A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps
Abstract
:1. Introduction
- A model preselection algorithm is proposed to select the best model among existing models.
- An information integration algorithm is proposed to integrate the output of UAD and FD to avoid misdetection and misdiagnosis.
- The condition monitoring framework obtained by the parallel connection of UAD and FD provides a new method for obtaining the status of complex critical equipment.
2. Basic Theory
2.1. Unsupervised Anomaly Detection Algorithms
2.2. Fault Diagnosis Algorithms
3. Methodology
3.1. Test Bench and Data Description
3.2. Multi-Channel Data Processing
3.3. Model Preselection Algorithm
3.4. Information Integration Algorithm
Algorithm 1. Information integration algorithm. |
Input: a batch of detection samples Output: status and decision |
1. get ADR of UAD based on 2. get MPS and P_MPS of FD based on 3. if ADR < 10% & MPS is normal status then 4. go on condition monitoring 5. if ADR ≥ 10% & MPS is a specific fault & P_MPS ≥ 80% then 6. control based on MPS 7. otherwise 8. expert analysis, go on monitoring, control the pump, or supplement data according to analysis results 9. End |
3.5. The Condition Monitoring Method
4. Experiment Results and Discussion
4.1. UAD Model Preselection Results
4.2. FD Model Preselection Results
4.3. The Test Results of the Whole Condition Monitoring Method
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ESWPs | Essential service water pumps |
SNPPs | Seaside nuclear power plants |
AD | Anomaly detection |
FD | Fault diagnosis |
UAD | Unsupervised anomaly detection |
SVDD | Support vector data description |
AKPCA | Anomaly detection based on kernel principal component analysis |
SVM | Support vector machine |
OCSVM | One-class support vector machine |
SPE | Squared Prediction Error |
ISF | Isolation forest |
CNN | Convolutional neural network |
OVR | One-versus-rest |
ADR | Anomaly detection rate |
MPS | Most probable status |
P_MPS | Probability of the most probable status |
1DCNN | One-dimensional convolutional neural network |
References
- Feng, Y.; Wu, X.; Lou, S.; Song, X.; Hong, Z.; Hu, B.; Wang, L.; Si, H.; Tan, J. Design optimization for pressurized water reactor using improved quantum fish swarm algorithm and intuitionistic linguistic decision-making. Adv. Eng. Inform. 2024, 59, 102315. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, W.; Xing, J.; Chen, X.; Li, L.; Guan, Y.; Ding, B.; Nie, Z.; Zhang, R.; Zhi, Y. Predictive maintenance system for high-end equipment in nuclear power plant under limited degradation knowledge. Adv. Eng. Inform. 2024, 61, 102506. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Chen, J. Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants. Energy 2021, 230, 120582. [Google Scholar] [CrossRef]
- Li, J.; Izakian, H.; Pedrycz, W.; Jamal, I. Clustering-based anomaly detection in multivariate time series data. Appl. Soft Comput. 2021, 100, 106919. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Zhang, L.; Li, R.; Jiang, S.; Wang, G.; Zhang, L.; Zeng, Z. Bridge health anomaly detection using deep support vector data description. Neurocomputing 2021, 444, 170–178. [Google Scholar] [CrossRef]
- Yang, J.; Tan, X.; Rahardja, S. Outlier detection: How to Select k for k-nearest-neighbors-based outlier detectors. Pattern Recognit. Lett. 2023, 174, 112–117. [Google Scholar] [CrossRef]
- Kloska, M.; Grmanova, G.; Rozinajova, V. Expert enhanced dynamic time warping based anomaly detection. Expert Syst. Appl. 2023, 225, 120030. [Google Scholar] [CrossRef]
- Tan, R.; Ottewill, J.R.; Thornhill, N.F. Monitoring statistics and tuning of kernel principal component analysis with radial basis function kernels. IEEE Access 2020, 8, 198328–198342. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, M.; Cui, Z.; Zhang, X.; Zhong, S. Empirical mode reconstruction: Preserving intrinsic components in data augmentation for intelligent fault diagnosis of civil aviation hydraulic pumps. Comput. Ind. 2022, 134, 103557. [Google Scholar] [CrossRef]
- Al-Tubi, M.; Bevan, G.P.; Wallace, P.A.; Harrison, D.K.; Ramachandran, K.P. Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT. J. Eng. Sci. Technol. 2019, 22, 854–861. [Google Scholar] [CrossRef]
