
Citation: Liu, Y.; Huang, Q.; Li, H.;

Li, Y.; Li, S.; Zhu, R.; Fu, Q. A Novel

Intelligent Condition Monitoring

Framework of Essential Service Water

Pumps. Appl. Syst. Innov. 2024, 7, 61.

https://doi.org/10.3390/asi7040061

Received: 18 June 2024

Revised: 16 July 2024

Accepted: 17 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Novel Intelligent Condition Monitoring Framework of Essential
Service Water Pumps
Yingqian Liu 1 , Qian Huang 2, Huairui Li 1 , Yunpeng Li 1, Sihan Li 1, Rongsheng Zhu 1 and Qiang Fu 1,*

1 Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang 212013, China;
2112111007@stmail.ujs.edu.cn (Y.L.); leehuairui@126.com (H.L.); airocyli@126.com (Y.L.);
15702446994@163.com (S.L.); zrs@ujs.edu.cn (R.Z.)

2 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China; huangqian@cnpe.cc
* Correspondence: ujsfq@outlook.com; Tel.: +86-15240287004

Abstract: Essential service water pumps are necessary safety devices responsible for discharging
waste heat from containments through seawater; their condition monitoring is critical for the safe and
stable operation of seaside nuclear power plants. However, it is difficult to directly apply existing
intelligent methods to these pumps. Therefore, an intelligent condition monitoring framework
is designed, including the parallel implementation of unsupervised anomaly detection and fault
diagnosis. A model preselection algorithm based on the highest validation accuracy is proposed for
anomaly detection and fault diagnosis model selection among existing models. A novel information
integration algorithm is proposed to fuse the output of anomaly detection and fault diagnosis.
According to the experimental results of modules, a kernel principal component analysis using
mean fusion processing multi-channel data (AKPCA (fusion)) is selected, and a support vector
machine using mean fusion processing multi-channel data (SVM (fusion)) is selected. The overall
test accuracy and false negative rate of AKPCA (fusion) are 0.83 and 0.144, respectively, and the
overall test accuracy and f1-score of SVM (fusion) are 0.966 and 1, respectively. The test results of
AKPCA (fusion), SVM (fusion), and the proposed information integration algorithm show that the
information integration algorithm successfully avoids a lack of abnormal status information and
misdiagnosis. The proposed framework is a meaningful attempt to achieve the intelligent condition
monitoring of complex equipment.

Keywords: essential service water pumps; model preselection algorithm; unsupervised anomaly
detection; fault diagnosis; intelligent condition monitoring

1. Introduction

Essential service water pumps (ESWPs) play a crucial role in seaside nuclear power
plants (SNPPs), which are responsible for transmitting waste heat through seawater. If an
ESWP malfunctions without preparation, it is likely to cause nuclear safety issues due to
the inability to discharge waste heat promptly. Its condition monitoring is essential for
the predictive maintenance of SNPPs [1] and the production of clean and efficient nuclear
energy [2]. On the one hand, its condition monitoring ensures the regular transfer of waste
heat and maintains the safe and stable operation of the entire SNPP. On the other hand,
it is essential to prepare spare parts like sealing rings and bearings in time according to
condition monitoring to prevent shutdowns due to the failure of spare parts to arrive in
time, affecting production.

Present intelligent condition monitoring methods using equipment’s historical data
align more with predictive maintenance requirements [3], mainly including anomaly detec-
tion (AD) and fault diagnosis (FD). There are many unsupervised AD (UAD) methods [4],
such as support vector data description (SVDD) [5], k-nearest neighbor clustering [6],
dynamic time warping [7], and anomaly detection based on kernel principal component
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analysis (AKPCA) [8]. Although some AD models based on deep learning have been
studied [9,10], most lack further investigation, except for their network design. Relying
on these networks will not only fail to solve current problems but may also lead to new
problems, such as the explainability and computational complexity of deep learning models.
FD aims to obtain status information about equipment based on learning data. Previous
research has been conducted to identify pumps’ faults, such as misalignment [9], lack of
balance [10], bearing defects [11], leakage [12], etc. Focused on feature extraction, a com-
plex feature extraction method composed of continuous wavelet transform, a multilayer
feedforward perceptron neural network, and a genetic algorithm has been used by many
researchers to prepare valuable features for support vector machines (SVMs) classifying
both mechanical and hydraulic faults of centrifugal pumps [10]. Focused on deep learning
networks, some researchers converted non-image signals into image signals [13,14] for
neural networks and extracted features using deep networks instead of traditional feature
extraction methods [15].

