?
ID Parking lot

Time?
ID time

Parking lot and time ID’s

DB spotter Firebase

Prediction
 request

Calculated
prediction

GUI

Calculated prediction

Linked to
Fog Node

Figure 7. Prediction request sequence diagram.

Finally, the application has a button to align the current location (Figure 11) with
which the application constantly centers the map on the current location; when pressing
the alignment button, the icon will change (Figure 11a), and the position of the map will
remain where the user manually locates it, returning to its original behavior of centering
the current location when the alignment button is pressed again and returning to the icon
shown in Figure 11b.

(a) (b) (c) (d)

Figure 8. Application functionality for saved location; after pressing (a) “Save location” button, a
red balloon is placed on the map for the actual position; functionality buttons (b) “Show location”,
(c) “Clear location”, and (d) “Trace route” are enabled.

Appl. Syst. Innov. 2024, 7, 52 11 of 17

(a) (b) (c)

Figure 9. Walking away (blue globe) from the saved location car (red globe), (a) the blue globe is
centered on the map and following the pedestrian, (b) the pedestrian moved again, the blue globe is
centered on the map for every pedestrian move; (c) the saved location car (red globe) is centered on
the map after clicking “Show location” button.

Figure 10. Traced route to reach the saved location.

Appl. Syst. Innov. 2024, 7, 52 12 of 17

(a) (b)

Figure 11. Button to select the current central location option within the map. (a) Button not selected.
(b) Button selected.

3.3. Metrics

We used several metrics to evaluate the performance of the predictor. We assume a
dataset of N observations, and the metrics are described below. The R2 score, or coefficient
of determination, is the percentage of the variation in the dependent variable that is
predictable from the independent variable [26], and can be calculated as

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 (7)

where ŷi represents the prediction for data point yi, ȳ denotes the mean of all data points,
and the summation extends over N, the total number of observations.

The maximum error (MaxError), is simply the maximum of the residuals, defined as

MaxError = max
ŷi

(|yi − ŷi|) (8)

The mean absolute error (MAE) measures the errors between the data observed and
the prediction

MAE =
1
N ∑

i
|yi − ŷi| (9)

The median absolute error (medianAE)

medianAE = median(|yi − ŷi|) (10)

The root mean square error

RMSE =

√
∑i(yi − ŷi)2

N
(11)

Appl. Syst. Innov. 2024, 7, 52 13 of 17

4. Results

For this work we used the database of ref. [27] for training and testing of the subsystem.
The database reports the capacity of a given parking lot and consists of the following fields:
parking lot system, capacity, occupancy, date, and time. The size of the database is 35,717
entries divided in 30 parking lots. The period of data collection for most parking lots is
from 4 October 2016 to 19 December 2016; however, some parking lots have a more reduced
interval. The total number of data points collected per parking lot is shown in Figure 12a.
In the database, parking data were acquired every 30 min; however, we use the data per
day, as shown in Figure 12b.

(a) (b)

Figure 12. (a) Number of data points per parking lot. (b) A sample of 30 days for a parking lot,
showing the parking slots used per day.

For prediction of parking spaces, we used several ML algorithms: AdaBoost, XGB,
lasso, random forest, K-neighbors, support vector machine, and kernel ridge regression,
and we denote by TAdaBoost the modified AdaBoost algorithm by the use of Equation (5).
All algorithms were trained using a split of the data: 80% for training and 20% for testing.
We used 315 days of the database, and thus 63 days were used for testing. In Table 1 are
shown the values used for the most common parameters in each algorithm. For a complete
list of the parameters and the value used, please see scikit-learn library documentation in
default values [28].

Table 1. Parameters for the considered methods.

Algorithm Parameters

AdaBoost estimators = 550 loss = quadratic
XGB estimators = 500 max depth = 4
Lasso alpha = 1.0
Random Forest estimators = 100 split quality = squared error
K-Neighbors neighbors = 5 distance metric = minkowski
SVR kernel = Radial Basis C = 1.0
Kernel Ridge alpha = 1 kernel = linear
TAdaBoost estimators = 270 loss = linear c = 2.1

The evaluation of the algorithms using various metrics is presented in Table 2. Ac-
cording to the results, the TAdaBoost algorithm performs better than all other methods
in terms of R2 score, MAE, and RMSE. However, it has a higher MaxError than the other
methods. AdaBoost has the best MedianAE, with 10.5, which is 3.099 units lower than the
next best method, TAdaBoost. However, TAdaBoost has a consistently low error for most
of the predictions.