- Jamadar, I.M.; Bellary, S.A.I.; Kanai, R.A.; Alrobaian, A.A. Model-Based Condition Monitoring for the Detection of Failure of a Ball Bearing in a Centrifugal Pump. J. Fail. Anal. Prev. 2019, 19, 1556–1568. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Nikitas, N. Internal pump leakage detection of the hydraulic systems with highly incomplete flow data. Adv. Eng. Inform. 2023, 56, 101974. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 2022, 52, 101554. [Google Scholar] [CrossRef]
- Kumar, A.; Gandhi, C.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [Google Scholar] [CrossRef]
- Gao, Y.; Kim, C.H.; Kim, J.-M. A novel hybrid deep learning method for fault diagnosis of rotating machinery based on extended WDCNN and long short-term memory. Sensors 2021, 21, 6614. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, H.; Zhang, J.; Yang, B.; Yin, W. Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network. Nucl. Eng. Technol. 2023, 55, 2096–2106. [Google Scholar] [CrossRef]
- Yin, W.; Xia, H.; Wang, Z.; Yang, B.; Zhang, J.; Jiang, Y.; Miyombo, M.E. A fault diagnosis of nuclear power plant rotating machinery based on multi-sensor and deep residual neural network. Ann. Nucl. Energy 2023, 185, 109700. [Google Scholar] [CrossRef]
- Lin, M.; Li, J.; Li, Y.; Wang, X.; Jin, C.; Chen, J. Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels. Energy 2023, 282, 128905. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Xie, C.-L.; Peng, M.-J.; Ling, S.-H. Improvement of fault diagnosis efficiency in nuclear power plants using hybrid intelligence approach. Prog. Nucl. Energy 2014, 76, 122–136. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, S.; Liu, Y.; Chen, X.; Nie, Z.; Xing, J.; Zhang, R.; Huang, Q. A Novel Planetary Gearbox Fault Diagnosis Method for Nuclear Circulating Water Pump With Class Imbalance and Data Distribution Shift. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Du, Z.; Liang, X.; Chen, S.; Zhu, X.; Chen, K.; Jin, X. Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems. Energy 2023, 263, 125969. [Google Scholar] [CrossRef]
- Elshenawy, L.M.; Halawa, M.A.; Mahmoud, T.A.; Awad, H.A.; Abdo, M.I. Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants. Prog. Nucl. Energy 2021, 142, 103990. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; He, Z.; Huang, Q.; Zhu, R.; Li, H.; Fu, Q. The study of hydraulic machinery condition monitoring based on anomaly detection and fault diagnosis. Measurement 2024, 230, 114518. [Google Scholar] [CrossRef]
- Li, J.; Meng, L.; Wang, B.; Tian, R.; Tan, S.; Li, Y.; Chen, J. Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants. Energy 2023, 290, 130101. [Google Scholar] [CrossRef]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, P.; MacGregor, J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37, 41–59. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Xu, J. An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing 2011, 74, 3114–3124. [Google Scholar] [CrossRef]
- GB/T 6075.7-2015; Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts—Part 7: Rotodynamic Pumps for Industrial Applications, Including Measurements on Rotating Shafts. Standards Press of China: Beijing, China, 2015.
- Wang, X.-B.; Zhang, X.; Li, Z.; Wu, J. Ensemble extreme learning machines for compound-fault diagnosis of rotating machinery. Knowl. Based Syst. 2020, 188, 105012. [Google Scholar] [CrossRef]
- Kumar, D.; Dewangan, A.; Tiwari, R.; Bordoloi, D. Identification of inlet pipe blockage level in centrifugal pump over a range of speeds by deep learning algorithm using multi-source data. Measurement 2021, 186, 110146. [Google Scholar] [CrossRef]
- Tiwari, R.; Bordoloi, D.; Dewangan, A. Blockage and cavitation detection in centrifugal pumps from dynamic pressure signal using deep learning algorithm. Measurement 2021, 173, 108676. [Google Scholar] [CrossRef]
- Al-Obaidi, A.R. Detection of cavitation phenomenon within a centrifugal pump based on vibration analysis technique in both time and frequency domains. Exp. Tech. 2020, 44, 329–347. [Google Scholar] [CrossRef]
- GB/T 43555-2023; Intelligent Service—Predictive Maintenance—Algorithm Evaluation Method. Standards Press of China: Beijing, China, 2023.
- Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 2021, 50, 101406. [Google Scholar] [CrossRef]
- Liang, X.; Duan, F.; Bennett, I.; Mba, D. A Sparse Autoencoder-Based Unsupervised Scheme for Pump Fault Detection and Isolation. Appl. Sci. 2020, 10, 6789. [Google Scholar] [CrossRef]
- Hang, W.; Peng, M.; Yu, Y.; Saeed, H.; Hao, C.; Liu, Y. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants. Ann. Nucl. Energy 2021, 150, 107786. [Google Scholar] [CrossRef]
- Rojarath, A.; Songpan, W. Probability-weighted voting ensemble learning for classification model. J. Adv. Inf. Technol. 2020, 11, 217–227. [Google Scholar] [CrossRef]
- Zhong, X.; Ban, H. Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning. Ann. Nucl. Energy 2022, 168, 108909. [Google Scholar] [CrossRef]
Criteria | Status |
---|---|
close to 1 (>0.5) | Abnormal |
approximately equal to 0.5 | Normal |
close to 0 | Normal |
Parameter | Value |
---|---|
N | 2900 revolutions per minute (rpm) |
H | 20 m |
100 m3/h | |
P | 6.80 kW |
Data Type | Sample Number of Each Channel | Anomaly Detection | Fault Identification |
---|---|---|---|
Normal (Nor) | 320 | 70% training, 20% validation, 10% test | Randomly select 80 samples, 70% training, 20% validation, 10% test |
Coupling misalignment (CM) | 80 | 80% validation, 20% test | 70% training, 20% validation, 10% test |
Mass imbalance (MI) | 80 | 70% training, 20% validation, 10% test | |
Casing ring wear (CRW) | 80 | 70% training, 20% validation, 10% test | |
Blade wear (BW) | 80 | 70% training, 20% validation, 10% test | |
Bench instability (BI) | 80 | 70% training, 20% validation, 10% test |
Fold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
OCSVM (together) | 0.356 | 0.342 | 0.356 | 0.342 | 0.375 | 0.368 | 0.38 | 0.382 | 0.384 | 0.383 | 0.367 |
OCSVM (fusion) | 0.56 | 0.564 | 0.56 | 0.564 | 0.502 | 0.547 | 0.559 | 0.555 | 0.517 | 0.534 | 0.546 |
AKPCA (together) | 0.717 | 0.705 | 0.717 | 0.705 | 0.717 | 0.711 | 0.734 | 0.737 | 0.733 | 0.732 | 0.721 |
AKPCA (fusion) | 0.871 | 0.872 | 0.871 | 0.872 | 0.862 | 0.852 | 0.866 | 0.85 | 0.69 | 0.7 | 0.83 |
ISF (together) | 0.419 | 0.453 | 0.431 | 0.428 | 0.483 | 0.467 | 0.466 | 0.461 | 0.446 | 0.481 | 0.793 |
ISF (fusion) | 0.817 | 0.821 | 0.841 | 0.828 | 0.793 | 0.826 | 0.831 | 0.845 | 0.798 | 0.767 | 0.817 |
Fold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
OCSVM (together) | 0.926 | 0.924 | 0.926 | 0.924 | 0.929 | 0.928 | 0.928 | 0.929 | 0.929 | 0.929 | 0.927 |
OCSVM (fusion) | 0.643 | 0.641 | 0.643 | 0.641 | 0.615 | 0.638 | 0.659 | 0.667 | 0.654 | 0.651 | 0.645 |
AKPCA (together) | 0.38 | 0.391 | 0.38 | 0.391 | 0.384 | 0.387 | 0.385 | 0.383 | 0.379 | 0.371 | 0.383 |
AKPCA (fusion) | 0.148 | 0.146 | 0.148 | 0.146 | 0.12 | 0.146 | 0.146 | 0.146 | 0.146 | 0.146 | 0.144 |
ISF (together) | 0.815 | 0.772 | 0.804 | 0.802 | 0.748 | 0.768 | 0.802 | 0.811 | 0.829 | 0.777 | 0.453 |
ISF (fusion) | 0.237 | 0.221 | 0.203 | 0.227 | 0.229 | 0.224 | 0.227 | 0.229 | 0.234 | 0.245 | 0.227 |
Layer Type | Specific Setup | Parameters Number | Output Shape |