The above research mainly focused on ordinary pumps. Intelligent condition moni-
toring research on SNPPs has received increasing attention in recent years. For instance, a
deep convolutional conditional generative adversarial network was designed to process
imbalanced sample problems of motors and bearings [16]. A deep residual neural network
was combined with a transferred vibration image to utilize multi-sensor vibration signals to
diagnose the motor and bearing [17]. A novel Artificial Disturbance Method (ADM)-based
domain discrepancy generalization promotion framework was proposed, significantly
enhancing the generalization ability of convolutional neural networks (CNNs) in nuclear
power plant fault diagnosis [18]. A hybrid methodology that integrated knowledge-based
methods, quantitative mathematical models, and data-driven methodologies was used to
meet the complex need for different parts of SNPPs [19]. A Q network calibrated ensem-
ble method was used to realize the fault diagnosis of a nuclear Circulating Water Pump
Gearbox, which focused on the problem of imbalanced samples and shaft distribution [20].
Although these studies obtained some satisfying results, it is still hard to apply deep
learning models [21].

Most existing UAD algorithms can find anomalies lacking details, and most existing
intelligent FD algorithms can only intelligently diagnose faults that have been learned
by the model and cause the misdiagnosis of faults that have not been learned. Predictive
maintenance needs to find out whether the equipment is in abnormal operation and specific
information about the abnormal operation to guide maintenance. Therefore, AD and FD
algorithms are equally important in supporting predictive maintenance. Although there
are some intelligent methods including both AD and FD [22,23], or methods focused on
unknown faults [24], they are currently not considering how to select the most suitable
model among existing models quickly, and the question of how to fuse the different
outputs of UAD and FD lacks research. This paper aims to provide an intelligent condition
monitoring framework for ESWPs. To achieve this aim, a unique condition monitoring
framework based on UAD and FD parallel implementation is proposed, and a model
pump of an ESWP with five-channel vibration is built for essential data collection and
model testing. Multi-channel data put together (together) or fused by mean fusion (fusion)
are two attempted signal processing methods for UAD and FD. A model preselection
algorithm based on the highest validation accuracy has been proposed to select the best
UAD model from common UAD models and the best FD model from common classifiers.
Expert intervention is suggested to support the updating of models for persistence. The
contributions of this paper include the following:

1. A model preselection algorithm is proposed to select the best model among existing models.
2. An information integration algorithm is proposed to integrate the output of UAD and

FD to avoid misdetection and misdiagnosis.
3. The condition monitoring framework obtained by the parallel connection of UAD and

FD provides a new method for obtaining the status of complex critical equipment.
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The remainder of this paper is organized as follows: The main theory related to basic
UAD and FD models is introduced in Section 2. The test bench, dataset, and the proposed
intelligent condition monitoring method are described in Section 3. All module and overall
experiment results and related discussions are presented and analyzed in Section 4. Finally,
the main conclusions are given in Section 5.

2. Basic Theory
2.1. Unsupervised Anomaly Detection Algorithms

One-class SVM (OCSVM) tries to find a hyperplane with a maximum margin by almost
all positive training samples to separate negative samples as far as possible [25]. Due to
the nonlinear separability of samples in ordinary space, samples are usually converted
into linearly separable samples through projection functions φ. The hyperplane can be
expressed as

f (xi) = wT φ(xi)− b (1)

where wT is a normal vector representing weight, b is offset, and f (xi) is the classifier’s
output under input xi. The optimization problem can be described as

min
w,b,ξ

(
∥w∥2

2 +
1

vn ∑N
i=1 ξi − b

)
s.t.

(
wT φ(xi)

)
≥ b − ξi, ξi ≥ 0, i = {1, 2, . . . , N}

(2)

where v ∈ (0, 1] , and ξi is the slack variable that balances boundary positions and classifi-
cation errors, making the model more flexible and robust when dealing with incomplete
linearly separable data. To obtain the solution to the optimization problem, the dual
problem is

min
α

(
−0.5αTα

)
∑N

i=1 αi = 1

s.t.0 ≤ αi ≤
1

vn

(3)

where α represents the Lagrange multiplier. After calculating the offset b and the weight
w, the state of the sample is determined by the relationship between the sample and
the hyperplane.