The curves in Figure 13 display a portion of the occupancy data series obtained from
the database; only the best three methods are shown. It is apparent that the TAdaBoost
algorithm fits the actual occupancy curve more accurately. The data show a cyclic pattern
that deviates around days 25–30, where all methods demonstrate poor performance. Also,

Appl. Syst. Innov. 2024, 7, 52 14 of 17

on day 26, most methods predict an increase that the actual data do not show, but the
TAdaBoost and the AdaBoost algorithms do not make this error and follow the actual trend.

Table 2. Evaluation metrics.

Algorithm R2 Score MaxError MAE MedianAE RMSE

TAdaBoost 0.518 130.914 25.095 11.8 1811.6
AdaBoost 0.505 128.001 28.194 10.5 1996.6
XGB 0.420 123.850 35.307 19.9 2276.7
Lasso 0.409 118.322 37.179 22.2 2168.0
Random Forest 0.397 130.860 37.5 26.100 2201.6
K-Neighbors 0.244 132.400 42.6 31.200 2777.4
SVR −0.133 167.753 46.090 22.1 4147.7
Kernel Ridge −7.857 291.064 186.5 175.430 36,449.8

Figure 13. A portion of the occupancy data series obtained from the database and the prediction of
the different methods against the real data.

Figure 14, shows boxplots of the four best methods. The errors between prediction and
actual measures were used as data. Most methods have a median of zero error; however,
the TAdaBoost method presents less variance but presents more outliers than the second
best, AdaBoost.

Figure 14. Boxplots for the different methods.

We simulate a network composed of a variable number of cellular phone requests
to the server with fog and only cloud. The overall end-to-end delay of the system is
approximated as the sum of the nodal processing delay, Ddrop, queuing delay, Dqueue,
serialization delay, Dser, and propagation delay, Dprop [29]. The advancements in hardware
and software have decreased the processing and serialization delay to microseconds, and
the propagation delay is around 5 microseconds per kilometer. The queuing delay can be
optimized using quality of service (QoS) techniques for prioritized data.

Appl. Syst. Innov. 2024, 7, 52 15 of 17

In the simulation, the nodes’ distance, dn, was dynamically changed within a 10 km
diameter to more realistically simulate mobile devices moving with respect to fixed fog
servers. The latency calculations were performed using the following parameter values:
Dprop = 100e − 6 ∗ dn, Dproc = 1.6E − 3, and Dqueue = 1.5E − 3 + r ∗ 0.70E − 3, where r is a
random variable between 0 and 1; note that Dser was not considered in this work.

Figure 15 displays the delay curve, which shows that fog computing reduces the
overall delay. The reduction is not significant with fewer than 100 nodes, and, when there
are fewer than 50 mobile phones, the delay is negligible, less than a second. However, as
the number of requests increase, the delay with fog computing is almost half of that with
cloud-only computing.

Figure 15. Latency as the number of nodes increase.

Finally, with regard to study design, we assess both the internal validity and external
validity of our study. Internal validity, in our context, focuses on two primary threats. Firstly,
it pertains to the suitability of the dataset for training the algorithms. We have chosen a
database containing 30 parking lots, for providing data for algorithm training. Secondly, it
relates to the comparison of selected machine learning algorithms. To address this concern,
we have opted for the most successful techniques commonly employed in the literature.
External validity, in the context of our study, revolves around result generalization. There
is a risk that the machine learning model may not perform effectively when applied to a
parking lot not included in the database. However, we have implemented two strategies to
mitigate this risk. Firstly, we selected machine learning algorithms known for their ability
to recognize significant patterns in data, especially over extended periods, such as in time
series analysis. These algorithms typically offer better generalization compared with more
traditional methods like simple regression. Consequently, we anticipate that other parking
lots will exhibit similar patterns to those on which the algorithm was trained. Secondly,
even if generalization to other parking lots proves challenging, our fog nodes incorporate a
retraining module. This module allows the algorithm to adapt to specific parking lots in
the event of significant error levels, ensuring continued performance optimization.

5. Conclusions

In this study, we proposed a fog computing architecture that employs a ML algorithm
based on a modified AdaBoost to forecast parking slot availability in advance. We used
Tukey’s biweight to calculate the output of the AdaBoost algorithm, denoted in this paper as
TAdaBoost. To enable interaction with the fog nodes, a mobile application was developed.
We evaluated the performance of the prediction model using a real-world database of
parking lot usage. Our findings indicated that the TAdaBoost algorithm outperformed
other methods in terms of R2 score, MAE, and RMSE. The simulation tests showed that
the response delay was reduced, as the number of nodes in the net increased, when using

Appl. Syst. Innov. 2024, 7, 52 16 of 17

the fog modules in conjunction with the cloud, compared with using the cloud only, as
shown by the performance curves in Figure 15. Our results indicate that integrating ML
algorithms based on fog computing architecture can be an effective approach to solving
complex prediction problems in real-world applications. Future work is suggested to focus
research on adding more services to the fog and cloud servers, such as the ability to display
real-time images of the parking lot occupancy status.