---|---|---|---|
Input layer | Sample length = 162 | 0 | (None, 162, 1) |
Conv1D_1 (ReLU) | Filters = 16, kernel size = 9, stride = 1 | 160 | (None, 154, 16) |
Pooling_1 | Max pooling size = 2, stride = 1 | 0 | (None, 77, 16) |
Conv1D_2 (ReLU) | Filters = 32, kernel size = 5, stride = 1 | 2592 | (None, 73, 32) |
Pooling_2 | Max pooling size = 2, stride = 1 | 0 | (None, 36, 32) |
Conv1D_3 (ReLU) | Filters = 64, kernel size = 3, stride = 1 | 6208 | (None, 34, 64) |
Flatten | - | 0 | (None, 2176) |
FC (ReLU) | - | 139,328 | (None, 64) |
Dropout | 0.5 | 0 | (None, 64) |
FC (ReLU) | - | 2080 | (None, 32) |
Dropout | 0.5 | 0 | (None, 32) |
FC (SoftMax) | - | 198 | (None, 6) |
Parameters | SVM |
---|---|
Gamma | 0.16 |
C | 0.9 |
Kernel | ‘linear’ |
Fold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
1DCNN (together) | 0.927 | 0.967 | 0.764 | 0.931 | 0.915 | 0.876 | 0.963 | 0.941 | 0.912 | 0.711 | 0.89 |
1DCNN (fusion) | 0.997 | 1 | 0.996 | 0.997 | 0.992 | 0.996 | 0.997 | 0.999 | 0.996 | 0.963 | 0.993 |
SVM (together) | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 | 0.842 |
SVM (fusion) | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
Fold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
1DCNN (together) | 0.924 | 0.962 | 0.781 | 0.918 | 0.917 | 0.859 | 0.962 | 0.922 | 0.91 | 0.748 | 0.89 |
1DCNN (fusion) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.974 | 0.997 |
SVM (together) | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 | 0.838 |
SVM (fusion) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Test Data’s Status | ADR (AKPCA (Fusion)) | MPS, P_MPS (SVM (Fusion)) | Information Integration Results |
---|---|---|---|
Normal | 11% | Normal, 100% | Expert analysis |
Coupling misalignment | 43.8% | Coupling misalignment, 87.5% | Coupling misalignment |
Mass eccentricity | 11% | Mass eccentricity, 94% | Mass eccentricity |
Casing ring wear | 16% | Casing ring wear, 88% | Casing ring wear |
Blade wear | 19% | Blade wear, 100% | Blade wear |
Bench instability | 100% | Bench instability, 100% | Bench instability |
Strong blade wear | 97.9% | Bench instability 58.3% | Expert analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Huang, Q.; Li, H.; Li, Y.; Li, S.; Zhu, R.; Fu, Q. A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps. Appl. Syst. Innov. 2024, 7, 61. https://doi.org/10.3390/asi7040061
Liu Y, Huang Q, Li H, Li Y, Li S, Zhu R, Fu Q. A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps. Applied System Innovation. 2024; 7(4):61. https://doi.org/10.3390/asi7040061
Chicago/Turabian StyleLiu, Yingqian, Qian Huang, Huairui Li, Yunpeng Li, Sihan Li, Rongsheng Zhu, and Qiang Fu. 2024. "A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps" Applied System Innovation 7, no. 4: 61. https://doi.org/10.3390/asi7040061
APA StyleLiu, Y., Huang, Q., Li, H., Li, Y., Li, S., Zhu, R., & Fu, Q. (2024). A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps. Applied System Innovation, 7(4), 61. https://doi.org/10.3390/asi7040061