AKPCA has illustrated that reconstruction error (Squared Prediction Error, SPE) with
the RBF kernel can detect a sample exceeding the healthy operating range and a sample that
does not follow the training data model [8]. For training data X = {xi|i = {1, 2, . . . , N}},
the SPE is defined by the second-order norm of the difference between the centered kernel
feature Φ̃

(
x̃j
)

and the reconstruction kernel feature ˆ̃Φ
(
x̃j
)
.

SPEj = ∥Φ̃
(

x̃j
)
− ˆ̃Φ

(
x̃j
)
∥2 (4)

The second-order norm can be calculated by kernel matrix K by

∥Φ̃
(
x̃j
)
∥2 = 1 − 2Kj + K (5)

where K is composed of Ki,j = Φ(xi)Φ
(

xj
)
, Kj represents the average value of the j− th row

in K, and K represents the average value of all elements in K. According to the relationship
of the projection matrix and kernel principal components, SPE for KPCA can be written
explicitly, as follows:

SPEj = 1 − 2Kj + K − yT
j yj (6)

where yj is the kernel principal component obtained from the eigenvectors and kernel
matrix. The upper control limit is the 95 − th percentile of SPEj, j = {1, 2, . . . , N} [26]. To
judge whether a sample is normal or abnormal, the SPE in the kernel space of the sample
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can be calculated and compared with the upper control SPElimit. When SPEj > SPElimit,
the j − th sample is abnormal, and vice versa.

Isolation forest (ISF) is an anomaly detection algorithm that isolates observations by
randomly partitioning the data using binary trees, efficiently identifying anomalies with
low computational cost [27]. The root node contains all samples randomly selected from the
training dataset X for each tree. There are internal and external nodes, and every internal
node is split into two sub-nodes (left and right) until sample isolation is completed or
the maximum tree depth is reached: dmax = log2(ϕ) After building the ISF, the following
is calculated:

H(n − 1) = ln(n − 1) + 0.57721564

c(n) = 2(H(n − 1)− (n − 1)/n)

s
(
xj, n

)
= 2−E(h(xj))/c(n)

(7)

where H(n) is the harmonic number, c(n) is the average path length, E
(
h
(

xj
))

is the
average of h

(
xj
)
, and s

(
xj, n

)
is the anomaly score of xj in X. The criteria for judging

normality or abnormality according to s are shown in Table 1.

Table 1. The criteria of anomaly detection based on ISF.

Criteria Status

s close to 1 (>0.5) Abnormal
s approximately equal to 0.5 Normal

s close to 0 Normal

2.2. Fault Diagnosis Algorithms

Convolutional neural networks (CNNs) and SVMs are classical classifying algorithms
for supervised FD methods. CNNs were initially proposed for image-related works, and
they have been improved and applied in non-image-related works [13,28]. The structure
of a CNN includes the input layer, convolutional layers, pooling layers, fully connected
layers, the dropout layer, and the output layer. The input and output layers are only
responsible for transmitting data without processing. Convolutional layers are the core
part of convolutional neural networks which extract features from input data. A pooling
layer is added between the two convolutional layers to reduce the parameters of the neural
network and prevent overfitting. Generally, each convolutional layer is followed by a ReLU
function to accelerate learning and simplify models. The full connection layer converts
the output from the convolution and pooling layers into classification or regression results.
The dropout layer randomly discards some neurons during the training process to prevent
overfitting of the model and improve the generalization ability of the model. The output
layer outputs the final result according to the full connection layer.

Originally, SVMs were binary classification mathematical models based on structural
risk minimization [29], and they already have been developed to solve multi-class classi-
fication problems. One-versus-rest (OVR) and one-versus-one (OVO) are the two main
approaches for the multi-class classification of SVMs. The basis of both methods is to
transform a multi-class problem into multiple binary classification problems. For training
samples {(xi, yi)|xi ∈ Rm, i = {1, 2, . . . , N}, yi ∈ {−1, 1}}, SVM linear classifiers complete
the classification task by placing a hyperplane between samples xi of two linearly sep-
arable categories. An SVM nonlinear classifier introduces kernel function to project the
nonlinearly separable samples xi into a separable projected feature φ(xi), similar to the
processing of SVDD models. Since the principles of the linear and nonlinear classification
of SVMs are similar, nonlinear classification is introduced here. The decision function can
be expressed as