Author Contributions: Conceptualization, G.B. and J.-M.M.-M.; methodology, F.J.E., G.B., J.-M.M.-M.
and O.C.-M.; software, G.B. and F.J.E.; formal analysis, O.C.-M. and J.-M.M.-M.; research, G.B. and
F.J.E.; resources and data collection, J.-M.M.-M. and G.B.; writing, G.B., O.C.-M. and F.J.E.; validation,
G.B., O.C.-M. and F.J.E. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The supporting data can be provided on request.

Acknowledgments: The authors would like to thank the Autonomous University of Ciudad Juarez
(UACJ) for its research facilities. This work was partially supported by UNAM-PAPIIT IN303523.
We declare the use of AI, ChatGPT, for grammar and spelling review. The methodology, analysis,
originality, validity, and integrity were carried out exclusively by the authors. No AI was used for
such a purpose.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ML machine learning
IoT the Internet of Things
PAC probably approximately correct
GUI graphical user interface
MAE mean absolute error
medianAE median absolute error
RMSE root mean square error

References
1. Ratli, M.; El Cadi, A.A.; Jarboui, B.; Artiba, A. Dynamic assignment problem of parking slots. In Proceedings of the 2019

International Conference on Industrial Engineering and Systems Management (IESM), Shanghai, China, 25–27 September 2019;
pp. 1–6.

2. Caliskan, M.; Barthels, A.; Scheuermann, B.; Mauve, M. Predicting parking lot occupancy in vehicular ad hoc networks.
In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 22–25 April 2007;
pp. 277–281.

3. Paidi, V. Short-term prediction of parking availability in an open parking lot. J. Intell. Syst. 2022, 31, 541–554. [CrossRef]
4. Muratori, M.; Alexander, M.; Arent, D.; Bazilian, M.; Cazzola, P.; Dede, E.M.; Farrell, J.; Gearhart, C.; Greene, D.; Jenn, A.; et al.

The rise of electric vehicles—2020 status and future expectations. Prog. Energy 2021, 3, 022002. [CrossRef]
5. Mansour, M.B.M.; Said, A.; Ahmed, N.E.; Sallam, S. Autonomous parallel car parking. In Proceedings of the 2020 Fourth World

Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 392–397.
6. Yang, S.; Ma, W.; Pi, X.; Qian, S. A deep learning approach to real-time parking occupancy prediction in transportation networks

incorporating multiple spatio-temporal data sources. Transp. Res. Part C Emerg. Technol. 2019, 107, 248–265. [CrossRef]
7. Shen, X.; Lacayo, M.; Guggilla, N.; Borrelli, F. Parkpredict+: Multimodal intent and motion prediction for vehicles in parking lots

with cnn and transformer. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems
(ITSC), Macau, China, 8–12 October 2022; pp. 3999–4004.

8. Feng, Y.; Xu, Y.; Hu, Q.; Krishnamoorthy, S.; Tang, Z. Predicting vacant parking space availability zone-wisely: A hybrid deep
learning approach. Complex Intell. Syst. 2022, 8, 4145–4161. [CrossRef]

9. Zhao, Z.; Zhang, Y.; Zhang, Y. A comparative study of parking occupancy prediction methods considering parking type and
parking scale. J. Adv. Transp. 2020, 2020, 1–12. [CrossRef]

http://doi.org/10.1515/jisys-2022-0039
http://dx.doi.org/10.1088/2516-1083/abe0ad
http://dx.doi.org/10.1016/j.trc.2019.08.010
http://dx.doi.org/10.1007/s40747-022-00700-1
http://dx.doi.org/10.1155/2020/5624586

Appl. Syst. Innov. 2024, 7, 52 17 of 17

10. Mehdipour, F.; Javadi, B.; Mahanti, A. FOG-Engine: Towards big data analytics in the fog. In Proceedings of the 2016 IEEE 14th Intl
Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf
on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
Auckland, New Zealand, 8–12 August 2016; pp. 640–646.

11. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues. J.
Netw. Comput. Appl. 2017, 98, 27–42. [CrossRef]

12. Karthika, P.; Ganesh Babu, R.; Karthik, P. Fog computing using interoperability and IoT security issues in health care. In
Micro-Electronics and Telecommunication Engineering: Proceedings of the 3rd ICMETE, Ghaziabad, India, 30–31 August 2019 2019 ;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 97–105.

13. Xu, Z.; Tang, X.; Ma, C.; Zhang, R. Research on parking Space Detection and Prediction Model based on CNN-LSTM. IEEE Access
2024, 12, 30085–30100. [CrossRef]

14. Lyu, M.; Ji, Y.; Kuai, C.; Zhang, S. Short-term prediction of on-street parking occupancy using multivariate variable based on
deep learning. J. Traffic Transp. Eng. 2024, 11, 28–40. [CrossRef]

15. Zhang, F.; Shang, K.; Yan, L.; Nan, H.; Miao, Z. Prediction of Parking Space Availability Using Improved MAT-LSTM Network.
ISPRS Int. J.-Geo-Inf. 2024, 13, 151. [CrossRef]

16. Huang, Y.; Dong, Y.; Tang, Y.; Li, L. Leverage Multi-source Traffic Demand Data Fusion with Transformer Model for Urban
Parking Prediction. arXiv 2024, arXiv:2405.01055.

17. Haussler, D.; Warmuth, M. The probably approximately correct (PAC) and other learning models. In Foundations of Knowledge
Acquisition: Machine Learning; Springer: Berlin/Heidelberg, Germany, 1993; pp. 291–312.

18. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.
Sci. 1997, 55, 119–139. [CrossRef]

19. Schapire, R.E. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 37–52.

20. Tanwar, S.; Vora, J.; Kaneriya, S.; Tyagi, S.; Kumar, N.; Sharma, V.; You, I. Human arthritis analysis in fog computing environment
using Bayesian network classifier and thread protocol. IEEE Consum. Electron. Mag. 2019, 9, 88–94. [CrossRef]

21. Balevi, E.; Gitlin, R.D. Optimizing the number of fog nodes for cloud-fog-thing networks. IEEE Access 2018, 6, 11173–11183.
[CrossRef]

22. Uria, B.; Côté, M.A.; Gregor, K.; Murray, I.; Larochelle, H. Neural autoregressive distribution estimation. J. Mach. Learn. Res. 2016,
17, 7184–7220.

23. Mosteller, F.; Tukey, J.W. Data analysis and regression. A second course in statistics. In Addison-Wesley Series in Behavioral Science:
Quantitative Methods; Addison-Wesley Publishing Company: Reading, MA, USA, 1977.

24. Chatterjee, N.; Chakraborty, S.; Decosta, A.; Nath, A. Real-time communication application based on android using Google
firebase. Int. J. Adv. Res. Comput. Sci. Manag. Stud 2018, 6; pp. 74–79.

25. Albertengo, G.; Debele, F.G.; Hassan, W.; Stramandino, D. On the performance of web services, google cloud messaging and
firebase cloud messaging. Digit. Commun. Netw. 2020, 6, 31–37. [CrossRef]

26. Taylor, R. Interpretation of the correlation coefficient: A basic review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [CrossRef]
27. Stolfi, D.H.; Alba, E.; Yao, X. Predicting car park occupancy rates in smart cities. In Proceedings of the Smart Cities: Second

International Conference, Smart-CT 2017, Málaga, Spain, 14–16 June 2017; Proceedings 2; Springer: Berlin/Heidelberg, Germany,
2017; pp. 107–117.

28. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

29. Li, J.; Zhang, T.; Jin, J.; Yang, Y.; Yuan, D.; Gao, L. Latency estimation for fog-based internet of things. In Proceedings of the
2017 27th International Telecommunication Networks and Applications Conference (ITNAC), Melbourne, VIC, Australia, 22–24
November 2017; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jnca.2017.09.002
http://dx.doi.org/10.1109/ACCESS.2024.3368521
http://dx.doi.org/10.1016/j.jtte.2022.05.004
http://dx.doi.org/10.3390/ijgi13050151
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1109/MCE.2019.2941456
http://dx.doi.org/10.1109/ACCESS.2018.2808598
http://dx.doi.org/10.1016/j.dcan.2019.02.002
http://dx.doi.org/10.1177/875647939000600106

	Introduction
	Theory
	Fog Computing
	Parking Prediction and AI
	AdaBoost

	Methods
	Module for Occupancy Prediction
	User Interface
	Metrics

	Results
	Conclusions
	References