f (xi) = wT φ(xi)− b (8)
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where wT and b are adjustable parameters of the decision function, and f (xi) is the output
of the classifier with input xi. The optimization problem is converted by constructing the
hinge loss function

min
w,b,ξ

(
∥w∥2

2 +
1
c ∑N

i=1 ξi

)
s.t.yi

(
wT φ(xi)− b

)
≥ 1 − ξi, ξi ≥ 0, i = {1, 2, . . . , N}

(9)

where C is the penalty factor and ξi is a relaxation variable. Introducing Lagrange multiplier
technology, the dual problem of Equation (9) is

max
α

(
∑N

i=1 αi −
1
2 ∑N

i=1 ∑N
j=1 αiαjyiyjK

(
xi, xj

))
s.t.∑N

i=1 αiyi = 0
1

2nλ
≥ αi ≥ 0, i = 1, . . . , N

(10)

where αi are the Lagrange multipliers; then,

b = wT φ(xi)− yi =
[
∑N

j=1 αjyjK
(
xj, xi

)
− yi

]
(11)

Finally, the decision function is

f (z) = sgn
(

wT(φ(z)− b)
)
= sgn

([
∑N

i=1 αiyiK(xi, z)
]
− b

)
(12)

where sgn() means symbolic function. For a sample z, the predicted label is f (z). And the
f (z) of multi-classes are processed by OVR [30]. We will choose the better one between the
CNN and the SVM through cross-validation and the model preselection algorithm.

3. Methodology
3.1. Test Bench and Data Description

To obtain a condition monitoring framework suitable for ESWPs, we built a model
pump test bench for an ESWP for data collection and validation; the main parameters of
the model pump are shown in Table 2. Due to the power of the test bench pump being
lower than 200 kW, vibration measurement points are set according to the Chinese standard
GB/T 6075.7-2015 [31] and actual needs. The test bench and vibration measuring points
are shown in Figure 1. Five channels of the water pump are measured, and the main
parameters of the model pump are shown in Table 2.

Table 2. Main design point parameters of the model pump.

Parameter Value

N 2900 revolutions per minute (rpm)
H 20 m
Q 100 m3/h
P 6.80 kW

Where N represents the rated speed of the motor, H represents the pump head, Q represents the rated flow rate,
and P represents the rated power of the driven motor.

The vibration data collected from the test bench include data representing normal
status, coupling misalignment, mass imbalance, casing ring wear, blade wear (one blade
wear), and bench instability. Before each fault is prefabricated, 40 s of normal status data
are collected before each fault, and 10 s data of each fault are collected, respectively. Each
sampling includes three channels of vibration acceleration signals from the bearing (in the
x, y, and z directions) and two channels of vibration acceleration signals from the motor (in
the x and y directions), all with a sampling rate of 10.24 kHz. The designed speed of the
test pump is 2900 rpm, and the sample length is suggested to satisfy the Nyquist Sampling
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Theorem, set as 1250 points (0.122 s). This sample length is enough for the designed speed
or a much lower operating speed in practice operating. The sample usage of UAD and FD
is shown in Table 3. Moreover, 10 s of strong blade wear (2-blade wear) data are collected,
and 10% of samples are randomly selected to test the proposed framework.
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Figure 1. Schematic diagram of model pump device and vibration measuring points, ‘0’ and ‘1’
represent two measuring points on the motor, ‘2’, ‘3’, and ‘4’ represent three measuring points on the
bearing near the pump.

Table 3. The basic sample requirement for modeling.

Data Type Sample Number of
Each Channel Anomaly Detection Fault Identification

Normal (Nor) 320 70% training, 20% validation,
10% test

Randomly select 80 samples, 70%
training, 20% validation, 10% test

Coupling misalignment (CM) 80

80% validation, 20% test

70% training, 20% validation, 10% test
Mass imbalance (MI) 80 70% training, 20% validation, 10% test

Casing ring wear (CRW) 80 70% training, 20% validation, 10% test
Blade wear (BW) 80 70% training, 20% validation, 10% test

Bench instability (BI) 80 70% training, 20% validation, 10% test

3.2. Multi-Channel Data Processing

Critical equipment generally has multi-channel data, and analyzing and modeling
each channel’s data requires a large workforce and a lot of material resources. However,
the question of how to directly apply all channels’ data to the model is also a problem
that needs to be studied. Two ways are introduced here. One is to put the samples of
all channels together (together). Another is to apply all channels’ data by mean fusion
(fusion). The samples from 5 channels are processed using these two methods, as shown in
Figures 2 and 3. Ch means channel, left signals represent raw signals, right signals/signal
are/is the processed signal.

The distinct difference between the two methods is the number of samples. The
number of samples directly put together is five times the number of mean fusion methods,
and the sample count for the mean fusion method is shown in Table 3. After that, the
method TFF_VMD mentioned in reference [23] is used to extract features as the input of
subsequent models. Some of these features have been used to detect mechanical bearing
faults [32], hydraulic blockage faults [33], and cavitation [34,35]. Briefly, the statistical
features of time series and the Fast Flourier Transfer amplitude spectrum and three power
spectrum features are extracted by FFT_VMD from both the raw sample and its five
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Intrinsic Mode Functions of Variable Mode Decomposition and strung together as the
simplified sample.
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3.3. Model Preselection Algorithm

Plenty of intelligent models exist, so we should choose the most suitable one for
application through the model preselection algorithm from at least two typical models. The
validation accuracy of the model is considered in the model preselection algorithm. The
model selection process is mathematically defined as follows:

Sel
(

M1, M2, . . . , Mp
)
= Mi

s.t.max
(

M1−valid−acc, M2−valid−acc, . . . , Mp−valid−acc

)
= Mi−valid−acc

(13)

where Mi represents the i − th model of the provided p models. Mi−valid−acc represents the
validation accuracy of Mi. If the multi-fold cross-validation is applied, Mi−valid−acc repre-
sents the mean of multi-fold cross-validation accuracy. The accuracy can be calculated by

Accuracy =
TP + TN

TP + TN + FP + FN
(14)
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TP means the number of samples correctly detected or diagnosed as positive, FN means the
number of samples incorrectly detected or diagnosed as negative, TN means the number
of samples correctly identified or diagnosed as negative, and FP means the number of
samples incorrectly detected or diagnosed as positive.

The model with the highest validation accuracy is selected, and the accuracy should
be greater than 0.8 according to the standard GB/T 43555-2023 [36] to ensure the selected
UAD and FD models are valid. The process can be described in Figure 4. Model Mi is the
most suitable model for the same dataset and performs best among the provided p models.
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3.4. Information Integration Algorithm

For the UAD model, the anomaly detection rate (ADR) indicates the proportion of
samples detected as abnormal by UAD in the batch of test samples. If the ADR is greater
than 10% [23], the output of UAD is regarded as abnormal. Otherwise, the output is
regarded as normal status. The output of FD is the most probable status (MPS) and its
probability (P_MPS). Due to the different output formats and contents of UAD and FD,
they cannot be directly fused. However, as mentioned above, practical applications must
combine these results to provide more comprehensive decision support. Therefore, the
information integration algorithm is proposed to fuse the results of UAD and FD, as shown
in Algorithm 1. The key idea is to use the consistent information of AD and FD, and experts
would deeply analyze the inconsistent results. Notably, 80% of P_MPS used is based on the
GB/T 43555-2023 [36] standard.

Algorithm 1. Information integration algorithm.

Input: a batch of detection samples Xtest
Output: status and decision

1. get ADR of UAD based on Xtest
2. get MPS and P_MPS of FD based on Xtest
3. if ADR < 10% & MPS is normal status then
4. go on condition monitoring
5. if ADR ≥ 10% & MPS is a specific fault & P_MPS ≥ 80% then
6. control based on MPS
7. otherwise
8. expert analysis, go on monitoring, control the pump, or supplement data according to
analysis results
9. End

3.5. The Condition Monitoring Method

Based on the methods mentioned in Sections 3.2–3.4, the whole framework for condi-
tion monitoring can be described as shown in Figure 5. The black line mainly represents the
offline model building process, the green line represents the online condition monitoring
process, the red line represents the control operation, and the yellow bottom part repre-
sents the common part of both UAD and FD. Considering the problem of an incomplete
fault dataset, UAD is conducted in parallel with FD, which requires only normal status
data to build the model. FD is realized with at least two balanced data types (including
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normal status data). The bottom content related to the expert is flexible according to the
analysis results.
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4. Experiment Results and Discussion
4.1. UAD Model Preselection Results

The dataset in Table 3 is used to train and validate UAD models mentioned in
Section 2.1 with the proposed model preselection method in Section 3.3 to select the most
suitable UAD model. The validation false negative rate (FNR) of different UAD models is
calculated by Equation (15), except for validation accuracy, to help prove the reliability of
the proposed preselection method.

FNR =
FN

TP + FN
(15)

Table 4 shows the ten-fold cross-validation accuracy obtained by different UAD meth-
ods on multi-channel data, and Table 5 presents the corresponding FNR. The bold data
indicate the highest cross-validation accuracy and the lowest FNR. According to the results
in Table 4, AKPCA (fusion) achieves the highest mean ten-fold cross-validation accuracy at
0.83, making it the most suitable UAD model as selected by the model preselection algo-
rithm. Table 5 shows that AKPCA (fusion) also achieves the lowest FNR at 0.144. Although
ISF (fusion) attains a mean accuracy greater than 0.8 and a mean FNR less than 0.4, its
performance is still inferior to that of AKPCA (fusion). FNR is another evaluation indicator
in addition to accuracy; an FNR of 0.4 is the qualified limit for determining whether an
anomaly detection model is acceptable.
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Table 4. The accuracy results of validation samples.

Fold 1 2 3 4 5 6 7 8 9 10 Mean

OCSVM (together) 0.356 0.342 0.356 0.342 0.375 0.368 0.38 0.382 0.384 0.383 0.367
OCSVM (fusion) 0.56 0.564 0.56 0.564 0.502 0.547 0.559 0.555 0.517 0.534 0.546

AKPCA (together) 0.717 0.705 0.717 0.705 0.717 0.711 0.734 0.737 0.733 0.732 0.721
AKPCA (fusion) 0.871 0.872 0.871 0.872 0.862 0.852 0.866 0.85 0.69 0.7 0.83

ISF (together) 0.419 0.453 0.431 0.428 0.483 0.467 0.466 0.461 0.446 0.481 0.793
ISF (fusion) 0.817 0.821 0.841 0.828 0.793 0.826 0.831 0.845 0.798 0.767 0.817

Table 5. The FNR results of validation samples.

Fold 1 2 3 4 5 6 7 8 9 10 Mean

OCSVM (together) 0.926 0.924 0.926 0.924 0.929 0.928 0.928 0.929 0.929 0.929 0.927
OCSVM (fusion) 0.643 0.641 0.643 0.641 0.615 0.638 0.659 0.667 0.654 0.651 0.645

AKPCA (together) 0.38 0.391 0.38 0.391 0.384 0.387 0.385 0.383 0.379 0.371 0.383
AKPCA (fusion) 0.148 0.146 0.148 0.146 0.12 0.146 0.146 0.146 0.146 0.146 0.144

ISF (together) 0.815 0.772 0.804 0.802 0.748 0.768 0.802 0.811 0.829 0.777 0.453
ISF (fusion) 0.237 0.221 0.203 0.227 0.229 0.224 0.227 0.229 0.234 0.245 0.227

4.2. FD Model Preselection Results

To select a suitable FD model and signal preprocessing method, the SVM and one-
dimensional CNN (1DCNN) are trained and validated based on the experimental data, and
the structure and main parameters of the trained 1DCNN are recorded in Table 6. The main
parameters of the SVM referred to in [23] are used here, as shown in Table 7.

Table 6. The structure and parameters of the 1DCNN.

Layer Type Specific Setup Parameters Number Output Shape

Input layer Sample length = 162 0 (None, 162, 1)
Conv1D_1 (ReLU) Filters = 16, kernel size = 9, stride = 1 160 (None, 154, 16)

Pooling_1 Max pooling size = 2, stride = 1 0 (None, 77, 16)
Conv1D_2 (ReLU) Filters = 32, kernel size = 5, stride = 1 2592 (None, 73, 32)

Pooling_2 Max pooling size = 2, stride = 1 0 (None, 36, 32)
Conv1D_3 (ReLU) Filters = 64, kernel size = 3, stride = 1 6208 (None, 34, 64)

Flatten - 0 (None, 2176)
FC (ReLU) - 139,328 (None, 64)
Dropout 0.5 0 (None, 64)

FC (ReLU) - 2080 (None, 32)
Dropout 0.5 0 (None, 32)

FC (SoftMax) - 198 (None, 6)

FC: full connection.

Table 7. The parameters of SVM.

Parameters SVM

Gamma 0.16
C 0.9

Kernel ‘linear’

The validation accuracy results of the 1DCNN and SVM with different multi-signal
processing methods are recorded in Table 8. From this table, the mean of the ten-fold
cross-validation accuracy results of all SVM and 1DCNN models are larger than 0.8. The
mean accuracy of 1DCNN (fusion) and SVM (fusion) is very close to 1, while the mean
accuracy of 1DCNN (together) and SVM (together) is less than 0.9, which means the mean
fusion method should be selected. According to the model preselection algorithm, SVM
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(fusion) with the highest mean value of cross-validation accuracy (0.996) is regarded as the
best FD model.

Table 8. The ten-fold cross-validation accuracy results comparison of 1DCNN and SVM.

Fold 1 2 3 4 5 6 7 8 9 10 Mean

1DCNN (together) 0.927 0.967 0.764 0.931 0.915 0.876 0.963 0.941 0.912 0.711 0.89
1DCNN (fusion) 0.997 1 0.996 0.997 0.992 0.996 0.997 0.999 0.996 0.963 0.993
SVM (together) 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842
SVM (fusion) 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

The processing of multi-channel signals herein differs from that in reference [37].
Directly inputting multi-channel data into neural networks could achieve good results,
subject to the size of the dataset. f1-score is the evaluation parameter composed of Precision
and Recall; the calculation is realized by Equations (16)–(18). The f1-score results of the
1DCNN and SVM with different multi-channel data processing are recorded in Table 9.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

f1 − score =
2 × Precision × Recall

Precision + Recall
(18)

Table 9. The f1-score results of the ten-fold cross-validation of the 1DCNN and SVM.

Fold 1 2 3 4 5 6 7 8 9 10 Mean

1DCNN (together) 0.924 0.962 0.781 0.918 0.917 0.859 0.962 0.922 0.91 0.748 0.89
1DCNN (fusion) 1 1 1 1 1 1 1 1 1 0.974 0.997
SVM (together) 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838
SVM (fusion) 1 1 1 1 1 1 1 1 1 1 1

4.3. The Test Results of the Whole Condition Monitoring Method

Based on the results of the above models with two methods utilizing multi-channel
vibration data on the validation dataset, the mean fusion is selected as the multi-channel
data processing method, and AKPCA is selected as the UAD model, while the SVM is
selected as the FD model. Therefore, the framework consists of AKPCA and the SVM
within mean fusion processing five channels of vibration signals, as shown in Figure 6.
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After obtaining the detailed models of the framework, all samples’ test results accuracy
and FNR of AKPCA (fusion) are 0.83 and 0.144. All samples’ test results in terms of the
accuracy and f1-score of SVM (fusion) are 0.996 and 1. The confusion matrix of SVM (fusion)
is shown in Figure 7. The confusion matrix shows that most faults are diagnosed correctly,
but 16.7% of coupling misalignment (CM) and 16.7% of casing ring wear (CRW) samples
are misdiagnosed. The diagnostic accuracy of SVM (fusion) for each fault is greater than
0.8, which meets the GB/T 43555-2023 [36] standard requirement for qualified models. That
is, SVM (fusion) models are qualified.
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Each status’s test samples are independently evaluated using the entire framework,
with results detailed in Table 10. According to AKPCA’s findings, the model successfully
identified coupling misalignment, mass eccentricity, casing ring wear, blade wear, bench
instability, and strong blade wear (two-blade wear, not learned by the SVM), all with ADR
exceeding 10% [23]. However, normal status samples, with an ADR of 11%, were incorrectly
detected as abnormal status samples.

Table 10. The results of AKPCA (fusion), SVM (fusion), and the information integration algorithm on
different status samples.

Test Data’s Status ADR (AKPCA (Fusion)) MPS, P_MPS (SVM (Fusion)) Information Integration Results

Normal 11% Normal, 100% Expert analysis
Coupling misalignment 43.8% Coupling misalignment, 87.5% Coupling misalignment

Mass eccentricity 11% Mass eccentricity, 94% Mass eccentricity
Casing ring wear 16% Casing ring wear, 88% Casing ring wear

Blade wear 19% Blade wear, 100% Blade wear
Bench instability 100% Bench instability, 100% Bench instability

Strong blade wear 97.9% Bench instability 58.3% Expert analysis

In the SVM’s results, the unlearned strong blade wear fault was identified as bench
instability with 58.3% probability, while other faults were diagnosed correctly with probabil-
ities exceeding 80%. No abnormal status information would be obtained in scenarios where
only a UAD module is available. Conversely, if only an FD model were used, the unlearned
fault might be misclassified as one of the learned faults, resulting in a misdiagnosis.

By employing the information integration algorithm, consistent results from both the
UAD and FD models accurately identify all classical faults with 100% accuracy. Inconsistent
results, such as normal status and unlearned strong blade wear, are flagged for expert
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analysis. In summary, the integration resolves missing abnormal status information from
the anomaly detection model and solve misdiagnosis problems arising from the fault
diagnosis model.

4.4. Discussion

In Section 4, the highest test accuracy (0.83) and smallest FNR (0.144) obtained by
AKPCA (fusion) shows that AKPCA is the best UAD method among OCSVM (together),
OCSVM (fusion), AKPCA (together), AKPCA (fusion), ISF (together), and ISF (fusion).
Similarly, the highest accuracy (0.996) and highest f1-score (1) of SVM (fusion) shows
that SVM (fusion) is the best model among 1DCNN (together), 1DCNN (fusion), SVM
(together), and SVM (fusion). The test results prove that selecting a model based on the
highest validation accuracy is reliable. In addition, mean fusion is a good choice for
multi-channel same-type signal processing and is helpful for UAD and FD.

The results in Table 10 illustrate that only AKPCA results in a lack of specific fault
information when an anomaly is detected, while using only SVM may lead to misdiagnosis.
These issues are resolved when AKPCA and SVM operate in parallel through the informa-
tion integration algorithm. Therefore, within a framework where UAD and FD function
in parallel, the information integration algorithm is essential for the comprehensive and
precise condition monitoring of complex equipment, including but not limited to ESWPs.
To our knowledge, there is no research on ESWP condition monitoring. The condition
monitoring of other types of pumps generally only includes anomaly detection [38] or
only includes fault diagnosis [10]. Research on the simultaneous use of UAD and FD has
appeared. Reference [39] uses pressurized water reactor simulator data to perform AKPCA
and SVM, equivalent to UAD and FD working in series. The design of UAD and FD in
series is similar to [23]. This method does not consider the impact of the UAD algorithm’s
false negatives on the monitored object. Our novel features and innovation lie in the paral-
lel design of UAD and FD algorithms. Compared with the probability-weighted voting
decision [40] for the same output form of models, the information integration algorithm
focuses on fusing the outputs of models with similar functions but different forms of results.
Similar to the ensemble learning mentioned in reference [41], the information integration
algorithm is fault-tolerant.

5. Conclusions

This paper proposes a condition monitoring framework, and the models used were
trained and tested on the experimental dataset. The test results in Section 4 prove that
the aim of the proposed condition monitoring framework for ESWP is achieved, classical
faults are found with 100% correct fault information, and the unlearned fault is found
and sent to an expert for detailed information. Three conclusions can be drawn: (1) mean
fusion is a good choice for multi-channel same-type signal processing. (2) The model
preselection algorithm helps filter the most suitable UAD and FD models across existing
models. (3) The information integration algorithm helps avoid lacks in specific fault
information and misdiagnoses. The proposed condition monitoring framework’s novelty is
the parallel working of UAD and FD, the model preselection algorithm, and the information
integration algorithm.

The shortcoming of this method is that improving the framework requires expert
assistance. Further work includes the fusion of different-format results from different
models in depth and implementing an expert system. In addition, requesting actual pump
data from SNPPs is another essential task to validate and improve the condition monitoring
framework. We will continue to focus on the parallel implementation of anomaly detection
and fault identification methods in the future. This method can concentrate on different
models’ advantages and avoid limitations, especially for monitoring critical and complex
equipment conditions.
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Nomenclature

ESWPs Essential service water pumps
SNPPs Seaside nuclear power plants
AD Anomaly detection
FD Fault diagnosis
UAD Unsupervised anomaly detection
SVDD Support vector data description
AKPCA Anomaly detection based on kernel principal component analysis
SVM Support vector machine
OCSVM One-class support vector machine
SPE Squared Prediction Error
ISF Isolation forest
CNN Convolutional neural network
OVR One-versus-rest
ADR Anomaly detection rate
MPS Most probable status
P_MPS Probability of the most probable status
1DCNN One-dimensional convolutional neural network
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